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Motivation

Aim to regularise by noise the gradient flows in the space of probability
measures that arise from mean field models.

dX i ,N
t =f (X i ,N

t , µN
t )dt

N→∞→ dXt = f (Xt , µt)dt

µN
t ∶=

1

N

N

∑
i=1

δ
X i,N
t

→ µt ∶= P ○X−1t =∶L (Xt)

The particular desire is that this noise is intrinsic.

Related to the study of diffusions in the space of measures, eg:
Wasserstein Diffusion [7, 11], Fleming-Viot Process [12].
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Motivation

Two perspectives:

▸ Introducing noise at the level of the particle system.

dX i ,N
t =f (X i ,N

t , µN
t )dt + σdM

i ,N
t

N→∞→ dXt = f (Xt , µt)dt + σdMt

µN
t ∶=

1

N

N

∑
i=1

δ
X i,N
t

→ µt ∶=L (Xt ∣Gt)

The noise introduced must be exchangeable to respect the mean field
symmetry.

▸ Alternatively, one may consider the formal mean-field limit dynamics
for the original particle system and ask what regularisation one would
like to see. Then, one may hope to reverse-engineer the particle
systems with this regularised limit.
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Motivation

Consider the particles live in R (dimension= 1!) and that one expects
solutions to have square integrable marginals. Instead of thinking to
directly approach randomising the FPK, we lift to the Hilbert-space L2

and randomise in the following way:

We fix the underlying probability space of the McKean-Vlasov distribution
dependent SDE and randomise the resulting PDE. Consider the unit circle
equipped with Lebesgue measure (Ω,P) ∶= (S,Leb),

dX (ω)t =f (X (ω)t , µt)dt
rewrite→ dX (x)t = f (X (x)t ,Leb ○X−1t (x))dt

µt ∶=P ○X−1t
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Regularisation by Noise

dX (x)t = F (X (x)t ,Leb ○X−1t )dt +∆xX (x)tdt + dW (x)t
with periodic boundary conditions.

W (t, x) ∶= B0
t ⋅1+∑

m∈N

√
2 (Bm,+

t cos(2πmx) +Bm,−
t sin(2πmx)) =∶ ∑

m∈Z
Bm
t em(x)

Expecting solutions to the above dynamics to be L2(S) valued; the
Laplacian enables this.

Dynamics may change depending on the choice of representation of the
initial distribution!

The idea is to constrain the above SPDE to live within a particular set of
functions that correspond to the space of probability measures.
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Quantile Function Representation

One could choose to represent the starting measure through its quantile,
since there exists a unique non-decreasing function Q such that
µ0 = LebS ○Q−1.

Q(u) ∶= inf {x ∈ R ∶ u ≤ µ0((−∞, x])}
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A Simple Random Variable
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Quantile Function
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Symmetric Decreasing Rearrangement
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Scheme

We will work with the subset of L2(S) comprised of symmetric
non-increasing functions, denoted L2sym(S).

Consider the following scheme to construct a noise on L2sym. (The
rearrangement of f is denoted f ∗).

1. Initialise with the symmetric decreasing representative of the initial
distribution:

X0 = X ∗0 ∼ µ0.

2. Solve on some small time interval the stochastic heat equation:

X̂δt = SHE(X0, δt).

3. Rearrange the terminal state:

Xδt = X̂ ∗δt .

4. Interpolate linearly between iterates.
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Play two-step illustration

Play the discrete time scheme
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The Scheme

For intervals of length h, define the sequences {X h
n }n∈N by,

X h
n+1 =(eh∆X h

n + ∫
h

0
e(h−s)∆dW̃ n+1

s )
∗

X h
0 =X0 ≡ X ∗0 ,

The noise we construct is the limiting process as the time mesh becomes
ever finer.

