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Renewable capacities increase worldwide

Addition of 260 GW of renewables in 2020 (which represents 80% of all
added capacities) 1.

Almost 2800 GW of renewables worldwide (36% of total capacities), 730
GW is wind, 714 GW is solar 1.

By the end of 2021, global renewable capacites = 3064 GW (source
IRENA).

Figure: Source: CAISO

1IRENA, RENEWABLE CAPACITY STATISTICS 2021
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Ducks do happen in reality!

Figure: Source: CAISO
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Variability of renewables

The power system requires more flexiblities.

Figure: source: RTE, bilan mensuel novembre 2020
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Some elements on the current situation in Europe

The French TSO urged all consumers to reduce their consumption on
Monday 4th April morning. The spot price ended at 3000e/MWh which is the
limit of the market.

Figure: French spot price, source EpexSpot

And also regulation incentives to develop DSM
Clean Energy Package: each final customer should be entitled to choose a
dynamic electricity price contract
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Our DSM model
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Objective function

We represent a DSM retail contract with two parts:
RTP: real time pricing

interruptible load incentive = divergence cost

Each consumer i ∈ {1, . . . , n} wants to minimise its total expected costs:
payment of its power contract :

the real time tariff indexed on its energy consumption
the demand charge indexed on its subscribed power
a divergence cost when the global load does not match the interruptible load
target

inconvenience cost due to consumption modification
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Real time tariff

Spot price is sensitive to the global power demand.

Figure: source: ENTSOE and Epexspot

The real time tariff:
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Interruptible load contract

When activated, the aim of the interruptible load contract is that the global
divergence

∑
i α

i
t equals ᾱ during θ. The divergence cost has the form:

d i
t = Jθt .(Q̃

i
t + αi

t − ᾱ).f

1
n

n∑
j=1

(Q̃ j
t + αj

t )− ᾱ


with f a convex growing function such as f (0) = 0

Jθt equal to one during interruptible load contract activation and 0
otherwise.

dRt = dt − Rt−dN0
t , R0 = 2θ,

Jθt = 1Rt≤θ

Q̃ i
t = Q i

t − E
[
Q i

t
]
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Objective function

Each consumer i ∈ {1, . . . , n} wants to minimise its total expected costs:

inf
αi∈A

J i
n(α) = inf

αi∈A
E

∫ T

0

 g(αi
t ,S

i
t ,Q

i
t )︸ ︷︷ ︸

inconvenience cost

+ l(Qi
t + αi

t )︸ ︷︷ ︸
demand charge

+ c i
t︸︷︷︸

real time tariff

+ d i
t︸︷︷︸

divergence cost

 dt + h(Si
T )︸ ︷︷ ︸

terminal cost

 ,
with α = (α1, . . . , αn).

=⇒
interaction of controls in real time tariff c i

t = (Qi
t + αi

t )pt

(
1
n
∑n

j=1(Qj
t + α

j
t )
)

and in divergence cost d i
t = Jθt .(Q̃i

t + αi
t − ᾱ).f

(
1
n
∑n

j=1(Q̃j
t + α

j
t )− ᾱ

)
random jump time penalty: jump and delay in the divergence cost

BSDE 2022 - Annecy 10 / 23



Dynamics of the state variables

W 0 and W two independent Brownian motions

N0 and N two independent Poisson processes with intensities λ0 and λ.

Ñ the compensated Poisson processes

F = (Ft )t∈[0,T ] be the (complete) natural filtration generated by (W , W 0, N, N0,
s0, q0).

F0 = (F0
t )t∈[0,T ] be the (complete) natural filtration generated by (W 0, N0).

dQt = µ(Qt , t)dt + σ(Qt , t)dWt + β(Qt− , t)dÑt + σ0(Qt , t)dW 0
t , Q0 = q0,

dQst
t = µst (Qst

t , t)dt + β(Qst
t− , t)dÑt + σst (Qst

t , t)dW 0
t , Qst

0 = qst
0 ,

dSt = αt dt , S0 = s0.

with α ∈ A , A the set of F-adapted real-valued processes a = {at} such that
E
[∫ T

0 |au |2du
]
<∞ and E[|ατ |1τ<∞] <∞ for all F0-stopping times τ with values in

[0,T ] ∪ {+∞}

We denote by Q̃t = Qt − E [Qt ], t ∈ [0,T ] and for a F-adapted process ξ = {ξt},
denote ξ̂t := E[ξt |F0

t ]
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The mean-field game

MFG problem: Let ξ = (ξt )t∈[0,T ] be a given F0-adapted process.

