On a Class of Reflected Backward Stochastic Volterra Integral Equations and Related Time-Inconsistent Optimal Stopping Problems

Nacira Agram & Boualem Djehiche

9th colloquium on Backward Stochastic Differential Equations and Mean Field Systems, June 27-July 1, 2022

On a Class of Reflected Backward Stocha

FSVIE

2 BSVIE

Skorokhod problem

@ Reflected BSVIE Exsitence and uniqueness Comparison Theorem

5 Time Inconsistent Optimal Stopping

< //2 ▶ < 3 ▶

Forward stochastic Volterra integral equations (FSVIE):

Dynamics (drift *b*, volatility σ , Brownian motion *W*) $X(t) = \phi(t) + \int_0^t b(t, s, X(s))ds + \int_0^t \sigma(t, s, X(s))dW(s)$

They represent:

- Systems with memory
- Fractional Brownian motion

$$W^{H}(t) = \int_{0}^{t} K(t,s) dW(s)$$

Fredholm, Bellman, Wiener, Volterra...

ктн

FSVIE

2 BSVIE

Skorokhod problem

@ Reflected BSVIE Exsitence and uniqueness Comparison Theorem

5 Time Inconsistent Optimal Stopping

< 同 > < 回 >

Consider the equation

$$dY(t) = 0 \quad Y(T) = \xi$$

According to ξ , we distinguish two cases:

A (10) A (10)

The process Y is required to be \mathcal{F}_t -adapted. Set

 $Y(t) = \mathbb{E}[\xi|\mathcal{F}_t]$

MRT, $\exists ! Z \in L^2$ $Y(t) = \mathbb{E}[\xi | \mathcal{F}_t] = \mathbb{E}[\xi] + \int_0^t Z(s) dW(s)$

Simple calculations apply

$$Y(t) = \xi - \int_t^T Z(s) dW(s).$$

BSDE (Y, Z)

BSDE

(driver f, terminal condition ξ , Brownian motion W)

$$-dY(t) = f(t, Y(t), Z(t))dt - Z(t)dW(t), \quad Y(T) = \xi$$

equivalent to

$$Y(t) = \xi + \int_t^T f(s, Y(s), Z(s)) ds - \int_t^T Z(s) dW(s)$$

3

(a)

BSVIE¹

Consider the following equation (still $\xi(t) \mathcal{F}_T$ -measurable) $Y(t) = \xi(t)$ BSDE $Y(t) = \xi$

Define
$$M_t(u) = \mathbb{E}[\xi(t)|\mathcal{F}_u]$$
, MRT, $\exists ! Z(t, \cdot) \in L^2$
 $M_t(u) = \mathbb{E}[\xi(t)] + \int_0^u Z(t,s) dW(s)$

Putting u = t and $Y(t) = M_t(t)$

$$Y(t) = \mathbb{E}[\xi(t)] + \int_0^t Z(t,s) dW(s)$$

After some computation, we get

$$Y(t) = \xi(t) + \int_t^T f(t,s,Y(s),Z(t,s))dt - \int_t^T Z(t,s)dW(s)$$

¹Yong

(日本) (日本) (日本) 日

FSVIE

2 BSVIE

3 Skorokhod problem

@ Reflected BSVIE Exsitence and uniqueness Comparison Theorem

5 Time Inconsistent Optimal Stopping

Reflected BSDE (Y, Z, L)

RBSDE (driver f, terminal condition ξ , Brownian motion W, obstacle L,local time K)

$$-dY(t) = f(t, Y(t), Z(t))dt - Z(t)dW(t), \quad Y(T) = \xi$$

- $Y(t) \ge L(t)$
- K(t) is an increasing, continuous process, K(0) = 0 and

$$\int_0^T (Y(s) - L(s)) \, dK(s) = 0, \quad \mathbb{P}\text{-a.s.}$$

10 / 27

イロト 不得 トイヨト イヨト

ктн

Question What is the corresponding reflected BSVIE?

э

FSVIE

2 BSVIE

Skorokhod problem

Reflected BSVIE
 Exsitence and uniqueness
 Comparison Theorem

5 Time Inconsistent Optimal Stopping

We define the following spaces for the solution.