We are able to prove uniform estimates and tightness, but are required to
penalise the amount of noise we add into the system. This makes sense
since the operator preserves the L2 norm, yet moves weight towards lower
Fourier modes.
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Coloured Noise

Instead of the cyclindrical Brownian motion,

W (t,u) = ∑
m∈Z

Bm
t em(u)

we take the coloured noise:

W̃ ∶= B0e0 + ∑
m∈N,n≠0

m−λBmem ≡ ∑
m∈N0

λmB
mem.

It is assumed that λm defines a square-summable sequence, i.e. λ > 1
2 .

Whilst the noise is now in L2, retain the Laplacian for its smoothing effect.
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Rearrangement Theorem

We use fundamental results from the theory of rearrangements.

Preservation of Lp norms

∥f ∗∥p = ∥f ∥p

Re-arrangement doesn’t harm our estimates, however one needs to unravel
the scheme through each interval in the time-mesh.

Non Expansive Property

∥f ∗ − g∗∥p ≤ ∥f − g∥p

NB: Non-expansion also holds for projections onto convex sets!
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Rearrangement Theorem

Riesz Rearrangement Inequality

∫∫ f (x)g(x − y)h(y)dxdy ≤ ∫∫ f ∗(x)g∗(x − y)h∗(y)dxdy

Here, we see an instance where using heat is convenient since the periodic
heat kernel is indeed symmetric non-increasing

Pólya–Szegő Inequality

∥∇f ∗∥p ≤ ∥∇f ∥p

These theorems are usually stated over Rd for non-negative functions.
Fortunately, this restriction is not required in the case of the circle.

Baernstein: Symmetrization in Analysis [2].
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Limiting Dynamics

We expect that the limit process X should satisfy a reflected equation of
the type considered in Röckner, Zhu and Zhu [10],

dXt =∆Xt + W̃t + ηt .

Such an equation was studied for the stochastic heat equation constrained
to live above some fixed/static boundary in a series of papers by
Donati-Martin, Nualart, Pardoux and Zambotti, [6, 9, 13].

For us, η is a forcing term that reflects the process X into the cone of
symmetric decreasing functions in L2(T). However, in the absence of a
corresponding integration by parts formula, the dynamics will be studied
via a smaller class of test functions, sufficient to demonstrate the
well-posedness and regularising effect of the limiting dynamics and
ergodicity for a class of ’drifts’.

16 / 27



Limiting Dynamics

Taking inspiration from works of Brenier [3], we are able to identify the
following equations for the limit process:

for φ ∈ C 2, s, t ∈ R+,

⟨Xt −Xs , φ⟩ = ∫
t

s
⟨Xr ,∆φ⟩dr + ⟨ηt − ηs , φ⟩ + ⟨W̃t − W̃s , φ⟩, P-a.s.

Note that for symmetric decreasing φ, ⟨ηt , φ⟩ is non-decreasing.
Since we want to study, say for uniqueness:

∥Xt −Yt∥22 = ∑
m∈Z
⟨Xt −Yt , em⟩2 = ∑

m∈Z
(Xt −Yt

⋀m
)
2

From the Itô-formula, we need to define in some manner,

∑
m∈Z
∫

t

s
⟨Xr −Yr , em⟩d⟨ηXr − ηYr , em⟩
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Limiting Dynamics

However, the integrals are only established, thus far, against symmetric
decreasing test functions. Nevertheless, one can decompose each element
of the Fourier basis into a difference of two symmetric decreasing
functions.

Indeed, for {em}m∈Z, the Fourier basis, each may be written as the
difference of two symmetric non-increasing functions:

e+m(x) ∶=em(0) + ∫
1

0
10,x(y) [−10,1/2(Dem)− + 11/2,1(Dem)+] (y)dy ,

e−m(x) ∶=∫
1

0
10,x(y) [−10,1/2(Dem)+ + 11/2,1(Dem)−] (y)dy .

