The One Step Malliavin scheme

new discretization of BSDEs implemented with deep learning regressions

Balint Negyesi

collaboration with Kristoffer Andersson (CWI) & Kees Oosterlee (UU)

9th Colloquium on Backward Stochastic Differential Equations and Mean Field Systems

Annecy

June 28, 2022

Discrete time approximation of BSDEs

- 2 Malliavin calculus in scare quotes
- One Step Malliavin scheme
- 4 Fully-implementable schemes

Discrete time approximation of BSDEs

Malliavin calculus in scare quotes

3 One S

One Step Malliavin scher

4 Ful

Fully-implementable schem

5 Summary

Forward-Backward Stochastic Differential Equations

BSDE – non-linear extension to the martingale representation theorem

$$\begin{aligned} X_t &= x_0 + \int_0^t \mu(s, X_s) \mathrm{d}s + \int_0^t \sigma(s, X_s) \mathrm{d}W_s \\ Y_t &= g(X_T) + \int_t^T f(s, X_s, Y_s, Z_s) \mathrm{d}s - \int_t^T Z_s \mathrm{d}W_s. \end{aligned}$$

Semi-linear PDEs with terminal boundaries

$$\frac{\partial u}{\partial t} + \langle \mu | \nabla u \rangle + \frac{1}{2} \operatorname{Tr} \left[\sigma \sigma^T \operatorname{Hess} u \right] + f(u, \nabla u) = 0,$$
$$u(T, x) = g(x),$$

General Feynman–Kac relation, (Pardoux and Peng, 1992)

Under certain regularity conditions the solutions coincide ${\ensuremath{\mathbb P}}\xspace$ -a.s.

$$Y_t = u(t, X_t), \quad Z_t = (\nabla u\sigma)(t, X_t).$$

Discrete time approximations

- Discretize $\pi^N := \{0 = t_0 < t_1 < \cdots < t_N = T\}$, e.g. $h := T/N, t_n = nh$
- SDE: well-understood, e.g. Euler–Maruyama scheme, n = 0, ..., N 1

$$X_0^{\pi} = x_0, \qquad \qquad X_{n+1}^{\pi} = X_n^{\pi} + \mu(t_n, X_n^{\pi}) \Delta t_n + \sigma(t_n, X_n^{\pi}) \Delta W_n.$$

• Itô isometry + discretized time integrals

$$Y_{N}^{\pi} = g(X_{N}^{\pi}), \quad Z_{N}^{\pi} = (\sigma \nabla g)(t_{N}, X_{N}^{\pi}),$$
$$Z_{n}^{\pi} = \frac{1}{\Delta t_{n}} \mathbb{E} \left[Y_{n+1}^{\pi} \Delta W_{n} \middle| \mathcal{F}_{t_{n}} \right]$$
$$Y_{n}^{\pi} = \mathbb{E} \left[Y_{n+1}^{\pi} + \Delta t_{n} f(t_{n}, X_{n}^{\pi}, Y_{n+1}^{\pi}, Z_{n}^{\pi}) \middle| \mathcal{F}_{t_{n}} \right]$$

one step vs multi step schemes ... implicit schemes require Picard iterations

Take-away

- The main difficulty is the approximation of Z
- A standard convergence analysis, e.g. (Bouchard and Touzi, 2004), shows

$$\limsup_{|\pi|\to 0} \frac{1}{|\pi|} \max_{0\le n\le N} \mathbb{E}\left[\left|\Delta Y_n^{\pi}\right|^2\right] + \sum_{n=0}^{N-1} \mathbb{E}\left[\int_{t_n}^{t_{n+1}} \left|Z_r - Z_{n+1}^{\pi}\right|^2 \mathrm{d}r\right] < \infty$$

Discrete time approximation of BSDEs

2 Malliavin calculus in scare quotes

One Step Malliavin schem

4 Fully

^Fully-implementable scheme

5 Summary

WARNING!

The following content is controversial and might be disturbing for some audiences (mostly those of an analysis heavy background)

Viewer discretion is advised!