• S^2 is the set of \mathbb{R} -valued \mathbb{F} -adapted processes $(Y(t))_{t \in [0,T]}$:

$$\|Y\|_{\mathcal{S}^2}^2 := \mathbb{E}[\sup_{t \in [0,T]} |Y(t)|^2] < \infty$$
.

• \mathcal{H}^2 is the space of progressively measurable processes $(v(t))_{t \in [0,T]}$:

$$\|v\|_{\mathcal{H}^2}^2 := \mathbb{E}\left[\int_0^T |v(t)|^2 dt\right] < \infty.$$

• \mathbb{L}^2 is the set of \mathbb{R} -valued processes $(Z(t,s))_{(t,s)\in[0,T]\times[0,T]}$: for a.a. $t\in[0,T]$ $Z(t,\cdot)\in\mathcal{H}^2$ and satisfy

$$\|Z\|_{\mathbb{L}^2}^2 := \mathbb{E}\left[\int_0^T \int_t^T |Z(t,s)|^2 ds dt\right] < \infty.$$

- \mathcal{K}^2 is the space of processes K which satisfy
 - for each $t \in [0, T]$, $u \mapsto K(t, u)$ is an \mathbb{F} -adapted and increasing process with K(t, 0) = 0;
 - $(t, u) \mapsto K(t, u)$ is continuous and $K(\cdot, T) \in \mathcal{H}^2$.

Let (Y, Z, K) be the solution of

Reflected BSVIE

(driver f, obstacle K(t, ds))

$$Y(t) = \xi(t) + \int_{t}^{T} f(t, s, Y(s), Z(t, s)) ds + \int_{t}^{T} K(t, ds) - \int_{t}^{T} Z(t, s) dW(s)$$
(1)

(a)
$$Y\in \mathcal{H}^2,\,t\mapsto Y(t)$$
 is continuous and $Z\in\mathbb{L}^2;$

(b)
$$Y(t) \ge L(t)$$
 \mathbb{P} -a.s., $0 \le t \le T$;

- (c) K(t, ds) is the Lebesgue-Stieltjes measure induced by the function $s \mapsto K(t, s)$, it enjoys the following properties:
 - (c1) $K \in \mathcal{K}^2$;
 - (c2) The Skorohod flatness condition holds: for each $0 \le \alpha < \beta \le T$,

 $K(t, \alpha) = K(t, \beta)$ whenever Y(u) > L(u) for each $u \in [\alpha, \beta]$ \mathbb{P} -a.s.

Remark

The Skorohod flatness condition (c2) implies

 $\int_{t}^{T} K(t, ds) = 0 \text{ whenever } Y(t) > L(t) \text{ for each } t \in [0, T] \quad \mathbb{P}\text{-a.s.}$

Mimicking Lin (2002), Yong (2006) and Wang & Zhang (2007) (for BSVIEs), we construct Y so that, for every $t \in [0, T]$, $Y(t) = \tilde{Y}(t, t)$ parametrized by t:

Accompanying reflected BSVIE $\widetilde{Y}(t, \cdot)$

$$\widetilde{Y}(t,u) = \xi(t) + \int_{u}^{T} f(t,s,Y(s),Z(t,s))ds + \int_{u}^{T} K(t,ds) - \int_{u}^{T} Z(t,s)dW(s), \quad u \in [t,T]$$

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

We make the following assumptions on (f, ξ, L) (A1) $\xi(t)$ is a $\mathcal{B}([0, T]) \otimes \mathcal{F}_T$ -measurable map $\xi : \Omega \times [0, T] \longrightarrow \mathbb{R}$:

 $\sup_{0\leq t\leq T} \mathbb{E}[|\xi(t)|^2] < \infty;$

(A2) The obstacle $(L(u), 0 \le u \le T)$ is a real-valued and \mathbb{F} -adapted continuous process:

$$L(T) \leq \xi(t), t \in [0, T] \text{ and } \mathbb{E}\left[\sup_{\substack{0 \leq u \leq T}} (L(u))^2\right] < \infty.$$
 (2)

