The One Step Malliavin scheme
new discretization of BSDEs implemented with deep learning regressions

Balint Negyesi

collaboration with Kristoffer Andersson (CWI) & Kees Oosterlee (UU)

9th Colloquium on Backward Stochastic Differential Equations and Mean Field Systems
Annecy

June 28, 2022
Overview

1. Discrete time approximation of BSDEs
2. Malliavin calculus in scare quotes
3. One Step Malliavin scheme
4. Fully-implementable schemes
5. Summary
Forward-Backward Stochastic Differential Equations

BSDE – non-linear extension to the martingale representation theorem

\[X_t = x_0 + \int_0^t \mu(s, X_s)ds + \int_0^t \sigma(s, X_s)dW_s \]

\[Y_t = g(X_T) + \int_t^T f(s, X_s, Y_s, Z_s)ds - \int_t^T Z_s dW_s. \]

Semi-linear PDEs with terminal boundaries

\[\frac{\partial u}{\partial t} + \langle \mu | \nabla u \rangle + \frac{1}{2} \text{Tr} \left[\sigma \sigma^T \text{Hess} \ u \right] + f(u, \nabla u) = 0, \]

\[u(T, x) = g(x), \]

General Feynman–Kac relation, (Pardoux and Peng, 1992)

Under certain regularity conditions the solutions coincide \(P \)-a.s.

\[Y_t = u(t, X_t), \quad Z_t = (\nabla u \sigma)(t, X_t). \]
Discrete time approximations

- Discretize $\pi^N := \{0 = t_0 < t_1 < \cdots < t_N = T\}$, e.g. $h := T/N, t_n = nh$

- SDE: well-understood, e.g. Euler–Maruyama scheme, $n = 0, \ldots, N - 1$

$$X_0^\pi = x_0, \quad X_{n+1}^\pi = X_n^\pi + \mu(t_n, X_n^\pi)\Delta t_n + \sigma(t_n, X_n^\pi)\Delta W_n.$$

- Itô isometry + discretized time integrals

$$Y_N^\pi = g(X_N^\pi), \quad Z_N^\pi = (\sigma \nabla g)(t_N, X_N^\pi),$$

$$Z_n^\pi = \frac{1}{\Delta t_n} \mathbb{E} \left[Y_{n+1}^\pi \Delta W_n | \mathcal{F}_{t_n} \right],$$

$$Y_n^\pi = \mathbb{E} \left[Y_{n+1}^\pi + \Delta t_n f(t_n, X_n^\pi, Y_n^\pi, Z_n^\pi) | \mathcal{F}_{t_n} \right]$$

one step vs multi step schemes ... implicit schemes require Picard iterations

Take-away

- The main difficulty is the approximation of Z

- A standard convergence analysis, e.g. (Bouchard and Touzi, 2004), shows

$$\limsup_{|\pi| \to 0} \frac{1}{|\pi|} \max_{0 \leq n \leq N} \mathbb{E} \left[|\Delta Y_n^\pi|^2 \right] + \sum_{n=0}^{N-1} \mathbb{E} \left[\int_{t_n}^{t_{n+1}} |Z_r - Z_{n+1}^\pi|^2 dr \right] < \infty$$
Contents

1. Discrete time approximation of BSDEs

2. Malliavin calculus in scare quotes

3. One Step Malliavin scheme

4. Fully-implementable schemes

5. Summary
WARNING!

The following content is controversial and might be disturbing for some audiences (mostly those of an analysis heavy background)

Viewer discretion is advised!
Malliavin Calculus in Scare Quotes

Differentiation on a Wiener space

Let $W(h) = \int_0^T h^T(t) dW_t$ with some $h \in L^2([0, T]; \mathbb{R}^n)$

Put $\mathcal{R} \subseteq L^2(\Omega, \mathbb{P}; \mathbb{R})$ for $\Phi = \varphi(W(h_1), \ldots, W(h_d))$ with $\varphi \in C^\infty_{p} (\mathbb{R}^d; \mathbb{R})$