Malliavin Calculus in Scare Quotes

Differentiation on a Wiener space

Let $W(h) = \int_0^T h^T(t) dW_t$ with some $h \in L^2([0, T]; \mathbb{R}^n)$ Put $\mathcal{R} \subseteq L^2(\Omega, \mathbb{P}; \mathbb{R})$ for $\Phi = \varphi(W(h_1), \dots, W(h_d))$ with $\varphi \in C_p^{\infty}(\mathbb{R}^d; \mathbb{R})$ Define the Malliavin derivative of such smooth random variables by

$$D_s \Phi \coloneqq \sum_{i=1}^d \partial_i \varphi(W(h_1), \ldots, W(h_d)) h_i(s)$$

The derivative operator can be extended to $\mathbb{D}^{1,p}(\Omega,\mathbb{P};\mathbb{R}) \subseteq L^p(\Omega,\mathbb{P};\mathbb{R})$ by the closure with respect to the following norm

$$\left\|\Phi\right\|_{\mathbb{D}^{1,p}}\coloneqq \left(\left|\Phi\right|^{p} + \left(\int_{0}^{T}\left|D_{s}\Phi\right|^{2}\mathrm{d}s\right)^{p/2}\right)^{1/p}$$

Clark-Ocone formula: the predictable adapted process in the martingale representation theorem is the Malliavin derivative itself

$$X(W) = \mathbb{E}\left[X(W)\right] + \int_0^T \mathbb{E}\left[D_t X | \mathcal{F}_t\right] \mathrm{d}W_t$$

Connection with (F)BSDEs

It can be shown that for Itô processes the Malliavin derivative satisfies

$$D_s X_t = \sigma(s, X_s) + \int_s^t (\nabla \mu)(r, X_r) \mathrm{d}r + \int_s^t (\nabla \sigma)(r, X_r) \mathrm{d}W_r.$$

Feynman-Kac $Z_t \sim (\nabla u)(t, X_t) \sim \text{sensitivity} + \text{Clark-Ocone & martingale}$ representation \implies Malliavin derivative? (Yes.)

Malliavin Derivative's BSDE, e.g. (Geiss and Steinicke, 2016; Mastrolia et al., 2017)

Under certain regularity conditions $Y \in \mathbb{D}^{1,2}(\mathbb{R}^q), Z \in \mathbb{D}^{1,2}(\mathbb{R}^{q imes d})$

$$\begin{aligned} & D_{s} Y_{t} = D_{s} \xi + \int_{t}^{T} \left[\nabla_{x} \mathbf{f}_{r} D_{s} X_{r} + \nabla_{y} \mathbf{f}_{r} D_{s} Y_{r} + \nabla_{z} \mathbf{f}_{r} D_{s} Z_{r} \right] \mathrm{d}r - \int_{t}^{T} D_{s} Z_{r} \mathrm{d}W_{r}, \\ & D_{s} Y_{t} = 0, D_{s} Z_{t} = 0, t < s. \end{aligned}$$

where $\mathbf{f}_r := f(r, \mathbf{X}_r, \mathbf{Y}_r, \mathbf{Z}_r)$. There is a continuous version such that $Z_s = D_s Y_s$. The control process satisfies a linear BSDE itself.

Malliavin Chain Rule

Let $\psi \in C_b^1(\mathbb{R}^d; \mathbb{R}^q)$ and $X \in \mathbb{D}^{1,p}(\mathbb{R}^q)$. Then $\psi(F) \in \mathbb{D}^{1,p}(\mathbb{R}^q)$ and for all $0 \le s \le T$

$$D_s\psi(X)=\nabla_x\psi(X)D_sX.$$

Recall: Feynman-Kac relations \implies $Y_t = u(t, X_t), Z_t = (\sigma \nabla_x u)(t, X_t).$

