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• Given a measurable space (Ω,F) a financial model consists of

prices information probability

S F := (Ft)t≥0 P

• Information, mathematically expressed by a filtration

F = (Ft)t≥0 Fs ⊂ Ft s ≤ t

• Asymmetry of information: additional information via
filtration enlargement F ⊂ G, i.e., Ft ⊂ Gt for all t ≥ 0

• Default time modelling

• Questions on arbitrages, utility maximisation, value of
information, market completeness, hedging strategies,...
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Martingale hypotheses

In Questions on arbitrages, utility maximisation, value of
information, market completeness, hedging strategies, etc it is
crucial to know how martingales behave under filtration
enlargement.

Set a probability space (Ω,G,P). Consider two filtrations
F = (Ft)t≥0 and G = (Gt)t≥0 such that for every t ≥ 0, Ft ⊂ Gt ,
i.e., F ⊂ G.

Then we talk about two hypotheses (Brémaud, Yor, Jeulin):

(H) hypothesis: each F-martingale remains a G-martingale;

(H′) hypothesis: each F-martingale remains a G-semimartingale.

Aim: in case when (H′) hypothesis holds, we aim to derive
G-semimartingale decomposition of F-martingales.
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Lévy transformation example

• Let B be a Brownian motion and FB = (FB
t )t≥0 its natural

filtration.

• Tanaka formula gives

|Bt | = Wt + L0t with Wt =

∫ t

0
sgn(Bs)dBs

• Then, FW = F|B| ⊊ FB as L0t = sups≤t(−Ws) and the
hypothesis (H) is satisfied.

4 / 23



Initial enlargement under Jacod’s hypothesis

For a reference filtration F and a random variable ξ, the initially
enlarged filtration G is the smallest filtration containing F such
that ξ is G0-measurable.

Gt = Ft ∨ σ(ξ)

Under which conditions on ξ and F the hypothesis (H′) is satisfied?
A random variable ξ with law η satisfies Jacod’s hypothesis
if

P(ξ ∈ du|Ft)(ω) ≪ η(du) P-a.s. for every t ≥ 0
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Initial enlargement under Jacod’s hypothesis

The initially enlarged filtration G is given by Gt = Ft ∨ σ(ξ).

If ξ satisfies Jacod’s condition, there exists a family of
non-negative F-martingales (p(u), u ∈ R) such that

P(ξ ∈ du|Ft) = pt(u)η(du).

Moreover any F-semimartingale is a G-semimartingale, and for an
F-local martingale X we have

Xt = X̂t +

∫ t

0

1

ps−(u)
d⟨X , p(u)⟩Fs |u=ξ,

where X̂ is a G-local martingale.

Examples: B1 + ε where ϵ is a noise, discrete random variable
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Progressive enlargement of filtration
Enlarged filtration G is obtained from a reference filtration F and a
random time τ by defining

Fτ
t = Ft ∨ σ({τ ≤ s} : s ≤ t).

F-information on the random time τ :

• Azéma supermartingales Zt defined as Zt = P(τ ≥ t|Ft)

• F-dual optional projection of the process A = 11[[τ,∞[[, A
o , i.e.

for each optional process H, Ao satisfies

E[Hτ11{τ<∞}] = E[
∫
[0,∞[

HsdA
o
s ]

Denote by m an F-martingale defined as mt = E[Ao
∞|Ft ]. Then

• Z+ = m − Ao and Z = m − Ao
−

• ∆m = Z − Z− and ∆Ao = Z − Z+
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What may happen after a random time?

• (H′) hypothesis is always satisfied for F-martingales stopped
at τ

and in some cases also after τ , e.g. for honest times.

• Random time τ is an F-honest time if for each t there exists
Ft-measurable random variable τt such that τ = τt on
{τ ≤ t}

• Equivalently, honest times are last passage times (or end of
optional sets), i.e., sup{t : Xt = a} for an optional process X

• Each F-local martingale X is a Fτ -semimartingale with

Xt = X̂t +

∫ t∧τ

0

1

Zs−
d⟨X ,m⟩s −

∫ t

τ

1

1− Zs−
d⟨X ,m⟩s

where X̂ is an Fτ -local martingale.
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What may happen after a random time?

• In general it is not true that (H′) hypothesis is satisfied

• Let τ := sup{t ≤ 1 : B1 − 2Bt = 0} and

Fσ(B1) : Fσ(B1)
t = Fs ∨ σ(B1) Fτ : Fτ

t = Ft ∨ σ(τ ∧ t)

Fσ(B1),τ = Fσ(B1) ∨ Fτ

• τ is not an F-honest time, τ is not an Fσ(B1)-stopping time.
But it is an Fσ(B1)-honest time.