Define the Malliavin derivative of such smooth random variables by

$$D_s \Phi := \sum_{i=1}^{d} \partial_i \varphi(W(h_1), \ldots, W(h_d)) h_i(s)$$

The derivative operator can be extended to $\mathcal{D}^{1,p}(\Omega, \mathbb{P}; \mathbb{R}) \subseteq L^p (\Omega, \mathbb{P}; \mathbb{R})$ by the closure with respect to the following norm

$$\|\Phi\|_{\mathcal{D}^{1,p}} := \left(|\Phi|^p + \left(\int_0^T |D_s \Phi|^2 ds \right)^{p/2} \right)^{1/p}.$$

Clark-Ocone formula: the predictable adapted process in the martingale representation theorem is the Malliavin derivative itself

$$X(W) = \mathbb{E} [X(W)] + \int_0^T \mathbb{E} [D_t X | \mathcal{F}_t] dW_t$$
Connection with (F)BSDEs

It can be shown that for Itô processes the Malliavin derivative satisfies

\[D_s X_t = \sigma(s, X_s) + \int_s^t (\nabla \mu)(r, X_r)dr + \int_s^t (\nabla \sigma)(r, X_r)dW_r. \]

Feynman-Kac \(Z_t \sim (\nabla u)(t, X_t) \sim \text{sensitivity} \) + Clark-Ocone & martingale representation \(\Rightarrow \) Malliavin derivative? (Yes.)

Malliavin Derivative’s BSDE, e.g. (Geiss and Steinicke, 2016; Mastrolia et al., 2017)

Under certain regularity conditions \(Y \in D^{1,2}(\mathbb{R}^q), Z \in D^{1,2}(\mathbb{R}^{q \times d}) \)

\[
D_s Y_t = D_s \xi + \int_t^T \left[\nabla_x f_r D_s X_r + \nabla_y f_r D_s Y_r + \nabla_z f_r D_s Z_r \right] dr - \int_t^T D_s Z_r dW_r, \tag{1}
\]

\[D_s Y_t = 0, D_s Z_t = 0, t < s. \]

where \(f_r := f(r, X_r, Y_r, Z_r) \). There is a continuous version such that \(Z_s = D_s Y_s \).

The control process satisfies a linear BSDE itself.
Malliavin chain rule

Let $\psi \in C^1_b(\mathbb{R}^d; \mathbb{R}^q)$ and $X \in \mathbb{D}^{1,p}(\mathbb{R}^q)$. Then $\psi(F) \in \mathbb{D}^{1,p}(\mathbb{R}^q)$ and for all $0 \leq s \leq T$

$$D_s \psi(X) = \nabla_x \psi(X) D_s X.$$

Recall: Feynman-Kac relations $\implies Y_t = u(t, X_t)$, $Z_t = (\sigma \nabla_x u)(t, X_t)$.
Contents

1. Discrete time approximation of BSDEs
2. Malliavin calculus in scare quotes
3. One Step Malliavin scheme
4. Fully-implementable schemes
5. Summary
Back to FBSDE systems

\[X_t = \eta + \int_0^t \mu(r, X_r)dr + \int_0^t \sigma(r, X_r)dW_r, \]

\[Y_t = g(X_T) + \int_t^T f(r, X_r, Y_r, Z_r)dr - \int_t^T Z_r dW_r. \]

But under suitable assumptions also \(X \in D^{1,2}(\mathbb{R}^d), \ Y \in D^{1,2}(\mathbb{R}^q), \ Z \in D^{1,2}(\mathbb{R}^{q \times n}) \) and \(s \leq t \)

\[D_sX_t = \sigma(s, X_s) + \int_s^t \nabla_x \mu(r, X_r)D_sX_rdr + \int_s^t \nabla_x \sigma(r, X_r)D_sX_r dW_r, \]

\[D_sY_t = \nabla_x g(X_T)D_sX_T + \int_t^T \left[\nabla_x f(r, X_r)D_sX_r + \nabla_y f(r, X_r)D_sY_r + \nabla_z f(r, X_r)D_sZ_r \right]dr - \int_t^T D_sZ_r dW_r. \]
Simultaneous discrete time approximation to the pair of solution triples
\{(X_t, Y_t, Z_t)\}_{0 \leq t \leq T}, \{(D_s X_t, D_s Y_t, D_s Z_t)\}_{0 \leq s \leq t \leq T} to the pair of FBSDE systems