Indeed, the functions e+m and e−m are symmetric decreasing (courtesy of the
symmetry properties of em) and em = e+m − e−m.
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Limiting Dynamics

Therefore, one may write the Riemann-Stieltjes integral,

∫
t

s
⟨Zr , em⟩ ⋅ d⟨ηr , em⟩ ∶=∫

t

s
⟨Zr , em⟩ ⋅ d⟨ηr , e+m⟩ − ∫

t

s
⟨Zr , em⟩ ⋅ d⟨ηr , e−m⟩.

Ultimately, we are able to define

∫
t

s
Zr ⋅ dηr ∶= lim

M→∞ ∑
m2≤M

∫
t

s
⟨Zr , em⟩ ⋅ d⟨ηr , em⟩ ≥ 0

for sufficiently regular processes Z , valued in L2sym(S).
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Limiting Dynamics

We identified three conditions satisfied by our limit processes:

⟨Xt −Xs , e
ε∆em⟩ = ∫

t

s
⟨Xr ,∆eε∆em⟩dr + ⟨ηt − ηs , eε∆em⟩ + ⟨W̃t − W̃s , e

ε∆em⟩,

∫
t

s
eε∆Zr ⋅ dηr ≥ 0,

and

lim inf
ε↘0

∫
t

0
eε∆Xr ⋅ dηr = 0.
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Limiting Dynamics - Uniqueness

Considering two candidate limit processes, labelled Y and Z .

d⟨eε∆(Yt − Zt), em⟩2

=2⟨eε∆(Yt − Zt), em⟩ [
1

2
⟨∆eε∆(Yt − Zt), em⟩dt + d⟨ηYt − ηZt , eε∆em⟩]

Writing the above in integral form and summing over the Fourier modes
m, one obtains

∥eε∆(Yt − Zt)∥22 − ∥eε∆(Y0 − Z0)∥22

=∫
t

0
⟨eε∆(Yr − Zr),∆eε∆(Yr − Zr)⟩dr + 2∫

t

0
e2ε∆(Yr − Zr) ⋅ d(ηYr − ηZr )

≤2(∫
t

0
e2ε∆Yr ⋅ dηYr + ∫

t

0
e2ε∆Zr ⋅ dηZr )

Applying expectation and setting ε→ 0, one obtains that Yt = Zt P − a.s.
for any t ∈ I , uniqueness follows from the continuity of the processes.
Furthermore, there is 1-Lipschitz dependence on initial conditions.
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Regularisation

Due to the presence of the term η, one does not expect to easily obtain
the differentiability of the solution in the initial condition, see Deuschel
and Zambotti [5]. Nonetheless, it is still possible to estimate the
directional derivatives of the semigroup flow.

By adapting to this setting a method of Norris [8], we are able to estimate
the directional derivatives of the semigroup {Pt}t∈I defined by
Pt f (x) ∶= E[f (X x

t )] for f ∈ Bb(L2).
This method uses Girsanov theorem and the previous established Lipschitz
dependence on initial conditions. We truncate the Fourier modes of the
initial values in order to apply the Rademacher theorem on almost
everywhere differentiability of Lipschitz functions.
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Regularisation

Considering the difference, for u, v ∈ L2sym,

PT f (u + δv) − PT f (u) = E[f (X u+δv
T )] −E[f (X u

T )].

We reproduce the law of the process started from u + δv by the law of the

shifted process X
uM+δ T−t

T
vM

t under a change of measure. We do not have a
well defined change of measure without the Laplacian!

Ultimately, we are able to show that the semigroup maps bounded
functions f into Lipschitz functions with constant

c∥f ∥∞ ⋅T
−(12+

λ
2 )

Notably for λ < 1 this is integrable.
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Ergodicity

At this stage we have the drift-less form of the rearranged stochastic heat
equation.

One may introduce a drift via a Girsanov tranformation, bearing in mind
that this drift must respect the regularity of the solution in order to be well
defined. This may be seen also as coming from the colouring of the noise.

Assumption

The drift B(x) ∶= B̄(x) − ω⟨x , e0⟩e0, where ω > 0 and B̄ satisfies

∥B̄∥0 ∶= sup
x∈L2sym(S)

∑
m∈Z

λ−2m ⟨B̄(x), em⟩2 <∞.