• After τ , Fσ(B1) ⊂ Fτ and Fσ(B1),τ = Fτ

Bt = B̂t+

∫ t∧τ

0

1

Zs
d⟨m,B⟩s+

∫ t∧1

τ

B1 − Bs

1− s
ds−

∫ t∧1

τ

1

1− Ys
d⟨mY ,B⟩s
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Avoidance of F-stopping times

Often in the literature, the following assumption on a random time
is used:

(A) condition: τ avoids F stopping times, i.e. P(τ = T < ∞) = 0,
for any F-stopping time T .

10 / 23



Thick and thin random times

Theorem

For any random time τ there exists a pair of random times (τ1, τ2)
such that
(a) τ1 is a thick random time, i.e., P(τ = T < ∞) = 0 for any
F-stopping time T ;

(b) τ2 is a thin random time, i.e., there exists a sequence of
F-stopping times (Tn)

∞
n=1 with disjoint graphs such that

P (
⋃

n{τ = Tn}) = 1; the sequence (Tn)n is then called an
exhausting sequence of a thin time;
(c) and τ = τ1 ∧ τ2 τ1 ∨ τ2 = ∞.
Moreover such a pair is unique.
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Decomposition of a random time

Let
τ1 = τ{∆Ao

τ=0} and τ2 := τ{∆Ao
τ>0}

We see that the time τ1 is a thick time as

P(τ1 = T < ∞) = E
[∫ ∞

0
11{u=T}11{∆Ao

u=0}dA
o
u

]
= 0.

and the time τ2 is a thin time as

[[τ2]] = [[τ ]] ∩ {∆Ao > 0} = [[τ ]] ∩
⋃
n

[[Tn]] ⊂
⋃
n

[[Tn]]

• The random time τ is a thin time if and only if its dual
optional projection Ao is a pure jump process.

• The random time τ is a thick time if and only if its dual
optional projection Ao is a continuous process.
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Non quasi-left continuous filtrations

• Since τ2 is an Fτ -stopping time, it can be decomposed into
Fτ -accessible and Fτ -totally inaccessible parts. Thus, we can
consider the decomposition of τ into three parts as:

τ i2 = τ{∆Ao
τ>0, ∆Ap

τ=0} τ a2 = τ{∆Ao
τ>0, ∆Ap

τ>0} τ1 = τ{∆Ao
τ=0}.

Since τ1 is Fτ -totally inaccessible, it follows that τ1 ∧ τ i2 is the
Fτ -totally inaccessible part and τ a2 is the Fτ -accessible part of
the Fτ -stopping time τ

• Assume that the Fτ -accessible stopping time τ a2 is not equal
to an F-stopping time on {τ > 0}. Then, the filtration Fτ is
not quasi-left continuous. This provides a systemic way to
construct examples of non quasi-left continuous filtrations.
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Brownian filtration example: local time approximation

• Let B be a Brownian motion. For ε > 0, define a double
sequence of stopping times by: V0 = 0 and

Un = inf{t ≥ Vn−1 : Bt = ε}, Vn = inf{t ≥ Un : Bt = 0},

and the process Dt = max{n : Vn ≤ t} which is the number
of downcrossings of B from level ε to level 0 before time t.

• Define the random time
τ ε = sup{Vn : Vn ≤ T1}

with T1 = inf{t : Bt = 1}.
• Ao

t = εDt∧T1 + ε and {∆Ao > 0} = [[0,T1]] ∩
⋃∞

n=0[[Vn]].
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Thin times

• In Poisson filtration, or more generally in jumping filtration,
every honest time time is thin:

• A filtration F is called a jumping filtration if there exists a
localizing sequence (Sn)n with S0 = 0 and such that for all n
and t > 0 the σ-fields Ft and FSn coincide up to null sets on
{Sn ≤ t < Sn+1}.

• Thin honest times were not studied in the previous arbitrage
papers (eg Jeanblanc, Fontana and Song (2014)), and they
are qualitatively different.
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Thin times

• The family of bounded F-martingales (zn)n≥0 given by

znt = P(Cn|Ft) = P(τ = Tn < ∞|Ft)

is a martingale family of the thin time τ

• znt > 0 and znt− > 0 for all t ≥ 0 a.s. on Cn for each n ≥ 0.

