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FSVIE

Forward stochastic Volterra integral equations (FSVIE):

Dynamics (drift b, volatility o, Brownian motion W)

t

X(t‘):qS(t)—k/0 b(t,s,X(s))ds—F/0 o(t,s, X(s))dW(s)

They represent:
® Systems with memory

® Fractional Brownian motion

WH(t) = /0 CK(t. s)dW(s)

Fredholm, Bellman, Wiener, Volterra...
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Motivation

Consider the equation

According to &, we distinguish two cases:

o if ¢ € R (BODE)

Y(t)=¢
e if ¢ € L2(Q, Fr) (BSDE)
Y(t)= ¢ Problem!!
Fi-adapted JF1-measurable
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BSDE

The process Y is required to be /,-adapted . Set

Y(t) = E[¢]7]

MRT, 317 € [?
Y(t) = E[|F.] = El] + / Z(s)dW(s)

Simple calculations apply

.
Y(t) =& /t Z(s)dW(s).
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BSDE

BSDE (Y, Z)
BSDE (driver f, terminal condition &, Brownian motion W)
—dY(t) = f(t,Y(t), Z(t))dt — Z(t)dW(t), Y(T)=¢

equivalent to

Y(t) = ¢+ /t £(s, Y (s), Z(s))ds — /t Z(s)dW(s)
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BSVIE !

Consider the following equation (still {(t) Fr-measurable)
Y(t) =£(t) BSDE Y(t) =¢

Define M:(u) = E[£(t)|F.], MRT,31Z(t, ) € L2
Mila) = BIE(0] + | " Z(t,5)aw(s)

Putting u = t and Y(t) = M(t)

Y(t) = E[£(1)] + /0 Z(t, 5)dW(s)

After some computation, we get

T T
Y(t) = (t) + /t F(t,s, Y (s), Z(t,s))dt — /t Z(t, s)dw(s)

Yong
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RBSDE

Reflected BSDE (Y, Z, L)

RBSDE (driver f, terminal condition &, Brownian motion W, obstacle L,local
time K)

—dY(t) = f(t,Y(t), Z(t))dt — Z(t)dW(t), Y(T)=¢

° Y(t) > L(t)

® K(t) is an increasing, continuous process, K(0) = 0 and

/o (Y(s) — L(s)) dK(s) =0, P-as.
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Question

What is the corresponding reflected BSVIE?
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We define the following spaces for the solution.
* 52 is the set of R-valued F-adapted processes (Y (t))cepo,7]:

1Y% =E[ sup |Y(t)]*] < oco.
te[o, T

® H? is the space of progressively measurable processes (v(t))ecpo,

e =] [ o] <.

® L2 is the set of R-valued processes (Z(t,s))(t,s)c[0, T]x[o,7]: for a.a.
t €0, T] Z(t,-) € H? and satisfy

|Z||L2:—E[/ / ts|dsdt]< 00 .

® K2 is the space of processes K which satisfy
e foreach t € [0, T], u— K(t,u) is an F-adapted and increasing process
with K(t,0) = 0;
e (t,u) — K(t,u) is continuous and K(-, T) € H2.
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Let (Y, Z, K) be the solution of
Reflected BSVIE

T T T
Y(t) = £(6)+ /t F(t,s, Y(s), Z(t,5))ds+ /t K(t, ds)— /t Z(t,5)dW(s)
(1)

(driver f, obstacle K(t, ds))

(a) Y € H2, t + Y(t) is continuous and Z € L?;

(b) Y(t) > L(t) P-as., 0<t<T,
(c) K(t,ds) is the Lebesgue-Stieltjes measure induced by the function
s +— K(t,s), it enjoys the following properties:
(cl) K € K2
The Skorohod flatness condition holds: for each 0 < a < < T,

K(t,a) = K(t,3) whenever Y(u)> L(u) for each v € [o, 5] P-as.
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Remark
The Skorohod flatness condition implies

-
/ K(t,ds) =0 whenever Y(t) > L(t) for each t € [0, T] P-a.s.
t

Mimicking Lin (2002), Yong (2006) and Wang & Zhang (2007) (for
BSVIEs), we construct Y so that, for every t € [0, T], Y(t) = Y(t,t)
parametrized by t:

Accompanying reflected BSVIE ?(t, )

T

Y(t, u):g(t)+/ f(t,s, Y(s),Z(t,s))ds-l—/TK(t, ds)

u

-
_/ Z(t,s)dW(s), wuecl|t, T]
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We make the following assumptions on (7. ¢, 1)
(A1) &(t)is a B([0, T]) ® Fr-measurable map £ : Q x [0, T] — R:

sup E[£(t)]] < oo;
0<t<T

(A2) The obstacle (L(u), 0 < u < T) is a real-valued and F-adapted
continuous process:

L(T)<&(t), te[0,T] and E[ sup (L(u))2] <. (2)

0<u<T
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(A3) The driver f is a map from Q x [0, T] x [0, T] x R x R onto R, for
any fixed (t,y,z) € [0, T] x R x R, f(t,-,y,z) is progressively

measurable.
(i) sup ]E{(ft t500|ds) ] < 00,
0<t<T

(i) 3cr >0, forall (t,5) € [0, T]* and y,y’, 2,2' € R,
|f(t75»y,2) - f(t,S,y/,Z/)|§Cf(‘y _.yl‘ + |Z - Z/|)°

