C. Bénézet

Switching
with

Switching problems with controlled randomisation and associated obliquely reflected BSDEs

Cyril Bénézet
ENSIIE, LaMME, Univ. Évry Val-d'Essonne, Univ. Paris Saclay Joint work with J.-F. Chassagneux and A. Richou

30 June 2022
$9^{\text {th }}$ colloquium on BSDEs and Mean Field Systems
Annecy

Outline

Switching
with

- Switching with controlled randomisation: examples, mathematical formulation, associated BSDE and verification theorem
- Randomised switching with signed costs: study of the geometry of the domain and an existence theorem.

Classical switching problems

- Classical litterature: Hamadène and Jeanblanc (2005, two modes), Djehiche, Hamadène and Popier (2007, d modes), Hu and Tang (2010, controlled drift, switched BSDEs, driver $f^{i}\left(t, y^{i}, z^{i}\right)$), Elie, Kharroubi (2011, controlled volatility), Chassagneux, Elie, Kharroubi (2012, driver $f^{i}\left(t, y, z^{i}\right)$).
- Notations: Time horizon $0<T<\infty$. Probability space $(\Omega, \mathcal{G}, \mathbb{P})$, Brownian motion $W, \mathbb{F}^{0}=\left(\mathcal{F}_{t}^{0}\right)_{t \in[0, T]}$ its augmented filtration.
- Control problem, starting from mode $i \in\{1, \ldots, d\}$ at time $t \in[0, T]$,
$\mathcal{V}_{t}^{i}=\operatorname{ess} \sup _{\left(\tau_{n}, \zeta_{n}\right)_{n \geq 1}} \mathbb{E}\left[\int_{t}^{T} \psi_{a_{s}}\left(X_{s}\right) \mathrm{d} s+g_{a T}\left(X_{T}\right)-\sum_{n \geq 1} c_{\zeta_{n-\mathbf{1}}, \zeta_{n}} 1_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{t}^{0}\right]$,
where X is an underlying stochastic process.
- A strategy is $\left(\tau_{n}, \zeta_{n}\right)_{n \geq 0}$ where $\left(\tau_{n}\right)$ is a sequence of stopping times (switching times) and ζ_{n} is the mode on $\left[\tau_{n}, \tau_{n+1}\right.$).
- State process: $a_{t}=\sum_{n \geq 0} \zeta_{n} 1_{\tau_{n} \leq t<\tau_{n+1}}, t \in[0, T]$.
- Admissibility: strategy with $\mathbb{E}\left[\left(\sum_{n \geq 0} 1_{\tau_{n} \leq T}\right)^{2}\right]<\infty$.
- Process \mathcal{V} lives in a convex domain of \mathbb{R}^{d} and solves a BSDE with oblique reflections.

Switching

 withcontrolled
randomisa-
tion
Examples
The control problem

Randomised switching with signed

Switching with controlled randomisation

 costsGeometry of the domain
Domain study The existence theorem

LaMME, ENSIIE
C. Bénézet

Switching

Switching with (controlled) randomisation

- The agent do not directly choose the new mode when she decides to switch.
- Randomised switching: the new mode is decided randomly (independently of everything up to now), according to a (known) distribution on $\{1, \ldots, d\}$. \hookrightarrow strategy $\left(\tau_{n}\right)_{n \geq 1}$ nondecreasing sequence of random times. If actual mode is i and the agent decides to switch, she pays cost \bar{c}_{i}.
- Controlled randomisation: the agent first chooses a distribution in $\left\{P^{u}: u \in \mathcal{C}\right\}$. The new mode is drawn according to this distribution. \hookrightarrow strategy $\left(\tau_{n}, \alpha_{n}\right)_{n \geq 1}$ where α_{n} is the chosen distribution at time τ_{n}. If actual mode is i and the agent decides to switch using law $P^{u}, u \in \mathcal{C}$, the cost is \bar{c}_{i}^{u}.
- Remark: randomised switching is a particular case of controlled randomisation when \mathcal{C} is a singleton.

