Solving fully coupled FBSDEs by minimizing a directly calculable error functional

Stefan Ankirchner and Alexander Fromm

9th Colloquium on BSDEs and Mean Field Systems, Annecy

Fully coupled FBSDEs

$$
\begin{aligned}
& X_{t}=X_{0}+\int_{0}^{t} \mu\left(s, X_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}, Y_{s}, Z_{s}\right) d W_{s}, \\
& Y_{t}=\xi\left(X_{T}\right)-\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} .
\end{aligned}
$$

Vision: How to check solvability numerically?

Before: Some known facts on existence and uniqueness

Existence on a small interval

Known fact:

- Under a standard Lipschitz condition (SLC) on μ, σ, f and ξ
- and if $L_{\xi}<L_{\sigma, z}^{-1}$,
then there exists an interval $[t, T]$ on which a solution of the FBSDE exists.

Idea of the proof: Picard interations

Useful: decoupling fields

A function $u: \Omega \times[t, T] \times \mathbb{R} \rightarrow \mathbb{R}$ with $u(T, \cdot)=\xi$ is a decoupling field if for all $\left[t_{1}, t_{2}\right] \subset[t, T]$ and $x \in \mathbb{R}$ there exist progr. mb. processes (X, Y, Z) such that

$$
\begin{aligned}
& X_{s}=x+\int_{t_{1}}^{s} \mu\left(r, X_{r}, Y_{r}, Z_{r}\right) d r+\int_{t_{1}}^{s} \sigma\left(r, X_{r}, Y_{r}, Z_{r}\right) d W_{r} \\
& Y_{s}=Y_{t_{2}}-\int_{t}^{t_{2}} f\left(r, X_{r}, Y_{r}, Z_{r}\right) d r-\int_{s}^{t_{2}} Z_{r} d W_{r}
\end{aligned}
$$

and

$$
u\left(s, X_{s}\right)=Y_{s}, \quad s \in\left[t_{1}, t_{2}\right]
$$

- u is the same, regardless of $\left[t_{1}, t_{2}\right]$
- u is an additional structure

Theoretical background

Theorem
Under (SLC) and if $L_{\xi}<L_{\sigma, z}^{-1}$, then there exists $t<T$ such that on
$[t, T]$

- the FBSDE has a unique solution
- th. ex. a decoupling field u
- u is Lipschitz continuous
- $\sup _{s \in[t, T]} L_{u(s, \cdot)}<L_{\sigma, z}^{-1}$

Characterizing the maximal existence interval with the decoupling field

By pasting existence intervals together one can show

$$
I_{\max }=[0, T] \quad \text { or } \quad I_{\max }=\left(t_{\min }, T\right]
$$

Theorem
If $I_{\text {max }} \neq[0, T]$, then

$$
\begin{equation*}
\lim _{t \downarrow t_{\text {min }}} L_{u(t, \cdot)}=L_{\sigma, z}^{-1} \tag{1}
\end{equation*}
$$

(1) is very useful: If no explosion, then $I_{\max }=[0, T]$.

Method of Decoupling fields (as described by Alexander Fromm)

Prove global solvability via the following steps:

1. Consider arbitrary $[t, T]$ on which u exists. Let $x \in \mathbb{R}^{n}$ be the initial condition.
2. Differentiate the FBSDE wrt x to obtain the dynamics of $\frac{\mathrm{d}}{\mathrm{d} x} X, \frac{\mathrm{~d}}{\mathrm{~d} x} Y, \frac{\mathrm{~d}}{\mathrm{~d} x} Z$.
3. Use the Itô formula to obtain dynamics of $\Psi_{s}:=u_{x}\left(s, X_{s}\right)=\frac{\mathrm{d}}{\mathrm{d} x} Y_{s}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} X_{s}\right)^{-1}$.
4. Show that $\|\Psi\|_{\infty}$ is bounded away from $L_{\sigma, z}^{-1}$ independently of $t<T$.
Then the equation must be solvable on $[0, T]$.

A measure for how well two Ito processes solve an FBSDE

Ito processes

Let X and Y be two Ito processes on $I=[a, b] \subset[0, T]$.

Notation:

$$
\begin{aligned}
& X_{s}=X_{a}+\int_{a}^{s} D X_{r} d r+\int_{a}^{s} \mathfrak{D} X_{r} d W_{r} \\
& Y_{s}=Y_{a}+\int_{a}^{s} D Y_{r} d r+\int_{a}^{s} \mathfrak{D} Y_{r} d W_{r}
\end{aligned}
$$

$s \in[a, b]$.

An error functional for a pair of lto processes

For 2 Ito processes X and Y we define

$$
\begin{aligned}
& G_{x, I, \zeta}(X, Y):= \\
& \mathbb{E}\left[\left|X_{a}-x\right|^{2}+|I| \cdot \int_{a}^{b}\left|D X_{r}-\mu\left(r, \Theta_{r}\right)\right|^{2} \mathrm{~d} r+\int_{a}^{b}\left|\mathcal{D} X_{r}-\sigma\left(r, \Theta_{r}\right)\right|^{2} \mathrm{~d} r\right. \\
& \left.+|I| \cdot \int_{a}^{b}\left|D Y_{r}-f\left(r, \Theta_{r}\right)\right|^{2} \mathrm{~d} r+\left|Y_{b}-\zeta\left(X_{b}\right)\right|^{2}\right]
\end{aligned}
$$

where

- $|I|=$ the length of the interval I
- x is the initial condition for the forward equation
- ζ defines the terminal condition of the backward equation
- $\Theta_{r}=\left(X_{r}, Y_{r}, \mathfrak{D} Y_{r}\right)$

Properties of the error functional

- If $G_{x, I, \zeta}(X, Y)=0$, then $(X, Y, \mathfrak{D} Y)$ solve the FBSDE on I with initial condition $X_{a}=x$ and terminal condition $Y_{b}=\zeta\left(X_{b}\right)$.
- Evaluation of G does not require the knowledge of $\left(X^{*}, Y^{*}\right)$, the minimizer.