(A3) The driver f is a map from $\Omega \times [0, T] \times [0, T] \times \mathbb{R} \times \mathbb{R}$ onto \mathbb{R} , for any fixed $(t, y, z) \in [0, T] \times \mathbb{R} \times \mathbb{R}$, $f(t, \cdot, y, z)$ is progressively measurable. $\sup_{0 \le t \le T} \mathbb{E} \left| \left(\int_t^T |f(t, s, 0, 0)| ds \right)^2 \right| < \infty,$ (i) (ii) $\exists c_f \geq 0$, for all $(t, s) \in [0, T]^2$ and $v, v', z, z' \in \mathbb{R}$. $|f(t, s, y, z) - f(t, s, y', z')| \le c_f (|y - y'| + |z - z'|).$ (iii) For some $\alpha \in (0, 1/2]$ and $c_1 > 0$, for all $(y, z) \in \mathbb{R} \times \mathbb{R}$ and all 0 < t, t' < s < T $|f(t', s, y, z) - f(t, s, y, z)| < c_1 |t' - t|^{\alpha}$

and for some $\beta>1/\alpha$ and $\mathit{c}_2>$ 0,

$$\mathbb{E}[|\xi(t) - \xi(t')|^{\beta}] \le c_2 |t' - t|^{\alpha\beta}$$

and

$$\mathbb{E}\left[\left(\int_0^T |f(0,s,0,0)|^2 ds\right)^{\beta/2}\right] < \infty.$$

Remark

Assumption (iii) yields the continuity of Y and the bi-continuity of $K(\cdot, \cdot)$ which in turn guarantee the Skorohod flatness condition (c2).

Theorem

Under the above assumptions, the reflected BSVIE (1) associated with (f, ξ, L) admits a unique solution (Y, Z, K). Moreover, for every $t \in [0, T]$,

$$Y(t) = \operatorname{ess\,sup} \mathbb{E} \Big[\int_{t}^{\tau} f(t, s, Y(s), Z(t, s)) ds + L(\tau) \mathbb{1}_{\{\tau < \tau\}} + \xi(t) \mathbb{1}_{\{\tau = \tau\}} \Big| \mathcal{F}_{t} \Big]$$

$$(3)$$

A (10) A (10)

KTH

Comparison Theorem

Let (Y, Z, K) be a solution of the **reflected BSVIE** associated with (f, ξ, L) and (Y', Z', K') be a solution of the **reflected BSVIE** associated with (f', ξ', L') .

Theorem

Assume that (f, ξ, L) and (f', ξ', L') satisfy the assumptions (A1), (A2) and (A3) and that either the map $y \mapsto f(t, s, y, z)$ or $y \mapsto f'(t, s, y, z)$ is nondecreasing. Assume further that (H1) $\xi(t) \leq \xi'(t)$, \mathbb{P} -a.s., $0 \leq t \leq T$, (H2) $f(t, s, y, z) \leq f'(t, s, y, z)$, for all $(t, y, z) \in$ $[0, s] \times \mathbb{R} \times \mathbb{R}$, a.s., a.e. $s \in [0, T]$, (H3) $L(t) \leq L'(t)$, $0 \leq t \leq T$, \mathbb{P} -a.s. Then $Y(t) \leq Y'(t)$, $0 \leq t \leq T$, \mathbb{P} -a.s.

< 17 ×

1 FSVIE

2 BSVIE

Skorokhod problem

@ Reflected BSVIE Exsitence and uniqueness Comparison Theorem

5 Time Inconsistent Optimal Stopping

- 4 ⊒ →

Consider

$$f(t,s,X(s)) := \varphi(s-t)\psi(X(s)), \quad \xi(t) := \varphi(T-t)h(X(T)),$$

where φ is a (deterministic) discounting function (deflator). Maximize $\mathcal{J}(t,\tau) := \mathbb{E}\left[\int_{t}^{\tau} f(t,s,X(s))ds + L(\tau)\mathbb{1}_{\{\tau < T\}} + \xi(t)\mathbb{1}_{\tau = T\}}\right]$

Optimal stopping problem

Find an \mathbb{F} -stopping time τ_t^* , indexed by t, such that

$$au_t^* = rg\max_{ au \ge t} \mathcal{J}(t, au).$$

- *J*=investment in a commodity
- X(t)=price of a commodity
- *f*=utility rate per unit time
- L=utility function at the stopping time τ , ξ =utility at the final time T