Contents

Discrete time approximation of BSDEs

Malliavin calculus in scare quotes

3 One Step Malliavin scheme

Fully-implementable sc

5 Summary

Objective I

Back to FBSDE systems

$$X_t = \eta + \int_0^t \mu(r, X_r) dr + \int_0^t \sigma(r, X_r) dW_r,$$

$$Y_t = g(X_T) + \int_t^T f(r, X_r, Y_r, Z_r) dr - \int_t^T Z_r dW_r.$$

But under suitable assumptions also $X \in \mathbb{D}^{1,2}(\mathbb{R}^d)$, $Y \in \mathbb{D}^{1,2}(\mathbb{R}^q)$, $Z \in \mathbb{D}^{1,2}(\mathbb{R}^{q \times n})$ and $s \leq t$

$$D_{s}X_{t} = \sigma(s, X_{s}) + \int_{s}^{t} \nabla_{x}\mu(r, X_{r})D_{s}X_{r}dr + \int_{s}^{t} \nabla_{x}\sigma(r, X_{r})D_{s}X_{r}dW_{r},$$

$$D_{s}Y_{t} = \nabla_{x}g(X_{T})D_{s}X_{T} + \int_{t}^{T} \left[\nabla_{x}f(r, \mathbf{X}_{r})D_{s}X_{r} + \nabla_{y}f(r, \mathbf{X}_{r})D_{s}Y_{r} + \nabla_{z}f(r, \mathbf{X}_{r})D_{s}Z_{r}\right]dr - \int_{t}^{T} D_{s}Z_{r}dW_{r}.$$

Objective II

Simultaneous discrete time approximation to the pair of solution triples $\{(X_t, Y_t, Z_t)\}_{0 \le t \le T}$, $\{(D_s X_t, D_s Y_t, D_s Z_t)\}_{0 \le s \le t \le T}$ to the pair of FBSDE systems

Main ingredients

• associate the corresponding Malliavin derivatives in the Malliavin BSDE with the solution pair of the original – Malliavin chain rule

$$D_sY_t = \nabla_x y(t, X_t) D_sX_t, \quad D_sZ_t = \nabla_x z(t, X_t) D_sX_t =: \gamma(t, X_t) D_sX_t$$

• combine this with the non-linear Feynman-Kac formulae

$$\nabla_{\mathsf{x}} \mathsf{y}(t, X_t) \sigma(t, X_t) = \mathsf{z}(t, X_t)$$

After a suitable time discretization, discrete time estimates read as follows

$$D_n Y_{n+1}^{\pi} \coloneqq Z_{n+1}^{\pi} \sigma(t_{n+1}, X_{n+1}^{\pi})^{-1} D_n X_{n+1}^{\pi}, \quad D_n Z_n^{\pi} \coloneqq \Gamma_n^{\pi} D_n X_n^{\pi}$$

OSM discretization

$$D_{n}Y_{n+1}^{\pi} := Z_{n+1}^{\pi}\sigma^{-1}(t_{n+1}, X_{n+1}^{\pi})D_{n}X_{n+1}^{\pi}, \quad D_{n}Z_{n}^{\pi} :=:= \Gamma_{n}^{\pi}D_{n}X_{n}^{\pi}$$

Approximate the forward SDEs with Euler-Maruyama approximations and

$$Y_{N}^{\pi} = g(X_{N}^{\pi}), \quad Z_{N}^{\pi} = \nabla_{\times}g(X_{N}^{\pi})\sigma(T, X_{n}^{\pi}),$$

$$\Gamma_{n}^{\pi}\sigma(t_{n}, X_{n}^{\pi}) = D_{n}Z_{n}^{\pi} = \frac{1}{\Delta t_{n}}\mathbb{E}_{n}\Big[\Delta W_{n}\Big\{D_{n}Y_{n+1}^{\pi} + \Delta t_{n}\nabla_{\times}f(t_{n+1}, \mathbf{X}_{n+1}^{\pi})D_{n}X_{n+1}^{\pi} + \Delta t_{n}\nabla_{y}f(t_{n+1}, \mathbf{X}_{n+1}^{\pi})D_{n}Y_{n+1}^{\pi} + \Delta t_{n}\nabla_{z}f(t_{n+1}, \mathbf{X}_{n+1}^{\pi})D_{n}Z_{n}^{\pi}\Big\}\Big],$$