Example - randomised switching

- Assume $d=3$.
- Here the agent only decides to switch, do not control the distribution of the new mode.
- New mode decided independently with transition matrix and cost

$$
P=\left(\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0.5 & 0 & 0.5 \\
0.5 & 0.5 & 0
\end{array}\right), \bar{c}=\left(\begin{array}{l}
0.5 \\
0.5 \\
0.5
\end{array}\right)
$$

\hookrightarrow When the agent wants to switch, the new mode is determined by throwing a fair coin.

For example, if the present mode is 1 and the agent wants to switch, the new mode is 2 with probability 0.5 and 3 with probability 0.5 .

LaMME, ENSIIE
C. Bénézet

Switching

Example - switching with controlled randomisation

- Here the agent decides when to switch and chooses the distribution of the new mode.

She chooses $u \in[0,1]$, and the new mode is determined by

$$
P^{u}=\left(\begin{array}{ccc}
0 & u & 1-u \\
1-u & 0 & u \\
u & 1-u & 0
\end{array}\right), \bar{c}^{u}=\left(\begin{array}{c}
1-u(1-u) \\
1-u(1-u) \\
1-u(1-u)
\end{array}\right) .
$$

- Example: current mode is 1 and switching with control u
\hookrightarrow new mode is 2 (resp. 3) with probability u (resp. $1-u$).
\hookrightarrow To increase the probability to be in mode 2 after the switch, the agent should take u closer to 1 .
\hookrightarrow Reducing uncertainty induces a higher cost as \bar{c}_{1}^{u} is higher with u closer to 1 .
- Applications to risk aversion.

LaMME,
C. Bénézet

Classical switching

- For each $d \geq 2$, the classical switching problem is a particular case of switching with controlled randomisation.
- For $d=3$ for example, the transition matrices are:

$$
\begin{aligned}
& P^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \bar{c}^{1}=\left(\begin{array}{l}
c_{1,2} \\
c_{2,3} \\
c_{3,1}
\end{array}\right), \\
& P^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \bar{c}^{2}=\left(\begin{array}{l}
c_{1,3} \\
c_{2,1} \\
c_{3,2}
\end{array}\right) .
\end{aligned}
$$

Some comments

Switching

- When the agent decides to switch, the new mode is chosen with some extra and independent noise \hookrightarrow mathematical analysis must deal with enlargement of filtrations.
- The enlarged filtration depends on the switching times, hence on the control.
- Classical switching \hookrightarrow "triangular inequality" $c_{i, j}+c_{j, k}>c_{i, k} \hookrightarrow$ no simultaneous switches.
Here, in general, the question of simultaneous switches arises: the agent may not be satisfied with the randomly reached state.

Setup

- Control set: \mathcal{C} an ordered compact metric space.
- Probability space: $(\Omega, \mathcal{G}, \mathbb{P})$ with $\mathcal{G}=\sigma\left(W,\left(\mathfrak{U}_{n}\right)_{n \geq 1}\right)$.
W is a κ-dimensional Brownian motion and \mathbb{F}^{0} its augmented natural filtration.
$\left(\mathfrak{U}_{n}\right)_{n \geq 1}$ i.i.d. family of uniform r.v.'s on [0, 1], independent of $W \hookrightarrow$ models extra-randomness at switching times.
- Switching: if present mode is $i \in\{1, \ldots, d\}$ and agent wants to switch with control $u \in \mathcal{C} \hookrightarrow$ new mode $F(u, i, \mathfrak{U}) \in\{1, \ldots, d\}$ with \mathfrak{U} uniform on $[0,1]$ and cost \bar{c}_{i}^{u}, where $\bar{c}:\{1, \ldots, d\} \times \mathcal{C} \rightarrow \mathbb{R}$ is continuous. We set $P_{i, j}^{u}=\mathbb{P}(F(u, i, \mathfrak{U})=j)$.
- Data: (similar to Hu and Tang (2010))
terminal condition $\hookrightarrow \xi=\left(\xi^{1}, \ldots, \xi^{d}\right) \in L^{2}\left(\mathcal{F}_{T}^{0}\right)$, driver $\hookrightarrow f: \Omega \times[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{d \times \kappa} \rightarrow \mathbb{R}^{d}$ satisfying to
- $f(\cdot, 0,0) \in \mathbb{H}^{2}\left(\mathbb{F}^{0}\right)$ and f is progressive,
- For all $(t, y, z) \in[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{d \times \kappa}, f^{i}(t, y, z)=f^{i}\left(t, y_{i}, z_{i}\right)$.
- For all $\left(t, y^{1}, y^{2}, z^{1}, z^{2}\right) \in[0, T] \times\left(\mathbb{R}^{d}\right)^{2} \times\left(\mathbb{R}^{d \times \kappa}\right)^{2}$,