• The progressive enlargement G of filtration F with τ satisfies

Gt = Ft ∨ σ(Cn ∩ {Tn ≤ s}, s ≤ t, n ≥ 1).

• For any n ≥ 1 and any G-measurable integrable random
variable X , we have

E [X |Fτ
t ] 11{t≥Tn}∩Cn

= 11{t≥Tn}∩Cn

E [X11Cn |Ft ]

znt

16 / 23



(H′) hypothesis

Theorem

Let τ be a thin time. Then the hypothesis (H′) is satisfied for
(F,G).

Theorem

Let τ be a random time and (τ1, τ2) its thin-thick decomposition.
Then, Fτ = Fτ1,τ2 . Furthermore, the hypothesis (H′) is satisfied for
(F,Fτ ) if and only if the hypothesis (H′) is satisfied for (F,Fτ2).
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Immersion

Proposition

Let τ be a thin time with exhausting sequence (Tn)n≥0, partition
(Cn)n≥0 and martingale family (zn)n≥0. Then, F is immersed in Fτ
if and only if one of the following conditions hold:

(a) zn∞ = znTn
for each n ≥ 1,

(b) znt = znTn∧t for each t ≥ 0 for each n ≥ 1,

(c) for each n ≥ 1, Cn is independent of F∞ conditionally w.r.t.
FTn .

Proposition

F is immersed in Fτ if and only if F is immersed in Fτ1 and in Fτ2 .
In that case, Fτ1 and Fτ2 are immersed in Fτ .
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Progressive enlargement with (τ, ξ)

G is obtained from a reference filtration F, a random time τ and a
mark ξ by defining

Gt = Ft ∨ σ(ξ11{τ≤s} : s ≤ t).

So G is the smallest filtration containing F and making τ a
stopping time and ξ a Gτ -measurable r.v.

How can we use here the previous Jacod’s result?

·τ satisfies Jacod’s cond., ξ = 1, initial times Le Cam, Jeanblanc09
·(τ, ξ) satisfy Jacod’s condition jointly, Kchia, Larsson, Protter 13
·τ is a stopping time, ξ satisfies Jacod’s cond., Jiao, Kharroubi 18
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Marked thin random time

Let (τ, ξ) be such that

• τ is thin random time with exhausting sequence (Tn)n
• ξ is a random variable satisfying generalised Jacod’s condition

Generalised Jacod’s condition: For each n, let

ξn =

{
ξ on Cn

∆ on C c
n

and assume that

P(ξn ∈ du|FTn∨t) = pnt (u)P(ξn ∈ du|FTn) t ≥ 0 on Cn.
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Marked thin random time
Under generalised Jacod’s condition, (H′) hypothesis is satisfied
and an F-martingale X decomposes as

Xt = X̂t +

∫ t∧τ

0

1

Zs
d⟨X ,m⟩s +

∑
n

11Cn

∫ t

Tn

1

pns (u)
d⟨X , pn(u)⟩s |u=ξ

Divide a problem into two steps F ⊂ Fτ ⊂ G and note that:

• (H′) hypothesis holds for F ⊂ Fτ since τ is thin

• assume that ξ satisfies P(ξ ∈ du|Fτ
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τ )
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PRP for marked thin time

Representation can be studied separately

• on [[0, τ ]], i.e., for 1[[0,τ ]] ·M where M is an F-martingale. We
then use results from:

Choulli, T., Daveloose, C., & Vanmaele, M. (2020). A martingale
representation theorem and valuation of defaultable securities.
Mathematical Finance, 30(4), 1527-1564

Jeanblanc, M., & Song, S. (2015). Martingale representation
property in progressively enlarged filtrations. Stochastic Processes
and their Applications, 125(11), 4242-4271.

• and on ]]τ,∞[[, i.e. for 1]]τ,∞[[ ·M where M is an
F-martingale. We then use results from:

Fontana, C. (2018). The strong predictable representation property
in initially enlarged filtrations under the density hypothesis.
Stochastic Processes and their Applications, 128(3), 1007-1033.

22 / 23



PRP after marked thin time

On ]]τ,∞[[, we divide a problem into two steps

F ⊂ FC = F ∨ σ{Cn : n} ⊂ G

and note that:

• F ⊂ FC is initial enlargement with discrete random variable,
hence Fontana results apply

• G can be viewed as initial enlargement at a Fτ -stopping time
τ , hence once again Fontana’s result apply

• Finally we wrap up two parts using key lemma for thin times
(similarly as for semmartingale decomposition)
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