$$Z_{n}^{\pi} = \mathbb{E}_{n}\Big[D_{n}Y_{n+1}^{\pi} + \Delta t_{n}\nabla_{\times}f(t_{n+1}, \mathbf{X}_{n+1}^{\pi})D_{n}X_{n+1}^{\pi} + \Delta t_{n}\nabla_{y}f(t_{n+1}, \mathbf{X}_{n+1}^{\pi})D_{n}X_{n+1}^{\pi} + \Delta t_{n}\nabla_{z}f(t_{n+1}, \mathbf{X}_{n+1}^{\pi})D_{n}Z_{n}^{\pi}\Big],$$

$$Y_{n}^{\pi} = \vartheta_{y}\Delta t_{n}f(t_{n}, \mathbf{X}_{n}^{\pi})$$

Discrete time approximation error analysis

Main difficulty is the presence of $\ensuremath{\mbox{\sc s}}$ and their corresponding estimates

- Ito make sure of Malliavin differentiability
- additive noise
- to guarantee uniformly bounded Malliavin derivatives
- suitable Lipschitz (in space) and (1/2)-Hölder (in time) assumptions

Main result, Negyesi et al., 2021

Under suitable assumptions

$$\limsup_{|\pi|\to 0} \frac{1}{|\pi|} \mathcal{E}(|\pi|) < \infty, \tag{3}$$

where

$$\mathcal{E}(|\pi|) \coloneqq \max_{0 \le n \le N} \mathbb{E}\left[\left|\Delta Y_n^{\pi}\right|^2\right] + \max_{0 \le n \le N} \mathbb{E}\left[\left|\Delta Z_n^{\pi}\right|^2\right] + \sum_{n=0}^{N-1} \mathbb{E}\left[\int_{t_n}^{t_{n+1}} \left|\Gamma_r - \Gamma_n^{\pi}\right|^2 \mathrm{d}r\right]$$

Sketch of the proof

$$\limsup_{|\pi|\to 0}\frac{1}{|\pi|}\mathcal{E}(|\pi|)<\infty,$$

- SDEs: $\mathcal{O}(|\pi|^{1/2})$ \checkmark
- standard mean-squared continuity result for Y; similar estimates for Z via Malliavin BSDE
- estimate for the best $L^2(\Omega, \mathbb{P}; \mathbb{R}^{d \times d})$ projections of DZ given π

$$\varepsilon^{DZ}(|\pi|) \coloneqq \sum_{n=0}^{N-1} \mathbb{E}\left[\int_{t_n}^{t_{n+1}} \left| D_{t_n} Z_r - \widetilde{DZ}_n^{n+1} \right|^2 \mathrm{d}r \right],$$

with $\widetilde{DZ}_n^{n+1} \coloneqq \frac{1}{\Delta t_n} \mathbb{E}_n \left[\int_{t_n}^{t_{n+1}} D_{t_n} Z_r \mathrm{d}r \right]$

 Malliavin chain rule, etc. estimates: (recursive) upper bounds for *DZ*_nⁿ⁺¹ - D_nZ_n^π, ΔZ_n^π, ΔY_n^π - uniform boundedness

 Grönwall type estimate for the first two terms

 Γ: step 3 + Malliavin chain rule estimates

Contents

4

Fully-implementable schemes

Two fully-implementable schemes

- BCOS: Fourier cosine expansion methods given analytical conditional characteristic function of the Markov transitions Φ_{X^π_{n+1}|X^π_n=x}(u|x) (Ruijter and Oosterlee, 2015) small d, benchmark in the scalar setting
- Oeep BSDE: neural network regression Monte Carlo similar to Huré et al., 2020. (Υ, Ζ, Γ) are parametrized by (separate) DNNs at each time instance.