$$
\left|f\left(t, y^{1}, z^{1}\right)-f\left(t, y^{2}, z^{2}\right)\right| \leq L\left(\left|y^{1}-y^{2}\right|+\left|z^{1}-z^{2}\right|\right)
$$

Strategies

- Strategy for the problem starting at t in i :
$\phi=\left(\zeta_{0}=i, \tau_{0}=t,\left(\tau_{n}, \alpha_{n}\right)_{n \geq 1}\right)$ where
- $\left(\tau_{n}, \alpha_{n}\right)_{n \geq 1}$ is a sequence of \mathcal{G}-random variables valued in $[t, \infty) \times \mathcal{C}$,
- $\tau_{n} \leq \tau_{n+1}$ for all $n \geq 0$, and
- for $n \geq 0, \tau_{n+1}$ is a \mathbb{F}^{n}-stopping time and α_{n+1} is $\mathcal{F}_{\tau_{n+1}}^{n}$-measurable. We then set $\mathbb{F}^{n+1}=\left(\mathcal{F}_{t}^{n+1}\right)_{t \geq 0}$ with $\mathcal{F}_{t}^{n+1}=\mathcal{F}_{t}^{n} \vee \sigma\left(\mathfrak{U}_{n+1} 1_{\left\{\tau_{n+1} \leq t\right\}}\right)$ for all $t \geq 0$.
- For all $n \geq 0$ and $s \in[t, T]$, we define:
- the state after $n+1$ switches as $\zeta_{n+1}=F\left(\alpha_{n+1}, \zeta_{n}, \mathfrak{U}_{n+1}\right)$,
- the state process as $a_{s}=\sum_{n \geq 0} \zeta_{n} 1_{\left[\tau_{n}, \tau_{n+1}\right)}(s)$ and
- the cumulative cost process as $A_{s}^{\phi}=\sum_{n \geq 0} \bar{C}_{\zeta_{n}}^{\alpha_{n+1}} 1_{\tau_{n+1} \leq s}$.
- We define the filtration associated to the strategy as $\mathbb{F}^{\infty}=\left(\mathcal{F}_{t}^{\infty}\right)_{t \geq 0}$ with $\mathcal{F}_{t}^{\infty}=\bigvee_{n \geq 0} F_{t}^{n}, t \geq 0$.
- A strategy ϕ is admissible $\left(\phi \in \mathcal{A}_{t}^{i}\right)$ if

$$
A_{T}^{\phi}-A_{t}^{\phi} \in L^{2}\left(\mathcal{F}_{T}^{\infty}\right) \text { and } \mathbb{E}\left[\left(A_{t}^{\phi}\right)^{2} \mid \mathcal{F}_{t}^{0}\right]<+\infty
$$