(iii) For some v € (0,1/2] and ¢; > 0, for all (y,z) € R x R and all
0<t,t/ <s<T,

f(t',s,y,z) — f(t,s,y,z)| < alt’ —t]%,
and for some 8 > 1/« and ¢; > 0,

E[l(t) = ()] < caft’ — 2]

- B/2
]E[(/O f(o,s,o,0)2ds> ]<oo.
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Existence and Uniqueness

Remark

Assumption (iii) yields the continuity of Y and the bi-continuity of K(-,-)
which in turn guarantee the Skorohod flatness condition

Theorem

Under the above assumptions, the reflected BSVIE (1) associated with
(f,&, L) admits a unique solution (Y, Z, K).
Moreover, for every t € [0, T],

Y(t) = eSf:‘:JpE[/tT f(t75= Y(s),Z(t,s))dS + L(T)H{T<T} + f(t)]l{r:T}’]:t}
) (3)

v
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Comparison Theorem

Let (Y, Z, K) be a solution of the reflected BSVIE associated with
(f,&, L) and (Y, Z’, K") be a solution of the reflected BSVIE associated
with (', &', L').

Theorem

Assume that (f,&, L) and (f', &, L") satisfy the assumptions
and that either the map y — f(t,s,y,z) ory — f'(t,s,y,z) is
nondecreasing. Assume further that
(H1) &(t) <€'(t), P-as., 0<t< T,

(H2) f(t,s,y,z) < f'(t,s,y,z), forall (t,y,z)€
[0,s] x R xR, as., ae.s€e|0,T],

(H3) L(t) < L'(t), 0<t< T, P-as.
Then

Y(t)<Y'(t), 0<t<T, Pas.
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Consider

f(t,5,X(s)) = (s — 1)p(X(s)), &(8) == (T — t)h(X(T)),
where ¢ is a (deterministic) discounting function (deflator).

Maximize 7 (t,7) := E [ f(t,s, X(s))ds + L(T) L <7y + E(D) 127y
Optimal stopping problem
Find an [F-stopping time 7", indexed by t, such that

7 = argmax J(t, 7).
T>t

® 7=investment in a commodity
e X(t)=price of a commodity
e f=utility rate per unit time

e [ =utility function at the stopping time 7, {=utility at the final time T
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The associated value-function is

Y(t) :=ess supE [/: f(t,s,X(s))ds + L(T)Lrery + f(t)]l{-r:T}‘ ft] )

T>t
(4)
Examples of hyperbolic discounting functions used in utility maximization
include

® |oewenstein and Drazen (1992), Laibson (1997), Loewenstein and
O'Donoghue (2002):

d(s—t)i=(1+a(s—t) a, a,0 >0, s>t.
Note that ¢(s — t) — e %=t as o — 0.

e Strulik (2017):

1+ ot
1+ as

B
¢(t,s)::< ) a>0,8>1 s>t
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e It is easily seen that, apart from e~%t, for any other choice of the
discounting function ¢, (Y(t) + fot f(t,s,X(s))ds)¢<7 will not be a
supermartingale. i.e. the optimal stopping problem is time-inconsistent.
We approach the problem as follows.
e Note that

sup 7 (t,7) < E[Y (1)) (5)

T>t

Now, if we can find an F-stopping time 7/ such that

/IT F(t5,X(5))ds + L(T{) Lir <7 +f(t)ﬂ{/’f”‘ft]

then 77 is optimal for J(t,-) since

Y(t)=E

J(t,7) = E[Y(t)] Ssigj(tﬁ) <E[Y(2)]. (6)
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e It is tempting to suggest that Y solves a Reflected BSVIE of the form

T T T
Y(t)z&(t)Jr./t f(t‘,s‘X(s))der/t K(t,ds)/t Z(t,s)dW(s)

for some processes (Z(t,s), K(t,s)), where K(t, ds) is the
Lebesgue-Stieltjes measure induced by the 'increasing function’
s— K(t,s).
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Proposition

Suppose the assumptions are satisfied. For each
t € [0, T], denote by 7; the stopping time

m=inf{lt<u<T, \N’(t, u) = L(u)}

with the convention that 7} = T if Y(t,u) > L(u), t<u<T.
Then 7/ is optimal in the sense that

(s
Y(t) =E / f(tv S,X(S))dS+L(T:)]].{T?<T} +€(t)]l{Tt*—T}‘]:t] .
t
(7)
Moreover, 7 is an optimal strategy for 7 (t,-) i.e.
1 = argmax J(t, 7).
T>t
KTH 25 /27



Remark

The choice of the optimal stopping time 7;° as the first hitting time of the

accompanying Snell envelope \N’(t, -) of the obstacle L instead of the value
function Y ( as it is the case for standard reflected BSVIE) is simply due to
fact that

Y(t) # Y(u)+/Tf(t,s,X(s))ds+/T K(t,ds)—/TZ(t,s)dW(s), ust.
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Thank you for your attention
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