$$\begin{split} \mathcal{L}_{n}^{z,\gamma}(\theta^{z},\theta^{\gamma}) &\coloneqq \mathbb{E}\Big[\Big|\big(1+\Delta t_{n}\nabla_{y}f(t_{n+1},\widehat{\mathbf{X}}_{n+1}^{\pi})\big)D_{n}\widehat{Y}_{n+1}^{\pi} \\ &+ \Delta t_{n}\nabla_{x}f(t_{n+1},\widehat{\mathbf{X}}_{n+1}^{\pi})D_{n}X_{n+1}^{\pi} - \psi(X_{n}^{\pi}|\theta^{z}) \\ &+ \Delta t_{n}\nabla_{z}f(t_{n+1},\widehat{\mathbf{X}}_{n+1}^{\pi})\chi(X_{n}^{\pi}|\theta^{\gamma})\sigma(t_{n},X_{n}^{\pi}) \\ &- \chi(X_{n}^{\pi}|\theta^{\gamma})\sigma(t_{n},X_{n}^{\pi})\Delta W_{n}\Big|^{2}\Big], \\ \mathcal{L}_{n}^{y}(\theta^{y}) &\coloneqq \mathbb{E}\Big[\Big|\widehat{Y}_{n+1}^{\pi} + (1-\vartheta_{y})\Delta t_{n}f(t_{n+1},\widehat{\mathbf{X}}_{n+1}^{\pi}) - \varphi(X_{n}^{\pi}|\theta^{y}) \\ &+ \vartheta_{y}\Delta t_{n}f(t_{n},X_{n}^{\pi},\varphi(X_{n}^{\pi}|\theta^{y}),\widehat{Z}_{n}^{\pi}) - \widehat{Z}_{n}^{\pi}\Delta W_{n}\Big|^{2}\Big] \end{split}$$

Assumption: additive noise, C_b^2 coefficients

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- regularity: $\mathcal{O}(|\pi|^{1/2})$ in different norms for $Y, Z, \Gamma \checkmark$
- discretization: $\mathcal{O}(|\pi|^{1/2})$ same as Euler
- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a UAT argument

Assumption: additive noise, C_b^2 coefficients

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- regularity: $\mathcal{O}(|\pi|^{1/2})$ in different norms for $Y, Z, \Gamma \checkmark$
- discretization: $\mathcal{O}(|\pi|^{1/2})$ same as Euler
- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a **UAT argument**

Assumption: additive noise, C_b^2 coefficients

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

• regularity: $\mathcal{O}(|\pi|^{1/2})$ – in different norms for $Y, Z, \Gamma \checkmark$

• discretization:
$$\mathcal{O}(|\pi|^{1/2})$$
 – same as Euler

- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a **UAT argument**

Assumption: additive noise, C_b^2 coefficients

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

• regularity: $\mathcal{O}(|\pi|^{1/2})$ – in different norms for $Y, Z, \Gamma \checkmark$

• discretization:
$$\mathcal{O}(|\pi|^{1/2})$$
 – same as Euler

- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a UAT argument

Assumption: additive noise, C_b^2 coefficients

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- regularity: $\mathcal{O}(|\pi|^{1/2})$ in different norms for $Y, Z, \Gamma \checkmark$
- discretization: $\mathcal{O}(|\pi|^{1/2})$ same as Euler
- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a UAT argument

Assumption: additive noise, C_b^2 coefficients

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- regularity: $\mathcal{O}(|\pi|^{1/2})$ in different norms for $Y, Z, \Gamma \checkmark$
- discretization: $\mathcal{O}(|\pi|^{1/2})$ same as Euler
- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a UAT argument

Assumption: additive noise, C_b^2 coefficients

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

• regularity: $\mathcal{O}(|\pi|^{1/2})$ – in different norms for $Y, Z, \Gamma \checkmark$

- discretization: $\mathcal{O}(|\pi|^{1/2})$ same as Euler
- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a UAT argument

Convergence of total approximation errors

$$\mu = \mathbf{0}_d, \qquad \sigma = I_d, \qquad f(t, x, y, z) = \frac{\omega(t, \lambda x)}{\left[1 + \omega(t, \lambda x)\right]^2} \left[\lambda^2 d(y - \gamma) - 1 - \frac{\lambda^2}{2} d\right]$$
$$g(x) = \gamma + \frac{\omega(T, \lambda x)}{1 + \omega(T, \lambda x)}, \qquad \omega(t, x) = \exp\left(t + \sum_{i=1}^d x_i\right)$$

Figure: d = 10, Fig.1b in Negyesi et al., 2021.