LaMME, ENSIIE
C. Bénézet

Switching

Switching problem with controlled randomisation

- Given an admissible strategy ϕ, the associated reward is given by (see Hu and Tang (2010)):

$$
\mathbb{E}\left[U_{t}^{\phi}-A_{t}^{\phi} \mid \mathcal{F}_{t}^{0}\right]
$$

with $\left(U^{\phi}, V^{\phi}, M^{\phi}\right)$ being the solution in \mathbb{F}^{∞} to the following switched BSDE: for $s \in[t, T]$,

$$
U_{s}=\xi^{a T}+\int_{s}^{T} f^{a r}\left(r, U_{r}, V_{r}\right) \mathrm{d} r-\int_{s}^{T} V_{r} \mathrm{~d} W_{r}-\int_{s}^{T} \mathrm{~d} M_{r}-\int_{s}^{T} \mathrm{~d} A_{r}^{\phi}
$$

- Proposition: For ϕ admissible, \mathbb{F}^{∞} is right-continuous and there exists a unique solution to the BSDE.
- M^{ϕ} is a \mathbb{F}^{∞}-martingale \hookrightarrow we obtain a martingale representation theorem: M^{ϕ} jumps only at the switching times of the strategy associated to \mathbb{F}^{∞}.
- Problem value, starting in mode $i \in\{1, \ldots, d\}$ at time $t \in[0, T]$:

$$
\mathcal{V}_{t}^{i}=\operatorname{ess} \sup _{\phi \in \mathcal{A}_{t}^{i}} \mathbb{E}\left[U_{t}^{\phi}-A_{t}^{\phi} \mid \mathcal{F}_{t}^{0}\right]
$$

LaMME,

ENSIIE

C. Bénézet

Particular case

- Assume the driver does not depend upon $U, V: f(\omega, t, u, v)=f(\omega, t)$.
- Then, for ϕ admissible,

$$
\begin{aligned}
\mathbb{E}\left[U^{\phi}-A_{t}^{\phi} \mid \mathcal{F}_{t}^{0}\right] & =\mathbb{E}\left[\xi^{a T}+\int_{t}^{T} f^{a_{s}}(s) \mathrm{d} s-A_{T}^{\phi} \mid \mathcal{F}_{t}^{0}\right] \\
& =\mathbb{E}\left[\xi^{a T}+\int_{t}^{T} f^{a_{s}}(s) \mathrm{d} s-\sum_{n \geq 0} \bar{c}_{\zeta_{n}}^{\alpha_{n+1}} 1_{\left\{\tau_{n+1} \leq T\right\}} \mid \mathcal{F}_{t}^{0}\right]
\end{aligned}
$$

- The problem thus writes:

The domain of reflections

- Classical switching: value \mathcal{V} linked to the solution of an obliquely reflected BSDE in some convex domain. Similar here with positive costs.
- Heuristically, the maximal profit is greater than the expected profit obtained by the strategy:
(1) Switching instanteanously with control $u \in \mathcal{C}$, leading to mode j with probability $P_{i, j}^{u}$.
(2) Following the optimal strategy in the new mode.

Then $\mathcal{V}_{t}^{i} \geq \mathbb{E}\left[\mathcal{V}_{t}^{\zeta}\right]-\bar{c}_{i}^{u}$ with ζ the (random) mode after switching from i with control u.

- Since this strategy is available for each $u \in \mathcal{C}$, we obtain

$$
\mathcal{V}_{t}^{i} \geq \sup _{u \in \mathcal{C}}\left(\sum_{j=1}^{d} P_{i, j}^{u} \mathcal{V}_{t}^{j}-\bar{c}_{i}^{u}\right)
$$

- The problem value lies into the following convex domain of \mathbb{R}^{d} :

$$
\mathcal{D}=\left\{y \in \mathbb{R}^{d} \mid y_{i} \geq \sup _{u \in \mathcal{C}}\left(\sum_{j=1}^{d} P_{i, j}^{u} y_{j}-\bar{c}_{i}^{u}\right), 1 \leq i \leq d\right\}
$$

Examples of domains

- Easy lemma: let $\mathcal{D}_{0}:=\left\{y \in \mathcal{D} \mid y_{d}=0\right\}$. Then $\mathcal{D}=\mathcal{D}_{0} \oplus \mathbb{R} \cdot(1, \ldots, 1)$. $\hookrightarrow \mathcal{D}$ is obtained by translating \mathcal{D}_{0} along the axis $\mathbb{R} \cdot(1, \ldots, 1)$.

