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We establish a general necessary optimality conditions for stochastic
continuous-singular control of McKean-Vlasov type equations. The
coefficients of the state equation depend on the state of the solution
process as well as of its probability law and the control variable. The
coefficients of the system are nonlinear and depend explicitly on the
absolutely continuous component of the control. The control domain
under consideration is not assumed to be convex.

The proof of our general maximum principle is based on the first and
second-order derivatives with respect to measure in Wasserstein space
of probability measures, and by using variational mehtod with some
estimations.
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Novelty in this work

Our work distinguishes itself from the above ones in the following aspects.

1 We study the more general controlled nonlinear McKean-Vlasov type
system, where the coefficients of the equation depend on the state of
the solution process X u,η as well as of its probability measures
PX u,η(t).

2 Second, we apply the first and second-order derivatives with respect
to probability measures to establish our Peng’s type necessary
optimality conditions.

3 Third, we study the general continuous-singular control problem,
where the control domain is not assumed to be convex.
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Novelty in this work

4. Forth, the second-order derivative with respect to probability
measures in Wasserstein space is applied to establish our result
without convexity conditions.

5. Our McKean-Vlasov control problem occur naturally in the
probabilistic analysis of financial optimization problems. Moreover,
the above mathematical McKean-Vlasov approaches play an
important role in different fields of economics, finance, physics,
chemistry and game theory.
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Stochastic singular control

Definition

An admissible continuous-singular control is a pair (u(·), η(·)) of
measurable U1 ×U2-valued, Ft−adapted processes, such that
(1) η(·) is of bounded variation process, nondecreasing, continuous on the
left with right limits and η(0) = 0.

(2) E
[

supt∈[0,T ] |u(t)|
2 + |η(T )|2

]
< ∞.

where
U1 : is a a non empty subset of Rn,
U2 = ([0,+∞))m .
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Admissible continuous-singular control

Definition

Let U1 : the class of measurable, adapted processes
u(·) : [0,T ]×Ω→ U1. Let U2 : the class of measurable, adapted
processes η(·) : [0,T ]×Ω→ U2 such that η(·) is of bounded variation,
nondecreasing continuous on the left with right limits and η(0) = 0.
We denote by U1 ×U2 ([0,T ]) , the set of all admissible
continuous-singular controls.
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Formulation of the continuous-singular control
problem

1 (Ω, , {t}t ,P) be a fixed filtered probability space satisfying the usual
conditions, B(t) : Brownian motion.

2 The criteria to be minimized over the class of admissible controls has
the form

J (u(·), η(·)) = E
[∫ T

0 f (t,X u,η(t),PX u,η(t), u(t))dt

+h(X u,η(T ),PX u,η(t)) +
∫
[0,T ] M(t)dη(t)

]
,

(1)

3 Such that X u,η(t) solution of the following McKean-Vlasov SDEs:

dX u,η(t) = f
(
t,X u,η(t),PX u,η(t), u(t)

)
dt

+ σ
(
t,X u,η(t),PX u,η(t), u(t)

)
dB(t)

+ G (t)dη(t),

X u,η(0) = x0,

(2)

4 The control domain U1 ×U2 is not assumed to be convex.
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Differentiability with respect to measure

1 We now recall briefly an important notion in McKean-Vlasov control
problems: the differentiability with respect to probability measures, in
Wasserstein space which was introduced by Lions [3].

2 The main idea is to identify a distribution µ ∈ Q2 (Rn) with a
random variable X ∈ L2(F , Rn) so that µ = PX .

3 We assume that probability space (Ω,F ,P) is rich-enough in the
sense that for every µ ∈ Q2 (Rn) , there is a random variable
X ∈ L2(F , Rn) such that µ = PX .

4 We suppose that there is a sub-σ−field F0 ⊂ F such that F0 is
rich-enough i.e,

Q2 (R
n)
4
=
{
PX : X ∈ L2(F0, Rn)

}
. (3)
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Differentiability with respect to measure, Lift
function

Definition

for any function f : Q2 (Rn)→ R we define a function
f̃ : L2 (F , Rn)→ R such that

f̃ (X ) = f (PX ) , X ∈ L2 (F , Rn) . (4)

Clearly, the function f̃ , called the lift of f , depends only on the law of
X ∈ L2(F , Rn) and is independent of the choice of the representative X .
(see [3])

S. Meherrem (, ) Optimal singular control for McKean-Vlasov SDEs June 22, 2022 9 / 41



Differentiability with respect to measure, Lift
function

Definition

A function g : Q2 (Rn)→ R is said to be differentiable at a distribution
µ0 ∈ Q2 (Rn) if there exists X0 ∈ L2(F , Rn), with µ0 = PX0 such that its
lift g̃ is Fréchet-differentiable at X0.