BCOS benchmarked regression errors

$$\mu = \mathbf{0}_d, \qquad \sigma = \sqrt{2}I_d, \qquad f(t, x, y, z) = |z|^2, \qquad g(x) = x^T A x + v^T x + c,$$

Figure: d = 1, N = 100, Fig.2a in Negyesi et al., 2021.

Cumulative regression errors "convergence"

$$\mu = \mathbf{0}_d, \qquad \sigma = \sqrt{2}I_d, \qquad f(t, x, y, z) = |z|^2, \qquad g(x) = x^T A x + v^T x + c,$$

Figure: d = 1, Fig.2b in Negyesi et al., 2021.

Total relative approximation errors over time

$$\mu = \mathbf{0}_d, \qquad \sigma = \sqrt{2}I_d, \qquad f(t, x, y, z) = |z|^2, \qquad g(x) = x^T A x + v^T x + c,$$

Figure: d = 50, N = 100, Fig.3a in Negyesi et al., 2021.

Comparison with Huré et al., 2020 – whose Γ estimates are computed via naive automatic differentiation.

Table: d = 50, N = 100.

	$OSM(artheta_y=1/2)$ (P)	(D)	Huré et al. (2020)
	0 10-4 (5 10-4)	()	1 7 10-1 (0 10-2)
$ \Delta Y_0 / Y_0 $	$8 \times 10^{-1} (5 \times 10^{-1})$	$1 \times 10^{-5} (1 \times 10^{-5})$	$1.7 \times 10^{-1} (8 \times 10^{-2})$
$ \Delta \widehat{Z}_0^{\pi} / Z_0 $	$5.0 imes 10^{-3} \left(5 imes 10^{-4} ight)$	$1.4 imes 10^{-2} \left(3 imes 10^{-3} ight)$	$2.8 imes 10^{-1} \left(7 imes 10^{-2} ight)$
$ \Delta \widehat{\Gamma}_0^{\pi} / \Gamma_0 $	$3.1 imes 10^{-2} (2 imes 10^{-3})$	$4.9 imes 10^{-2} (7 imes 10^{-3})$	$3.5(1 imes 10^{-1})$
$\max_n \widehat{\mathbb{E}}[\Delta \widehat{Y}_n^{\pi} ^2]$	$2.7(1 \times 10^{-1})$	$2.5(3 \times 10^{-1})$	$7 imes10^1\left(4 imes10^1 ight)$
$\max_n \widehat{\mathbb{E}}[\Delta \widehat{Z}_n^{\pi} ^2]$	$3.4 imes 10^{-2} \left(1 imes 10^{-3} ight)$	$3.1 imes 10^{-2} \left(3 imes 10^{-3} ight)$	$2.8 imes10^2\left(1 imes10^1 ight)$
$\sum_{n=0}^{N-1} \Delta t_n \widehat{\mathbb{E}}[\Delta \widehat{\Gamma}_n^{\pi} ^2]$	$4.1 imes 10^{-4} (6 imes 10^{-5})$	$3.3 imes 10^{-3} (2 imes 10^{-4})$	$2.9(2 \times 10^{-1})$
runtime (s)	$1.36 imes 10^3 \left(1 imes 10^1 ight)$	$1.62 \times 10^3 \left(4 \times 10^1\right)$	$6.16 imes10^2\left(1 imes10^1 ight)$

Contents

5 Summary

- The main difficulty in the numerical approximation of BSDEs lies in the Z process, whose conditional variance diverges in the classical backward Euler scheme
- The One-Step Malliavin (OSM) scheme is built on a linear BSDE representation of the control process given by Malliavin calculus
- The discrete time approximations of OSM follow from a merged formulation of the Malliavin chain rule and the non-linear Feynman-Kac formulae
- OSM includes second-order sensitivities, Γ s, via $\{D_s Z_t\}_{s \leq t}$
- The OSM scheme exhibits "optimal" convergence rate $\mathcal{O}(|\pi|^{1/2})$
- A Deep BSDE approach yields orders of magnitude better approximations than in the classical discretization framework

... future self...