Main ingredients

- associate the corresponding Malliavin derivatives in the Malliavin BSDE with the solution pair of the original – Malliavin chain rule

\[D_s Y_t = \nabla_x y(t, X_t) D_s X_t, \quad D_s Z_t = \nabla_x z(t, X_t) D_s X_t =: \gamma(t, X_t) D_s X_t \]

- combine this with the non-linear Feynman-Kac formulae

\[\nabla_x y(t, X_t) \sigma(t, X_t) = z(t, X_t) \]

After a suitable time discretization, discrete time estimates read as follows

\[D_n Y_{n+1}^\pi := Z_{n+1}^\pi \sigma(t_{n+1}, X_{n+1}^\pi)^{-1} D_n X_{n+1}^\pi, \quad D_n Z_n^\pi := :\Gamma_n^\pi D_n X_n^\pi \]
\[D_n Y_{n+1}^{\pi} := Z_{n+1}^{\pi} \sigma^{-1}(t_{n+1}, X_{n+1}^{\pi}) D_n X_{n+1}^{\pi}, \quad D_n Z_{n}^{\pi} := \Gamma_{n}^{\pi} D_n X_{n}^{\pi} \]

Approximate the forward SDEs with Euler-Maruyama approximations and

\[Y_{N}^{\pi} = g(X_{N}^{\pi}), \quad Z_{N}^{\pi} = \nabla_{x} g(X_{N}^{\pi}) \sigma(T, X_{n}^{\pi}), \]

\[\Gamma_{n}^{\pi} \sigma(t_{n}, X_{n}^{\pi}) = D_{n} Z_{n}^{\pi} = \frac{1}{\Delta t_{n}} \mathbb{E}_{n} \left[\Delta W_{n} \left\{ D_{n} Y_{n+1}^{\pi} + \Delta t_{n} \nabla_{x} f(t_{n+1}, X_{n+1}^{\pi}) D_{n} X_{n+1}^{\pi} + \Delta t_{n} \nabla_{y} f(t_{n+1}, X_{n+1}^{\pi}) D_{n} Y_{n+1}^{\pi} + \Delta t_{n} \nabla_{z} f(t_{n+1}, X_{n+1}^{\pi}) D_{n} Z_{n}^{\pi} \right\} \right], \]

\[Z_{n}^{\pi} = \mathbb{E}_{n} \left[D_{n} Y_{n+1}^{\pi} + \Delta t_{n} \nabla_{x} f(t_{n+1}, X_{n+1}^{\pi}) D_{n} X_{n+1}^{\pi} + \Delta t_{n} \nabla_{y} f(t_{n+1}, X_{n+1}^{\pi}) D_{n} Y_{n+1}^{\pi} + \Delta t_{n} \nabla_{z} f(t_{n+1}, X_{n+1}^{\pi}) D_{n} Z_{n}^{\pi} \right], \]

\[Y_{n}^{\pi} = \vartheta_{y} \Delta t_{n} f(t_{n}, X_{n}^{\pi}) + \mathbb{E}_{n} \left[Y_{n+1}^{\pi} + (1 - \vartheta_{y}) \Delta t_{n} f(t_{n+1}, X_{n+1}^{\pi}) \right] \]
Discrete time approximation error analysis

Main difficulty is the presence of Γs and their corresponding estimates

1. to make sure of Malliavin differentiability
2. additive noise
3. to guarantee uniformly bounded Malliavin derivatives
4. suitable Lipschitz (in space) and $(1/2)$-Hölder (in time) assumptions