JMFG(α; ξ) =E

[∫ T

0

(
g(αt ,St ,Qt ) + l(Qt + αt ) + (Qt + αt )pt

(
Q̂t + ξt

)
+ Jθt .(Q̃t + αt − ᾱ).f

(̂̃Qt + ξt − ᾱ
))

dt + h(ST )

]
,

where α = (αt )t∈[0,T ] is an admissible control process which belongs to A, the set of

all real-valued F-adapted processes such that E[
∫ T

0 α2
t dt] <∞ and E[|ατ |1τ<∞] <∞

for all F0-stopping times τ with values in [0,T ] ∪ {+∞}.

V MFG(ξ) = inf
α∈A

JMFG(α; ξ).

The goal is to find a process α? = (α?t )t∈[0,T ] such that

JMFG(α?; ξ) = V MFG(ξ)

and
α̂?t = ξt , a.s. for all t ∈ [0,T ].

Such a process α? is called a mean-field Nash equilibrium.
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The mean-field game

MFG problem: Let ξ = (ξt )t∈[0,T ] be a given F0-adapted process.

JMFG(α; ξ) =E

[∫ T

0

(
g(αt ,St ,Qt ) + l(Qt + αt ) + (Qt + αt )pt

(
Q̂t + ξt

)
+ Jθt .(Q̃t + αt − ᾱ).f

(̂̃Qt + ξt − ᾱ
))

dt + h(ST )

]
,

Hypotheses
1 g : R3 → R, l : R→ R and h : R→ R have at most quadratic growth and are

strictly convex.
2 p : R→ R, f : R→ R have at most linear growth.
3 g, p, f , l and h are differentiable.
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Characterization of mean field Nash equilibria

Theorem (Characterization of mean field Nash equilibria)

Let ξ̂ be a given F0-adapted R-valued process and x0 = (s0, q0) be a random vector
independent of F0. If there exists a control α? ∈ A which minimizes the map
α 7→ JMFG(α, ξ̂) and if (Sα

?
,Q) is the state process associated to the initial condition

x0, control α? and the previous dynamics for Q and S, then there exists a unique
solution (Y?, q0,?, q?, ν?, ν0,?) ∈ S2 × (H2)4 of the following BSDE with jumps:

−dY?t = ∂x g(α,Sα
?

t ,Qt )dt − q0,?
t dW 0

t − q?t dWt − ν?t dÑt − ν0,?
t dÑ0

t ,

Y?T = ∂x h(Sα
?

T ), (1)

satisfying the coupling condition

∂αg(α?t ,S
α?

t ,Qt ) + ∂αl(Qt + α?t ) + pt

(
Q̂t + ξ̂t

)
+ Y?t + Jθt f

(̂̃Qt + ξ̂t − ᾱ
)

= 0.

(2)

Conversely, assume that there exists(
α?,Sα

?
,Y?, q0,?, q?, ν?, ν0,?

)
∈ A× (S2)2 × (H2)4 satisfying the coupling

condition (2), as well as the FBSDE for S and (1), then α? is the optimal control
minimizing the map α 7→ JMFG(α, ξ̂) and Sα

?
is the optimal trajectory.

If additionally α̂?t = ξ̂t a.s. for all t ∈ [0,T ], then α? is a Mean-field Nash equilibrium.