More precisely, there exists a continuous linear functional
Dg̃(X0) : L2(F , Rn)→ R such that

g̃ (X0 + ζ)− g̃ (X0) = 〈Dg̃(X0) · ζ〉+ o (‖ζ‖2) (5)

= Dζg(µ0) + o (‖ζ‖2) ,

where 〈. · .〉 is the dual product on L2(F , Rn).
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Differentiability with respect to measure

We called Dζg(µ0) the Fréchet-derivative of g at µ0 in the direction
ξ. In this case we have

Dζg(µ0) = 〈Dg̃(X0) · ζ〉 =
d
dt

g̃ (X0 + tζ)

∣∣∣∣
t=0

, with µ0 = PX0 .

(6)

By applying Riesz representation theorem, there is a unique random
variable Θ0 ∈ L2(F , Rn) such that
〈Dg̃(X0) · ζ〉 = (Θ0 · ζ)2 = E [(Θ0 · ζ)2] where ζ ∈ L2(F , Rn).
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Differentiability with respect to measure

Definition

We say that the function g ∈ C1,1
b (Q2(Rn)) if for all X ∈ L2(F , Rn)

there exists a PX−modification of ∂µg (PX , ·) (denoted by ∂µg) such that

1 ∂µg : Q2 (Rn)×Rn → Rn is bounded and Lipschitz continuous.
That is for some C > 0, it holds that

2

∣∣∂µg(µ, x)
∣∣ ≤ C , ∀µ ∈ Q2(Rn), ∀x ∈ Rn.

3 The derivatives ∂µg satisfied the following∣∣∂µg(µ, x)− ∂µg(µ
′, x ′)

∣∣ ≤ C
[
T
(
µ, µ′

)
+
∣∣x − x ′

∣∣] ,

∀µ, µ′ ∈ Q2(R
n), ∀x , x ′ ∈ Rn.
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Second-order derivatives with respect to measure

Definition

We say that the function g ∈ C2,1
b (Q2(Rn)) if g ∈ C1,1

b (Q2(Rn)) such
that ∂µg(·, x) : Q2(Rn)→ Rn

1 ∂µg(·, y) ∈ C1,1
b (Q2(Rn)), ∀y ∈ Rn and i ∈ {1, 2, ..., n} .

2 ∂µg(µ, ·) : Rn → Rn is differentiable, for evry µ ∈ Q2(Rn).

3 The mapps ∂x∂µg(·, ·) : Q2(Rn)×Rn → Rn ⊗Rn and
∂2µg(PX0 , y ,Z ) : Q2(Rn)×Rn ×Rn → Rn ⊗Rn are bounded and
Lipshitz continuous, where

∂2µg(PX0 , y ,Z ) = ∂µ

[
∂µg(·, y)

]
(PX0 ,Z ) .
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Main results. Assumptions

Assumption (H1) The coefficients f , σ, `, h are measurable in all
variables. Moreover, for all (u(t), η(t)) ∈ U1 ×U2, f (·, ·, u), σ(·, ·, u),
`(·, ·, u) ∈ C1,1

b (R×Q2(Rd ); R), h(·, ·) ∈ C1,1
b (R×Q2(Rn); R). More

precisely, for each u(t) ∈ U1, denoting ϕ(x , µ) = f (t, x , µ, u),
σ(t, x , µ, u), f (t, x , µ, u), h(x , µ), the function ϕ(·, ·) enjoys the following
properties:

1 For fixed µ ∈ Q2(R), ϕ(·, µ) continuously differentiable with respect
to x ;

2 For fixed x ∈ R, ϕ(x , ·) ∈ C1,1
b (Q2(R));

3 All the derivatives ∂x ϕ and ∂µ ϕ : ϕ = f , σ, `, h, are bounded and
Lipschitz continuous, with Lipschitz constants independent of
(u(t), η(t)).
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Main results. Assumptions