Main result, Negyesi et al., 2021

Under suitable assumptions

$$\lim_{|\pi| \to 0} \sup_{|\pi|} \frac{1}{|\pi|} \mathcal{E}(|\pi|) < \infty,$$

where

$$\mathcal{E}(|\pi|) := \max_{0 \leq n \leq N} \mathbb{E} \left[|\Delta Y_n^\pi|^2 \right] + \max_{0 \leq n \leq N} \mathbb{E} \left[|\Delta Z_n^\pi|^2 \right] + \sum_{n=0}^{N-1} \mathbb{E} \left[\int_{t_n}^{t_{n+1}} |\Gamma_r - \Gamma_n^\pi|^2 dr \right]$$
Sketch of the proof

\[
\limsup_{|\pi| \to 0} \frac{1}{|\pi|} \mathcal{E}(|\pi|) < \infty,
\]

1. **SDEs:** $O(|\pi|^{1/2}) \checkmark$

2. Standard mean-squared continuity result for Y; similar estimates for Z via Malliavin BSDE

3. Estimate for the best $L^2(\Omega, \mathbb{P}; \mathbb{R}^{d \times d})$ projections of DZ given π

 \[
 \mathcal{E}^{DZ}(|\pi|) := \sum_{n=0}^{N-1} \mathbb{E} \left[\int_{t_n}^{t_{n+1}} \left| D_{t_n} Z_r - \tilde{DZ}_{n+1}^n \right|^2 dr \right],
 \]

 with $\tilde{DZ}_{n+1}^n := \frac{1}{\Delta t_n} \mathbb{E}_n \left[\int_{t_n}^{t_{n+1}} D_{t_n} Z_r dr \right]$

4. Malliavin chain rule, etc. estimates: (recursive) upper bounds for $\tilde{DZ}_{n+1}^n - D_n Z_n^\pi, \Delta Z_n^\pi, \Delta Y_n^\pi$ – uniform boundedness

5. **Grönwall** type estimate for the first two terms

6. Γ: step 3 + Malliavin chain rule estimates
Two fully-implementable schemes

1. **BCOS**: Fourier cosine expansion methods given analytical conditional characteristic function of the Markov transitions $\Phi_{X_{n+1}|X_n = x}(u|x)$ (Ruijter and Oosterlee, 2015) – small d, benchmark in the scalar setting

2. **Deep BSDE**: neural network regression Monte Carlo – similar to Huré et al., 2020. (Y, Z, Γ) are parametrized by (separate) DNNs at each time instance.

$$
\mathcal{L}^{Z,\gamma}(\theta^Z, \theta^\gamma) := \mathbb{E} \left[(1 + \Delta t_n \nabla_y f(t_{n+1}, \hat{X}_{n+1}^{\pi}))D_n \hat{Y}_{n+1}^{\pi} \\
+ \Delta t_n \nabla_x f(t_{n+1}, \hat{X}_{n+1}^{\pi})D_n X_{n+1}^{\pi} - \psi(X_n^{\pi}|\theta^Z) \\
+ \Delta t_n \nabla_z f(t_{n+1}, \hat{X}_{n+1}^{\pi})\chi(X_n^{\pi}|\theta^\gamma)\sigma(t_n, X_n^{\pi}) \\
- \chi(X_n^{\pi}|\theta^\gamma)\sigma(t_n, X_n^{\pi})\Delta W_n \right]^2,
$$

$$
\mathcal{L}^Y(\theta^Y) := \mathbb{E} \left[\hat{Y}_{n+1}^{\pi} + (1 - \vartheta_Y)\Delta t_n f(t_{n+1}, \hat{X}_{n+1}^{\pi}) - \varphi(X_n^{\pi}|\theta^Y) \\
+ \vartheta_Y \Delta t_n f(t_n, X_n^{\pi}, \varphi(X_n^{\pi}|\theta^Y), \hat{Z}_n^{\pi}) - \hat{Z}_n^{\pi} \Delta W_n \right]^2,
$$
Full error analysis