Proof: Stochastic maximum principle
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The mean-field type control problems

MFC problem: Let π the proportion of standard consumers who do no react to price,
(1− π) the proportion of consumers who have the DSM contract:

JC(α) =E

[
(1− π)

∫ T

0

(
g(αt ,St ,Qt ) + (Qt + αt )pt

(
Q̂t + α̂t

)
+l(Qt + αt ) + Jθt (Q̃t + αt − ᾱ)f

(̂̃Qt + α̂t − ᾱ
))

dt + (1− π)h(ST )

π

∫ T

0

(
Qst

t pt

(
Q̂t + α̂t

)
+ l(Qst

t )
)

dt

]
.

V C = inf
α∈A

JC(α). (3)
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Link between MFC and MFG

MFG and MFC are characterised by FBSDE systems (stochastic maximum principle)
and MFC equilibrium is unique by strict convexity of the criterion.

Proposition

Consider the solution α?MFC of MFC problem with a pricing rule pMFC and fMFC . Then
α?MFC is a mean field nash equilibrium for the MFG problem with pricing rule

pMFG(x) = pMFC(x) + xp′MFC(x) ,

fMFG(x) = fMFC(x) + xf ′MFC(x) .

Remark 1: Uniqueness of MFC implies the uniqueness of the MFG equilibrium.

Remark 2 : For the numerics, we use those relationships to compute the solution of the
MFC by using the same code for computing both equilibria.
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Semi explicit characterisation of the MFG Nash equilibrium in the
linear-quadratic case

We make the following assumptions:

µ(t , q) = µst (t , q) = µq with µ ∈ R, and σ(t , q) = σq, σst (t , q) = σstq,
β = 0 and βst = 0, with µ, σ, σ0 given constants.

g(a, s, q) = A
2 a2 + C

2 s2 with A,C ∈ R?+.

l(x) = K
2 x2 with K ∈ R+.

f (a) = f0 + f1a with fi ∈ R, i = 0, 1 and f1 ≥ 0.

p(q) = p0 + p1q with p0 ∈ R, and p1 ∈ R?+.

h(s) = h0 + h1s + h2
2 s2 with hi ∈ R, i = 0, 1, 2 and h2 ≥ 0.

We provide a semi explicit characterisation of the equilibrium as a decoupled
system of FBSDE with jumps involving a Riccati BSDE.

We show the equilibrium approximate Nash equilibrium in the n-player game
for n sufficiently large.

We propose an implementable numerical schemes.
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Numerical examples - State variables based on historical Australian
data

Figure: Trajectories of Q̂ (in kW) with estimated seasonality over 48 half-hours in a
weekday in July.

Figure: Trajectories of Q (in kW) with estimated seasonality over 48 half-hours in a
weekday in July.
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Scenario considered

Figure: One trajectory of Q̂ and Q (in kW) for two different consumers (left) and one
trajectory of J (right) along time (in half-hours).
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Numerical results for RTP and no interruptible load activation

Figure: Trajectories of Q̂ + α̂ and Q + α (in kW) for two different consumers for MFG
(left) and corresponding trajectories for MFC (right) along time (in half-hours).

Figure: Trajectories of price p for three different proportions of active consumers for
MFG (left) and corresponding trajectories for MFC (right) along time (in half-hours).
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Numerical results for RTP and interruptible load activation

Figure: Trajectories of ̂̃Q + α̂ (in kW) and Q̃ + α for two different consumers for MFG
(left) and for MFC (right) along time (in half-hours).

Figure: Trajectories of price p for different proportion π of standard consumers in the
system in the MFG setting (jumps episodes are highlighted in grey) along time (in
half-hours).
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Conclusion

Main results:

MFG of controls is interesting for several applications for power system
with distributed local energy generation and flexibilities.

MFG of controls with jumps and delay approach provides an analytically
and numerically tractable setting to analyze the model of DSM contract.

With quadratic cost structure and linear pricing rule, we provide
quasi-explicit solutions and existence + unicity results for the equilibrium.

A numerical implementation is proposed and provides interesting results.

Centralised optimization can be decentralized: extended MFG can linked
to suitable Mean Field Type Control (MFC) problem (central planner
point of view)

Perspectives:

Study a Stackelberg game: add an aggregator who designs the DSM
contrat

Optimise the activation of the interruptible load Jθ.

Achieve numerics with more general settings
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