Assumption (H2) The coefficients f , σ, `, h satisfy assumption (H1).
Furthermore, for all u(t) ∈ U1, f (t, ·, ·, u), σ(t, ·, ·, u),
`(t, ·, ·, u) ∈ C2,1

b (R×Q2(R); R), h(·, ·) ∈ C2,1
b (R×Q2(R); R). More

precisely, for each u(t) ∈ U1, the derivatives of f , σ, `, h, denoted by a
generic function ϕ(t, x , µ), enjoy the following properties:

1 ∂x ϕ(t, ·, ·) ∈ C1,1
b (R×Q2(R));

2 ∂µ ϕ(t, ·, ·) ∈ C1,1
b (R×Q2(R)×R);

3 All the second-order derivatives of f , σ, `, h, are bounded and Lipschitz
continuous with Lipschitz constants independent of (u(t), η(t)).
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Main results. Assumptions

Assumption (H2) The coefficients f , σ, `, h satisfy assumption (H1).
Furthermore, for all u(t) ∈ U1, f (t, ·, ·, u), σ(t, ·, ·, u),
`(t, ·, ·, u) ∈ C2,1

b (R×Q2(R); R), h(·, ·) ∈ C2,1
b (R×Q2(R); R). More

precisely, for each u(t) ∈ U1, the derivatives of f , σ, `, h, denoted by a
generic function ϕ(t, x , µ), enjoy the following properties:

1 ∂x ϕ(t, ·, ·) ∈ C1,1
b (R×Q2(R));

2 ∂µ ϕ(t, ·, ·) ∈ C1,1
b (R×Q2(R)×R);

3 All the second-order derivatives of f , σ, `, h, are bounded and Lipschitz
continuous with Lipschitz constants independent of (u(t), η(t)).
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Main results. Assumptions

Assumption (H3) The functions G (·) : [0,T ]→ R, and
M (·) : [0,T ]→ R+ are continuous and bounded.
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Main results. Adjoint equation

First-order adjoint equation. We consider the first-order adjoint
equation, which is the following McKean-Vlasov linear BSDE:
−dp(t) =

[
fx (t)p(t) + Ê

[
f̂ ∗µ (t)(t)p̂(t)

]
+ σx (t)q(t) + Ê

[
σ̂∗µ(t)q̂(t)

]
−`x (t)− Ê

[̂̀∗
µ(t)(t)

]]
dt − q(t)dB(t),

p(T ) = hx (T ) + Ê [ĥ∗µ(T )].
(7)

Here, from (??), t ∈ [0,T ] , for ϕ = f , σ, `, we obtain

Ê
[
∂µ ϕ̂∗(t)

]
= Ê

[
∂µ ϕ(t, X̂ (t),PX ∗(t), û

∗(t); z)
] ∣∣∣∣

z=X ∗(t)
(8)

=
∫

Ω̂
∂µ ϕ(t, X̂ (t, ŵ),PX ∗(t,w ), û

∗(t, ŵ);X ∗(t,w))dP̂(ŵ),
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Main results. Adjoint equation

Second-order adjoint equation. Consider the following standard linear
BSDE

dP(t) = −
{

2(bx (t) + Ê [b̂∗µ(t)])P(t) + [σx (t) + Ê (σ̂∗µ(t))]
2P(t)

+ 2(σx (t) + Ê [σ̂∗µ(t)])Q(t) + (Hxx (t) + Ê [Ĥ∗µy (t)])
}

dt
+Q(t)dB(t),

P(T ) = −(hxx (T ) + Ê [ĥ∗µy (T )]).
(9)

Similar to (8) and (??), we have

Ê [Ĥ∗µy (t)]) = Ê
[
∂µ∂yH(t, X̂ (t),PX ∗(t), û

∗(t), p̂(t), q̂(t); y)
] ∣∣∣∣

y=X ∗(t)

=
∫

Ω̂
∂µ∂yH(t, X̂ (t, ŵ),PX ∗(t), û

∗(t, ŵ), p̂(t), q̂(t);X ∗(t))dP̂(ŵ).
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Main results. Hamiltonian

Let us define the Hamiltonian associated to our continuous-singular control
problem. For any (t, x , µ, u, p, q) ∈ [0,T ]×R×Q2(R)×R×R×R

H(t, x , µ, u, p, q) = f (t, x , µ, u)p + σ(t, x , µ, u)q − `(t, x , µ, u). (10)

where (p (·) , q (·)) be a pair of adapted processes, solution of the
first-order adjoint equation
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Main results. Necessary conditions

Let (u∗(·), η∗(·),X ∗(·)) is an optimal solution of the McKean-Vlasov
control problem (2)-(1). We introduce the following variational equations
for our continuous-singular control problem. Let Y uε,ηε

(·) and Z ε(·) be
the solutions of (11), (12) associated to (u∗(·), η∗(·)) respectively.