Assumption: **additive noise**, C^2_b coefficients

$$\left\| \Phi_t - \hat{\Phi}_{t_n} \right\|_{H_{\Phi}} \leq \left\| \Phi_t - \Phi_{t_n} \right\|_{H_{\Phi}} + \left\| \Phi_{t_n} - \Phi_n \right\|_{H_{\Phi}} + \left\| \Phi_n - \hat{\Phi}_n \right\|_{H_{\Phi}}$$

- **regularity**: $O(|\pi|^{1/2})$ – in different norms for Y, Z, Γ
- **discretization**: $O(|\pi|^{1/2})$ – same as Euler
- **approximation**: empirically
- **simulation**: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- **regression bias**: asymptotic result for the cumulative regression bias via a UAT argument

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms
Full error analysis

Assumption: **additive noise**, C^2_b coefficients

\[
\|\Phi_t - \Phi_{t_n}\|_{H_{\Phi}} \lesssim \|\Phi_t - \Phi_{t_n}\|_{H_{\Phi}} + \|\Phi_{t_n} - \Phi_n\|_{H_{\Phi}} + \|\Phi_n - \Phi_{\pi n}\|_{H_{\Phi}}
\]

- **regularity**
- **discretization**
- **approximation**

\[
\text{simulation} + \text{"E} - \hat{\text{E}}" + \text{"} \phi \approx \sum \alpha_k \varphi_k" \]

In $L^2(\Omega, P; \cdot)$ related norms

- regularity: $O(|\pi|^{1/2})$ – *in different norms* for Y, Z, Γ
- discretization: $O(|\pi|^{1/2})$ – *same as Euler*
- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a UAT argument
Full error analysis

Assumption: additive noise, C^2_b coefficients

\[
\| \Phi_t - \hat{\Phi}_{t_n} \|_{H_\Phi} \lesssim \| \Phi_t - \Phi_{t_n} \|_{H_\Phi} + \| \Phi_{t_n} - \Phi_n^{\pi} \|_{H_\Phi} + \| \Phi_n^{\pi} - \hat{\Phi}_n^{\pi} \|_{H_\Phi} \\
+ "E - \hat{E}" + "\phi \approx \sum \alpha_k \varphi_k" \\
\]

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- **regularity**: $O(|\pi|^{1/2})$ – in different norms for Y, Z, Γ
- **discretization**: $O(|\pi|^{1/2})$ – same as Euler
- **approximation**: empirically
- **simulation**: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- **regression bias**: asymptotic result for the cumulative regression bias via a UAT argument
Assumption: **additive noise**, C^2_b coefficients

\[
\|\Phi_t - \hat{\Phi}_{t_n}\|_{H_\Phi} \lesssim \left\{ \begin{array}{l}
\text{regularity} \\
\text{discretization} \\
\text{approximation} \\
\text{simulation} \\
\text{regression bias}
\end{array} \right.
\]

+ $\|\Phi_t - \Phi_{t_n}\|_{H_\Phi}$
+ $\|\Phi_{t_n} - \Phi_n\|_{H_\Phi}$
+ $\|\Phi_n - \hat{\Phi}_n\|_{H_\Phi}$
+ $\|E - \hat{E}\|$
+ $\|\phi \approx \sum \alpha_k \varphi_k\|$

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- **regularity**: $O(|\pi|^{1/2})$ — **in different norms for Y, Z, Γ**
- **discretization**: $O(|\pi|^{1/2})$ — **same as Euler**
- **approximation**: empirically
- **simulation**: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- **regression bias**: asymptotic result for the cumulative regression bias via a UAT argument
Full error analysis

Assumption: **additive noise**, C^2_b coefficients

\[
\begin{align*}
\left\| \Phi_t - \Phi_{\pi t_n} \right\|_{H_\Phi} & \lesssim \left\| \Phi_t - \Phi_{t_n} \right\|_{H_\Phi} + \left\| \Phi_{t_n} - \Phi_{\pi n} \right\|_{H_\Phi} + \left\| \Phi_{\pi n} - \Phi_{\pi n} \right\|_{H_\Phi} \\
& \quad + \left\| \psi - \hat{\phi} \right\| + \left\| \phi \approx \sum \alpha_k \varphi_k \right\|
\end{align*}
\]