References I

- Bouchard, B., & Touzi, N. (2004). Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. *Stochastic Processes and their Applications*, 111(2), 175–206. https://doi.org/10.1016/j.spa.2004.01.001
- Briand, P., & Labart, C. (2014). Simulation of BSDEs by Wiener chaos expansion [Publisher: The Institute of Mathematical Statistics]. The Annals of Applied Probability, 24(3), 1129–1171. https://doi.org/10.1214/13-AAP943
- Geiss, C., & Steinicke, A. (2016). Malliavin derivative of random functions and applications to Lévy driven BSDEs [Publisher: Institute of Mathematical Statistics and Bernoulli Society]. *Electronic Journal of Probability*, 21(none), 1–28. https://doi.org/10.1214/16-EJP4140
- Hu, Y., Nualart, D., & Song, X. (2011). Malliavin calculus for backward stochastic differential equations and application to numerical solutions [Publisher: The Institute of Mathematical Statistics]. *The Annals* of Applied Probability, 21(6), 2379–2423. https://doi.org/10.1214/11-AAP762
- Huré, C., Pham, H., & Warin, X. (2020). Deep backward schemes for high-dimensional nonlinear PDEs. Mathematics of Computation, 89(324), 1547–1579. https://doi.org/10.1090/mcom/3514
- Mastrolia, T., Possamaï, D., & Réveillac, A. (2017). On the Malliavin differentiability of BSDEs [Publisher: Institut Henri Poincaré]. Ann. Inst. H. Poincaré Probab. Statist., 53(1), 464–492. https://doi.org/10.1214/15-AIHP723
- Negyesi, B., Andersson, K., & Oosterlee, C. W. (2021). The One Step Malliavin scheme: New discretization of BSDEs implemented with deep learning regressions [arXiv: 2110.05421]. arXiv:2110.05421 [cs, math].

Pardoux, E., & Peng, S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. In B. L. Rozovskii & R. B. Sowers (Eds.), *Stochastic Partial Differential Equations and Their Applications* (pp. 200–217). Springer. https://doi.org/10.1007/BFb0007334

- Ruijter, M. J., & Oosterlee, C. W. (2015). A Fourier Cosine Method for an Efficient Computation of Solutions to BSDEs. SIAM Journal on Scientific Computing, 37(2), A859–A889. https://doi.org/10.1137/130913183
- Turkedjiev, P. (2015). Two algorithms for the discrete time approximation of Markovian backward stochastic differential equations under local conditions [Publisher: The Institute of Mathematical Statistics and the Bernoulli Society]. *Electronic Journal of Probability, 20*, 49 pp.–49 pp. https://doi.org/10.1214/EJP.v20-3022

Alternative approaches related to (1)

• Turkedjiev, 2015: (Malliavin) integration by parts formulas leading to

$$Z_t = \mathbb{E}\left[g(X_T)H_T^t + \int_t^T f(s, X_s, Y_s, Z_s)H_s^t \mathrm{d}s \middle| \mathcal{F}_t\right],$$

with Malliavin weights defined by

$$H_r^s \coloneqq \frac{1}{r-s} \int_s^r \sigma^{-1}(t, X_t) D_s X_t \mathrm{d} W_t$$

- Hu et al., 2011: linear BSDEs admit to a representation formula
- Briand and Labart, 2014: Wiener chaos expansion on Y, differentiable estimates giving control estimates via the identity $Z_t = D_t Y_t$