Properties of the error functional cont'd

Informal theorem There exists a nice norm $\|\cdot\|_{1}$ on the set of Ito processes and constants $c<C$ such that for all X, Y

$$
c\left\|(X, Y)-\left(X^{*}, Y^{*}\right)\right\|_{1} \leq \sqrt{G(X, Y)} \leq C\left\|(X, Y)-\left(X^{*}, Y^{*}\right)\right\|_{1}
$$

Minimizing G is in a sense equivalent to solving the FBSDE

Stochastic polynomials

Definition of stochastic polynomials

$L^{2}(I):=\left\{X: \Omega \times I \rightarrow \mathbb{R}\right.$ progr. mb. with $\left.E \int_{a}^{b} X_{s}^{2} d s<\infty\right\}$.
$\mathcal{P}(I)$ is defined as the smallest subset of $L^{2}(I)$ satisfying

1. $\mathcal{P}(I)$ is an \mathbb{R} - vector space, which contains all constants;
2. if $X \in \mathcal{P}(I)$, then $s \mapsto \int_{a}^{s} X_{r} r$ is also in $\mathcal{P}(I)$;
3. if $X \in \mathcal{P}(I)$, then $s \mapsto \int_{a}^{s} X_{r} d W_{r}$ is also in $\mathcal{P}(I)$.

Example

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}(s-a)+\alpha_{3}\left(W_{s}-W_{a}\right)+\alpha_{4} \int_{a}^{s}\left(W_{r}-W_{a}\right) \mathrm{d} W_{r}, \tag{2}
\end{equation*}
$$

Let $\mathcal{P}^{3 / 2}$ be the set of Ito processes of the form (2).

Outlook. $\mathcal{P}^{3 / 2}$ is the minimal set of polynomials for approximating (general) FBSDEs

Why is $\frac{3}{2}$ minimal?

To explain this, let for $\alpha, \beta \in \mathbb{R}^{4}$

$$
\begin{aligned}
& X^{\alpha}:=\alpha_{1}+\alpha_{2}(s-a)+\alpha_{3}\left(W_{s}-W_{a}\right)+\alpha_{4} \int_{a}^{s}\left(W_{r}-W_{a}\right) d x W_{r} \\
& Y^{\beta}:=\beta_{1}+\beta_{2}(s-a)+\beta_{3}\left(W_{s}-W_{a}\right)+\beta_{4} \int_{a}^{s}\left(W_{r}-W_{a}\right) d x W_{r}
\end{aligned}
$$

Aim: finding a good $\mathcal{P}^{3 / 2} \times \mathcal{P}^{3 / 2}$ approximation of the FBSDE components X, Y. To this end minimize

$$
G_{x, I, \zeta}(\alpha, \beta):=G_{x, I, \zeta}\left(X^{\alpha}, Y^{\beta}\right)
$$

over all $\alpha, \beta \in \mathbb{R}^{4}$.

Why is $\frac{3}{2}$ minimal?

Theorem
For the minimizers α^{*}, β^{*} we have

$$
\sqrt{G_{x, l, \zeta}}\left(\alpha^{*}, \beta^{*}\right) \in \mathcal{O}\left(|I|^{\frac{3}{2}}\right)
$$

Total error

$$
\sqrt{G_{x, l, \zeta}}\left(\alpha^{*}, \beta^{*}\right) \in \mathcal{O}\left(|l|^{\frac{3}{2}}\right)
$$

- Split $[0, T]$ into N subintervals of length $\frac{T}{N}$.
- At time $t_{j}=\frac{j}{N} T$ choose $\zeta=\tilde{u}\left(t_{j+1}, \cdot\right)$, the approximation of the dec. field at t_{j+1}
- Error on each subinterval: $\in \mathcal{O}\left(\left(\frac{1}{N}\right)^{\frac{3}{2}}\right)$
- If the error propagation can be controlled, then the total error is of the order

$$
N\left(\frac{1}{N}\right)^{\frac{3}{2}}=\sqrt{\frac{1}{N}}
$$

Idea for an algorithm

1. Select a time discretization $0=t_{0}<t_{1}<\cdots<t_{N}=T$.
2. Select a set of supporting points $\left\{x_{1}, x_{2}, \ldots, x_{S}\right\} \subset \mathbb{R}$.
3. Set $j=N-1$.
4. For every supporting point x_{k} find the parameters $\alpha_{1}^{*}, \ldots, \alpha_{4}^{*}$ and $\beta_{1}^{*}, \ldots, \beta_{4}^{*}$ that minimize $(\alpha, \beta) \mapsto G\left(X^{\alpha}, Y^{\beta}\right)$. Set $w\left(t_{j}, x_{k}\right)=\beta_{1}^{*}$.
5. Choose a smooth function $\tilde{u}\left(t_{j}, \cdot\right)$ such that $\tilde{u}\left(t_{j}, x_{k}\right)$ is close to $w\left(t_{j}, x_{k}\right)$ for all $k \in\{1, \ldots, S\}$.
6. If $j \neq 0$, then set $j=j-1$ and go to 4 .

Literature

囯 Stefan Ankirchner, Alexander Fromm: Solving fully coupled FBSDEs by minimizing a directly calculable error functional Preprint on hal, 2018.
围 Alexander Fromm: Theory and applications of decoupling fields for FBSDEs. PhD thesis, 2015.

Thank you!