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- regularity: $O(|\pi|^{1/2})$ – *in different norms for Y, Z, Γ*
- discretization: $O(|\pi|^{1/2})$ – *same as Euler*
- approximation: empirically
- simulation: generally intertwined with regression biases, in ML applications
 less troublesome due to re-simulation for each SGD iteration
- regression bias: asymptotic result for the cumulative regression bias via a
 UAT argument
Full error analysis

Assumption: **additive noise**, C^2_b coefficients

\[
\| \Phi_t - \hat{\Phi}_{t_n} \|_{H_\Phi} \lesssim \| \Phi_t - \Phi_{t_n} \|_{H_\Phi} + \| \Phi_{t_n} - \Phi_{\pi n} \|_{H_\Phi} + \| \Phi_{\pi n} - \hat{\Phi}_{\pi n} \|_{H_\Phi}
\]

- **regularity**
- **discretization**
- **approximation**
- simulation: \"E - \hat{E}\"
- regression bias: \"$\phi \approx \sum \alpha_k \varphi_k$\"

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- **regularity**: $O(|\pi|^{1/2})$ – *in different norms for Y, Z, Γ*
- **discretization**: $O(|\pi|^{1/2})$ – *same as Euler*
- **approximation**: empirically
- **simulation**: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- **regression bias**: asymptotic result for the cumulative regression bias via a UAT argument
Full error analysis

Assumption: **additive noise**, C^2_b coefficients

\[
\left\| \Phi_t - \Phi_{t_n}^\pi \right\|_{H_\Phi} \lesssim \left\| \Phi_t - \Phi_{t_n} \right\|_{H_\Phi} + \left\| \Phi_{t_n} - \Phi_n^\pi \right\|_{H_\Phi} + \left\| \Phi_n^\pi - \Phi_n \right\|_{H_\Phi}
\]

\[
= \underbrace{\left\| \Phi_t - \phi \right\|_{H_\Phi}}_{\text{simulation}} + \underbrace{\left\| \phi \right\|_{H_\Phi}}_{\text{regression bias}} = \underbrace{\left\| \Phi_t - \phi \right\|_{H_\Phi}}_{\text{simulation}} + \underbrace{\left\| \phi \right\|_{H_\Phi}}_{\text{regression bias}} \leq C(|\pi| + N \sum_{n=0}^{N-1} \{\epsilon_n^Y + \epsilon_n^Z\} + \sum_{n=0}^{N-1} \epsilon_n^\gamma)}
\]

In $L^2(\Omega, \mathbb{P}; \cdot)$ related norms

- **regularity**: $O(|\pi|^{1/2})$ – in different norms for Y, Z, Γ
- **discretization**: $O(|\pi|^{1/2})$ – same as Euler
- **approximation**: empirically
- **simulation**: generally intertwined with regression biases, in ML applications less troublesome due to re-simulation for each SGD iteration
- **regression bias**: asymptotic result for the cumulative regression bias via a UAT argument
Convergence of total approximation errors

\[\mu = 0_d, \quad \sigma = I_d, \quad f(t, x, y, z) = \frac{\omega(t, \lambda x)}{[1 + \omega(t, \lambda x)]^2} \left[\lambda^2 d(y - \gamma) - 1 - \frac{\lambda^2}{2} d \right] \]

\[g(x) = \gamma + \frac{\omega(T, \lambda x)}{1 + \omega(T, \lambda x)}, \quad \omega(t, x) = \exp \left(t + \sum_{i=1}^{d} x_i \right) \]

\[\max_n \mathbb{E}[|\Delta \hat{Y}_{ni}|^2] \quad \max_n \mathbb{E}[|\Delta \hat{Z}_{ni}|^2] \quad \sum_{n=0}^{N-1} \Delta t_n \mathbb{E}[|\Delta \hat{\Gamma}_{ni}|^2] \]