Remarks pointing in the direction of general diffusion coefficients

• $D_n X_{n+1}^{\pi}$ converge with the same order as the Euler scheme

$$D_n X_m^{\pi} := \begin{cases} \mathbbm{1}_{m=n} \sigma(t_n, X_n^{\pi}), & 0 \le m \le n \le N, \\ D_n X_{m-1}^{\pi} + \nabla_x \mu(t_{m-1}, X_{m-1}^{\pi}) D_n X_{m-1}^{\pi} \Delta t_{m-1} \\ + \nabla_x \sigma(t_{m-1}, X_{m-1}^{\pi}) D_n X_{m-1}^{\pi} \Delta W_{m-1}, & 0 \le n < m \le N. \end{cases}$$

guarantees $\limsup_{|\pi| \to 0} \frac{1}{|\pi|} \mathbb{E} \left[\left| D_{t_n} X_{t_{n+1}} - D_n X_{n+1}^{\pi} \right|^2 \right] < \infty.$

• Girsanov theorem allows to treat a wide range of non-constant drifts by changing to an appropriate probability measure: with some suitable *H* the Doléans-Dade exponential is defined as follows

$$\mathcal{E}_t^H := \exp\left(\int_0^t H_r \mathrm{d}W_r - \frac{1}{2}\int_0^t |H_r|^2 \mathrm{d}r\right),$$

defining a new probability measure \mathbb{Q}^{H} by the Radon-Nikodym derivative

$$\mathrm{d}\mathbb{Q}^{H} = \mathcal{E}_{t}^{H} \mathrm{d}\mathbb{P}.$$

Then $B_t^H := W_t - \int_0^t H_r^T dr$ is a Brownian motion under \mathbb{Q}^H .

• The main difficulty with the diffusion component is induced by the Malliavin chain rule approximation *(uniform boundedness, ...)*. Preliminary empirical results can be found in Negyesi et al., 2021 suggesting that under suitable differentiability assumptions the convergence rate of (3) is preserved.

$$D_{t_n}Y_{t_{n+1}} - D_nY_{n+1}^{\pi} = \left[Z_{t_{n+1}}\sigma^{-1}(t_{n+1}, X_{t_{n+1}}) - Z_{n+1}^{\pi}\sigma^{-1}(t_{n+1}, X_{n+1}^{\pi}) \right] D_{t_n}X_{t_{n+1}} \\ + Z_{n+1}^{\pi}\sigma^{-1}(t_{n+1}, X_{n+1}^{\pi}) \left[D_{t_n}X_{t_{n+1}} - D_nX_{n+1}^{\pi} \right].$$

uniform boundedness

General diffusions III

Figure: d = 50, N = 100, Fig.4 in Negyesi et al., 2021.

Two versions of Deep BSDE, depending on whether $\Gamma \leftarrow \chi(\cdot|\theta^{\gamma})$ or if it's fixed as the derivative of $\nabla_x \psi(\cdot|\theta^z)$ – similar to Huré et al., 2020 In case of the latter the loss function needs to be adjusted accordingly

$$\begin{split} \mathcal{L}_{n}^{z,\nabla z}(\theta^{z}) &\coloneqq \mathbb{E}\Big[\Big|(1+\Delta t_{n}\nabla_{y}f(t_{n+1},\widehat{\mathbf{X}}_{n+1}^{\pi}))D_{n}\widehat{Y}_{n+1}^{\pi} + \Delta t_{n}\nabla_{x}f(t_{n+1},\widehat{\mathbf{X}}_{n+1}^{\pi})D_{n}X_{n+1}^{\pi} \\ &-\psi(X_{n}^{\pi}|\theta^{z}) + \Delta t_{n}\nabla_{z}f(t_{n+1},\widehat{\mathbf{X}}_{n+1}^{\pi})\nabla_{x}\psi(X_{n}^{\pi}|\theta^{z})\sigma(t_{n},X_{n}^{\pi}) \\ &-\nabla_{x}\psi(X_{n}^{\pi}|\theta^{z})\sigma(t_{n},X_{n}^{\pi})\Delta W_{n}\Big|^{2}\Big]. \end{split}$$

Error analysis: extra term for the Jacobian condition, depending on the bounds of the network and its derivatives.