There exists a constant cB such that,

∥B̄(x) − B̄(y)∥2 ≤ cB∥x − y∥2
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⟨Xt −Xs , φ⟩ =∫
t

s
⟨B(Xr), φ⟩ + ⟨Xr ,∆φ⟩dr

+ ⟨W̃t − W̃s − ∫
t

s
⟨B(Xr), φ⟩dr , φ⟩ + ⟨ηt − ηs , φ⟩,

∫
t

s
eε∆Zr ⋅ dηr ≥0,

lim inf
ε↘0

∫
t

0
eε∆Xr ⋅ dηr =0.

Under the conditions stated previously, we have well-posedness of the
dynamics and exponential convergence to the unique invariant measure.
The exponential convergence adapts a coupling argument of Debussche,
Ying and Tessitore [4].
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Comments

▸ Corresponding particle system and McKean-Vlasov drift.

▸ Other bases/operators/quantile representations.

▸ Higher dimension.

▸ Application to MFG.
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Thank you for listening!
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A Uniform Estimate

Lemma (Uniform 2pth moment of L2 norm of scheme)

For p ≥ 1,

E[∥X h
n ∥

2p
2 ] ≤ (1 + cph)

n (E [∥X h
0 ∥

2p

2
] + cpnh) .
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Proof Sketch

E [∥X h
n ∥

2p
2 ] ≡E

⎡⎢⎢⎢⎢⎣
∥(eh∆X h

n−1 + ∫
h

0
e(h−s)∆dW̃ n

s )
∗
∥
2p

2

⎤⎥⎥⎥⎥⎦
preservation of Lp norms

=E [∥eh∆X h
n−1 + ∫

h

0
e(h−s)∆dW̃ n

s ∥
2p

2
]

multinomial theorem, Hölder inequality, Young’s inequality

≤(1 + cph)E [∥eh∆X h
n−1∥

2p

2
] + cph1−pE [∥∫

h

0
e(h−s)∆dW̃ n

s ∥
2p

2
]

We require then, that

E [∥∫
h

0
e(h−s)∆dW̃ n

s ∥
2p

2
] ≤ cphp
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Tightness

The linear interpolation schemes are tight within the space of L2sym(S)
valued continuous paths.

Let Nt ∈ {⌈ th ⌉, ⌊
t
h ⌋} and Ns ∈ {⌈ sh ⌉, ⌊

s
h ⌋}.

E [∥X h
Nt
−X h

Ns
∥2p
2
]

≤22p−1E [∥X h
Nt
− e(Nt−Ns)h∆X h

Ns
∥
2p

2
+ ∥e(Nt−Ns)h∆X h

Ns
−X h

Ns
∥
2p

2
]

Non Expansive Property: ∥f ∗ − g∗∥p ≤ ∥f − g∥p

E[ ∥eh∆X h
Nt−1 − e

(Nt−Ns)h∆X h
Ns
∥
2p

2
] ≤ E[ ∥X h

Nt−1 − e
(Nt−Ns−1)h∆X h

Ns
∥
2p

2
]
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Tightness
To estimate

E [∥e(Nt−Ns)h∆X h
Ns
−X h

Ns
∥
2p

2
]

One needs to control the norm of the derivative since:

∥e(Nt−Ns)h∆X h
Ns
−X h

Ns
∥
2
≤ 2(Nt −Ns) sup

n∈[Nt ,Ns]
∥DX h

n ∥2

However, we want to be able to initialise with any distribution in P2(S).
This requires careful analysis towards t = 0.
With the following Lemma, we are able to retain some smoothing effect of
the heat kernel when initial function is replaced by something in the
pre-image of the rearrangement.

Lemma
Let U be uniformly distributed on [0,1]. Then,

E[∥DehU∆u∗∥22] ≤ E[∥DehU∆u∥22].

Proof: Uses the aforementioned rearrangement inequalities.
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