Figure: \(d = 10 \), Fig.1b in Negyesi et al., 2021.
BCOS benchmarked regression errors

$$\mu = 0_d, \quad \sigma = \sqrt{2} I_d, \quad f(t, x, y, z) = |z|^2, \quad g(x) = x^T A x + v^T x + c,$$

Figure: $d = 1, N = 100$, Fig.2a in Negyesi et al., 2021.
Cumulative regression errors "convergence"

\[\mu = 0_d, \quad \sigma = \sqrt{2l_d}, \quad f(t, x, y, z) = |z|^2, \quad g(x) = x^T A x + v^T x + c, \]

\[
\sum_{n=0}^{N-1} \mathbb{E}[|\hat{Y}^\pi_n - \hat{Y}^\pi|^2] \\
\sum_{n=0}^{N-1} \mathbb{E}[|\hat{Z}^\pi_n - \hat{Z}^\pi|^2] \\
\sum_{n=0}^{N-1} \mathbb{E}[|\hat{\Gamma}_n - \hat{\Gamma}_n|^2]
\]

Figure: \(d = 1 \), Fig.2b in Negyesi et al., 2021.
Total relative approximation errors over time

\[\mu = 0_d, \quad \sigma = \sqrt{2}l_d, \quad f(t, x, y, z) = |z|^2, \quad g(x) = x^T A x + \nu^T x + c, \]

Figure: \(d = 50, N = 100, \) Fig.3a in Negyesi et al., 2021.
Comparison with the Deep BSDE

Comparison with Huré et al., 2020 – whose Γ estimates are computed via naive automatic differentiation.

Table: $d = 50$, $N = 100$.

<table>
<thead>
<tr>
<th></th>
<th>OSM($\nu_0 = 1/2$)</th>
<th>Huré et al. (2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\Delta \hat{Y}_0^\pi</td>
<td>/</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \hat{Z}_0^\pi</td>
<td>/</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \hat{\Gamma}_0</td>
<td>/</td>
</tr>
<tr>
<td>max$_n \hat{E}[</td>
<td>\Delta \hat{Y}_n^\pi</td>
<td>^2]$</td>
</tr>
<tr>
<td>max$_n \hat{E}[</td>
<td>\Delta \hat{Z}_n^\pi</td>
<td>^2]$</td>
</tr>
<tr>
<td>$\sum_{n=0}^{N-1} \Delta t_n \hat{E}[</td>
<td>\Delta \hat{\Gamma}_n</td>
<td>]$</td>
</tr>
<tr>
<td>runtime (s)</td>
<td>$1.36 \times 10^3 \ (1 \times 10^1)$</td>
<td>$1.62 \times 10^3 \ (4 \times 10^1)$</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Discrete time approximation of BSDEs</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Malliavin calculus in scare quotes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>One Step Malliavin scheme</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fully-implementable schemes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td></td>
</tr>
</tbody>
</table>
The main difficulty in the numerical approximation of BSDEs lies in the Z process, whose conditional variance diverges in the classical backward Euler scheme.

The One-Step Malliavin (OSM) scheme is built on a linear BSDE representation of the control process given by Malliavin calculus.

The discrete time approximations of OSM follow from a merged formulation of the Malliavin chain rule and the non-linear Feynman-Kac formulae.

OSM includes second-order sensitivities, $Γ_s$, via $\{D_sZ_t\}_{s≤t}$.

The OSM scheme exhibits "optimal" convergence rate $O(|π|^{1/2})$.

A Deep BSDE approach yields orders of magnitude better approximations than in the classical discretization framework.

...future self...