First-order variational equation: let Eε = [0, ε] , t ∈ [0,T ]
dY uε,ηε

(t) =
[
fx (t)Y uε,ηε

(t) + Ê [f̂µ(t)Ŷ uε,ηε
(t)] + δf (t)1Eε (t)

]
dt

+
[
σx (t)Y ε(t) + Ê [σ̂µ(t)Ŷ uε,ηε

(t)] + δσ(t)1Eε (t)
]

dB(t)
+ G (t)d(ηε − η∗)(t),

Y uε,ηε
(0) = 0.

(11)
Here the process Y uε,ηε

(·) is called the first-order variational process,
associated to (uε(·), ηε(·)) which is depend explicitly to singular control.
The process ηε(·) is the convex perturbed control given by
ηε(t) = η∗(t) + ε (η(t)− η∗(t)) .
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Main results. Necessary conditions

Second-order variational equation:

dZ ε(t)=
[
fx (t)Z ε(t) + Ê [f̂µ(t)Ẑ ε(t)] + Lxx (t, f ,Y ε) + Lµx (t, f̂ , Ŷ ε)

]
dt

+
[
σx (t)Z ε(t) + Ê [σ̂µ(t)Ẑ ε(t)] + Lxx (t, σ,Y ε) + Lµx (t, σ̂, Ŷ ε)

]
dB(t),

+
[
δfx (t)Y ε(t) + Ê [δf̂µ(t)Ŷ ε(t)]

]
1Eε (t)dt

+
[
δσx (t)Y ε(t) + Ê [δσ̂µ(t)Ŷ ε(t)]

]
1Eε (t)dB(t),

Z ε(0) = 0.
(12)

Here the process Z ε (·) is called the second-order variational process.
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Main results. Estimations

Lemma

Let X ε(·) = X uε,ηε
(·) be the solutions of (2) corresponding to

continuous-singular control (uε(·), ηε(·)). Let assumptions (H1) and (H2)
hold. Then we have

lim
ε→0

E ( sup
t∈[0,T ]

|X ε(t)− X ∗(t)|2) = 0.

Let X uε,η∗(·) be the solution of (2), corresponding to (uε(·), η∗(·)). Let
Y ε(·) be the solution of (??), corresponding to (uε(·), η∗(·)), then the
following estimation holds
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Main results. Estimations

Lemma

lim
ε→0

E

[
sup

0≤t≤T

∣∣∣X uε,η∗(t)− X ∗(t)
∣∣∣2] = 0. (13)

lim
ε→0

E

[
sup

0≤t≤T

∣∣∣X ε(t)− X uε,η∗(t)
∣∣∣2] = 0. (14)

lim
ε→0

E

[
sup

0≤t≤T

∣∣∣X uε,η∗(t)− X ∗(t)− Y ε(t)
∣∣∣2] = 0. (15)

Proposition

Let Y ε(t) solution (12) associated to (uε (·) , η∗ (·)) . Under assumption
H1, the following estimate holds

lim
ε→0

E

[
sup

0≤t≤T

∣∣∣X uε,η∗(t)− X ∗(t)− Y ε(t)− Z ε(t)
∣∣∣2] = 0. (16)
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Main results. Stochastic maximum principle

The following theorem constitutes the main contribution of this paper.

Theorem

Theorem 3.1 (Stochastic maximum principle) Let (u∗(·), η∗(·),X ∗(·)) is
an optimal solution of the McKean-Vlasov control problem (2)-(1). Let
assumptions (H1), (H2) and (H3) hold. Then there are two pairs of
Ft−adapted processes (p(·), q(·)) and (P(·),Q(·)) that satisfy (7) and
(9) respectively, such that for all (u(t), η(t)) ∈ U1 × U2, we have

0 ≤ H(t,X ∗(t),PX ∗(t), u
∗(t), p∗(t), q∗(t))−H(t, x∗(t),PX ∗(t), u(t), p

∗(t), q∗(t))

(17)

− 1

2
P(t)

(
σ(t,X ∗(t),PX ∗(t), u(t)))− σ

(
t,X ∗(t),PX ∗(t), u

∗(t)
))2

+ E
∫
[0,T ]

(M(t) + G (t)p(t))d (η − η∗) (t).