KTH

The associated value-function is

$$Y(t) := \operatorname{ess\,sup}_{\tau \ge t} \mathbb{E} \left[\int_{t}^{\tau} f(t, s, X(s)) ds + L(\tau) \mathbb{1}_{\{\tau < T\}} + \xi(t) \mathbb{1}_{\{\tau = T\}} \Big| \mathcal{F}_{t} \right].$$

$$(4)$$

Examples of hyperbolic discounting functions used in utility maximization include

• Loewenstein and Drazen (1992), Laibson (1997), Loewenstein and O'Donoghue (2002):

$$\phi(s-t):=(1+lpha(s-t))^{-rac{\delta}{lpha}}, \,\, lpha,\delta>0, \,\,\, s>t.$$

Note that $\phi(s-t) \rightarrow e^{-\delta(s-t)}$ as $\alpha \rightarrow 0$.

• Strulik (2017):

$$\phi(t,s) := \left(\frac{1+lpha t}{1+lpha s}
ight)^{eta} \ lpha \ge 0, \ eta \ge 1, \ s \ge t.$$

• It is easily seen that, apart from $e^{-\delta t}$, for any other choice of the discounting function φ , $(Y(t) + \int_0^t f(t, s, X(s))ds)_{t \leq T}$ will not be a supermartingale. i.e. the optimal stopping problem is time-inconsistent. We approach the problem as follows.

• Note that

$$\sup_{\tau \ge t} \mathcal{J}(t,\tau) \le \mathbb{E}[Y(t)].$$
(5)

Now, if we can find an \mathcal{F} -stopping time τ_t^* such that

$$Y(t) = \mathbb{E}\left[\int_t^{\tau_t^*} f(t, s, X(s)) ds + L(\tau_t^*) \mathbb{1}_{\{\tau_t^* < T\}} + \xi(t) \mathbb{1}_{\{\tau_t^* = T\}} \middle| \mathcal{F}_t\right]$$

then au_t^* is optimal for $\mathcal{J}(t,\cdot)$ since

$$\mathcal{J}(t,\tau_t^*) = \mathbb{E}[Y(t)] \le \sup_{\tau \ge t} \mathcal{J}(t,\tau) \le \mathbb{E}[Y(t)].$$
(6)

23 / 27

KTH

• It is tempting to suggest that Y solves a Reflected BSVIE of the form

$$Y(t) = \xi(t) + \int_t^T f(t, s, X(s)) ds + \int_t^T K(t, ds) - \int_t^T Z(t, s) dW(s)$$

for some processes (Z(t, s), K(t, s)), where K(t, ds) is the Lebesgue-Stieltjes measure induced by the 'increasing function' $s \mapsto K(t, s)$.

Proposition

Suppose the assumptions (A1), (A2) and (A3) are satisfied. For each $t \in [0, T]$, denote by τ_t^* the stopping time

$$\tau_t^* = \inf\{t \le u \le T; \ \widetilde{Y}(t, u) = L(u)\}$$

with the convention that $\tau_t^* = T$ if $\widetilde{Y}(t, u) > L(u)$, $t \le u \le T$. Then τ_t^* is optimal in the sense that

$$Y(t) = \mathbb{E}\left[\int_{t}^{\tau_{t}^{*}} f(t, s, X(s))ds + L(\tau_{t}^{*})\mathbb{1}_{\{\tau_{t}^{*} < T\}} + \xi(t)\mathbb{1}_{\{\tau_{t}^{*} = T\}} \middle| \mathcal{F}_{t}\right].$$
(7)

Moreover, τ_t^* is an optimal strategy for $\mathcal{J}(t, \cdot)$ i.e.

$$\tau_t^* = \arg\max_{\tau \ge t} \mathcal{J}(t,\tau).$$

ктн

The choice of the optimal stopping time τ_t^* as the first hitting time of the accompanying Snell envelope $\widetilde{Y}(t, \cdot)$ of the obstacle *L* instead of the value function *Y* (as it is the case for standard reflected BSVIE) is simply due to fact that

$$Y(t) \neq Y(u) + \int_u^T f(t,s,X(s))ds + \int_u^T K(t,ds) - \int_u^T Z(t,s)dW(s), \quad u \geq t.$$

Thank you for your attention

< A > < E

→