Alternative approaches related to (1)

- Turkedjiev, 2015: (Malliavin) integration by parts formulas leading to

\[Z_t = \mathbb{E} \left[g(X_T)H_T^t + \int_t^T f(s, X_s, Y_s, Z_s)H_s^t ds \bigg| \mathcal{F}_t \right] , \]

with **Malliavin weights** defined by

\[H_s^r := \frac{1}{r-s} \int_s^r \sigma^{-1}(t, X_t)D_sX_t dW_t \]

- Hu et al., 2011: linear BSDEs admit to a representation formula

- Briand and Labart, 2014: Wiener chaos expansion on \(Y \), differentiable estimates giving control estimates via the identity \(Z_t = D_t Y_t \)
Remarks pointing in the direction of general diffusion coefficients

- $D_n X_{n+1}^\pi$ converge with the same order as the Euler scheme

\[
D_n X_m^\pi := \begin{cases}
1_{m=n} \sigma(t_n, X_n^\pi), & 0 \leq m \leq n \leq N,
D_n X_{m-1}^\pi + \nabla_x \mu(t_{m-1}, X_{m-1}^\pi) D_n X_{m-1}^\pi \Delta t_{m-1} \\
+ \nabla_x \sigma(t_{m-1}, X_{m-1}^\pi) D_n X_{m-1}^\pi \Delta W_{m-1}, & 0 \leq n < m \leq N.
\end{cases}
\]

Guarantees

\[
\limsup_{|\pi| \to 0} \frac{1}{|\pi|} \mathbb{E} \left[\left| D_t X_{t_{n+1}} - D_n X_{n+1}^\pi \right|^2 \right] < \infty.
\]

- Girsanov theorem allows to treat a wide range of non-constant drifts by changing to an appropriate probability measure: with some suitable H the Doléans-Dade exponential is defined as follows

\[
\mathcal{E}_t^H := \exp \left(\int_0^t H_r dW_r - \frac{1}{2} \int_0^t |H_r|^2 dr \right),
\]
defining a new probability measure Q^H by the Radon-Nikodym derivative
\[dQ^H = E^H_t dP. \]

Then $B^H_t := W_t - \int_0^t H_r^T dr$ is a Brownian motion under Q^H.

The main difficulty with the diffusion component is induced by the Malliavin chain rule approximation (uniform boundedness, . . .). Preliminary empirical results can be found in Negyesi et al., 2021 suggesting that under suitable differentiability assumptions the convergence rate of (3) is preserved.

\[
D_t Y_{t+1} - D_n Y_{n+1}^{\pi} = \left[Z_{t+1} \sigma^{-1}(t_{n+1}, X_{t_{n+1}}) - Z_{n+1} \sigma^{-1}(t_{n+1}, X_{n+1}^{\pi}) \right] D_t X_{t_{n+1}} \\
+ Z_{n+1} \sigma^{-1}(t_{n+1}, X_{n+1}^{\pi}) \left[D_t X_{t_{n+1}} - D_n X_{n+1}^{\pi} \right].
\]
Figure: $d = 50, N = 100$, Fig.4 in Negyesi et al., 2021.
Two versions of Deep BSDE, depending on whether \(\Gamma \leftarrow \chi(\cdot|\theta^\gamma) \) or if it’s fixed as the derivative of \(\nabla_x \psi(\cdot|\theta^z) \) – similar to Huré et al., 2020

In case of the latter the loss function needs to be adjusted accordingly

\[
L_n^{z,\nabla z}(\theta^z) := \mathbb{E} \left[\left| (1 + \Delta t_n \nabla_y f(t_{n+1}, \hat{X}^\pi_{n+1})) D_n \hat{Y}^\pi_{n+1} + \Delta t_n \nabla_x f(t_{n+1}, \hat{X}^\pi_{n+1}) D_n X^\pi_{n+1} \right. \right.
\]
\[
- \psi(X^\pi_n|\theta^z) + \Delta t_n \nabla z f(t_{n+1}, \hat{X}^\pi_{n+1}) \nabla_x \psi(X^\pi_n|\theta^z) \sigma(t_n, X^\pi_n) \]
\[
- \nabla_x \psi(X^\pi_n|\theta^z) \sigma(t_n, X^\pi_n) \Delta W_n \left| \right|_2^2. \]

Error analysis: extra term for the Jacobian condition, depending on the bounds of the network and its derivatives.