P−a.s., a.e. t ∈ [0,T ] .
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Main results. Stochastic maximum principle
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Main results. Stochastic maximum principle

We derive the variational inequality (??) in several steps. From the
optimality of (u∗(·), η∗(·)) , we have

J (uε(·), ηε(·))− J (u∗(·), η∗(·)) ≥ 0. (18)

Now, we separate the above inequality into two parts

J ε
1 = J (uε(·), ηε(·))− J (uε(·), η∗(·)) , (19)

J ε
2 = J (uε(·), η∗(·))− J (u∗(·), η∗(·)) , (20)

where J (uε(·), ηε(·))− J (u∗(·), η∗(·)) = J ε
1 + J ε

2. The variational
inequality will be derived from the fact that

lim
ε→0

1

ε
(J ε

1 + J ε
2) ≥ 0. (21)
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Future developments We have discussed a general Peng’s type
necessary conditions in the form of Pontryagin stochastic maximum
principle of optimal continuous-singular control for nonlinear controlled
McKean-Vlasov stochastic differential equation. If the coefficients of the
singular parts G (t) = M(t) = 0, our stochastic maximum principle
(Theorem 3.1) coincides with maximum principle developed in Buckdahn
et al. [3, Theorem 3.5].
Apparently, there are many problems left unsolved such as:

A. One possible problem is to study the general Peng’s type maximum
principle for optimal control for SDE, the coefficients of the singular
parts G (·) and M (·) depend explicitly to the state of the solution
process X u,η of the form


dX u,η(t) = f (t,X u,η(t), u(t)) dt + σ (t,X u,η(t), u(t)) dW (t)

+ G (t,X u,η)dη(t),
X u,η(0) = x0,
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and the cost functional of the form

J (u(·), η(·)) = E

[∫ T

0
f (t,X u,η(t), u(t))dt + h(X u,η(T ))

+
∫
[0,T ]

M(t,X u,η)dη(t)

]
.
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Future developments

B. It would be interesting to investigate the McKean-Vlasov maximum
principle (local version via Bensoussan’s convex method and general
Peng’s maximum principle) for optimal continuous-singular control for
McKean-Vlasov SDE, the coefficients of the singular parts G (·) and
M (·) of the state equation depend on the state of the solution
process as well as of its probability law and the control variable.of the
form

dX u,η(t) = f
(
t,X u,η(t),PX u,η(t), u(t)

)
dt + σ

(
t,X u,η(t),PX u,η(t), u(t)

)
dW (t)

+ G (t,X u,PX u,η(t))dη(t),
X u,η(0) = x0,

and the expected cost has the form

J (u(·), η(·)) = E

[∫ T

0
f (t,X u,η(t),PX u,η(t), u(t))dt + h(X u,η(T ),PX u,η(t))

+
∫
[0,T ]

M(t,X u,η,PX u,η(t))dη(t)

]
.

S. Meherrem (, ) Optimal singular control for McKean-Vlasov SDEs June 22, 2022 27 / 41



Future developments

C. Another challenging problem left unsolved is to derive a various
maximum principles in the case where the coefficients f , σ, `,G and
M depend on the state of the solution process X u,η (·) , the
continuous control variable u(·) as well as of probability law of the
pair P(X u,η(t),u(t)). So we investigate the problem:

dX u,η(t) = f (t,X u,η, u(t),P(X u,η(t),u(t)))dt + σ(t,X u,η(t), u(t),P(X u,η(t),u(t)))dW (t)
+ G (t,X u,η, u(t),P(X u,η(t),u(t)))dη(t),

X u,η(0) = x0,

and the cost functional has the general form

J (u(·), η(·)) = E

[∫ T

0
f (t,X u,η, u(t),P(X u,η(t),u(t)))dt + h(X u,η(T ),PX u,η(t))

+
∫
[0,T ]

M(t,X u,η, u(t),P(X u,η(t),u(t)))dη(t)

]
.

We hope to study these interesting new problems in forthcoming
works.
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