Graphs of $\mathcal{D}_{0}=\mathcal{D} \cap\left\{y_{3}=0\right\}$ as a subset of $\left\{\left(y_{1}, y_{2}, 0\right)\right\} \simeq \mathbb{R}^{2}$.
Blue: the usual switching domain with cost 1 ,
Red: domain from example 1,
Green: domain from example 2.

The BSDE

Switching
with controlled randomisation

Examples
The control problem

Randomised switching with signed costs
Geometry of the domain
Domain study

- Heuristically, as in the classical case, one expects that $\mathcal{V}=Y$, where (Y, Z, K) is the solution to the following Obliquely Reflected BSDE

$$
\begin{align*}
& Y_{t}^{i}=\xi^{i}+\int_{t}^{T} f^{i}\left(s, Y_{s}^{i}, Z_{s}^{i}\right) \mathrm{d} s-\int_{t}^{T} Z_{s}^{i} \mathrm{~d} W_{s}+\int_{t}^{T} \mathrm{~d} K_{s}^{i}, \tag{1}\\
& Y_{t} \in \mathcal{D} \text { and } \int_{0}^{T}\left(Y_{t}^{i}-\sup _{u \in \mathcal{C}}\left(\sum_{j=1}^{d} P_{i, j}^{u} Y_{t}^{j}-\bar{c}_{i}^{u}\right)\right) \mathrm{d} K_{t}^{i}=0, \tag{2}
\end{align*}
$$

and that an optimal strategy starting at $t=\tau_{0} \in[0, T]$ and mode $\zeta_{0} \in\{1, \ldots, d\}$ is given by

$$
\begin{aligned}
& \tau_{k+1}^{\star}=\inf \left\{s \geq \tau_{k}^{\star} \mid Y_{s}^{\zeta_{k}^{\star}}=\sup _{u \in \mathcal{C}}\left(\sum_{j=1}^{d} P_{\zeta_{k}^{\star}, j}^{u} Y_{s}^{j}-\bar{c}_{\zeta_{k}^{\star}}^{u}\right)\right\} \wedge(T+1) \\
& \alpha_{k+1}^{\star}=\inf \underset{u \in \mathcal{C}}{\operatorname{argsup}}\left(\sum_{j=1}^{d} p_{\zeta_{k}^{\star}, j}^{u} Y_{s}^{j}-\bar{c}_{\zeta_{k}^{\star}}^{u}\right) .
\end{aligned}
$$

- This is indeed true in a positive costs setting.
- One easily deduces uniqueness of solutions in a signed costs setting.

Switching with
controlled
randomisa-

tion

Examples
The control problem

Randomised switching with signed costs
Geometry of the domain
Domain study The existence theorem

Randomised switching with signed costs

Study of the domain of reflection

- We now assume randomisd switching: $\mathcal{C}=\{0\}$, i.e. the agent do not control the distribution of the new state.
- We set $P=\left(P_{i, j}\right)_{i, j}$ and $\bar{c}=\left(\bar{c}_{i}\right)_{i} \in \mathbb{R}^{d}$ (signed costs).
- A first issue is that it is not a priori guaranteed that the domain \mathcal{D} has non-empty interior, or at least is non-empty.

Domain $\mathcal{D}_{0}=\mathcal{D} \cap\left\{y_{3}=0\right\}$, for $\bar{c}_{1} \in\{0.5,0,-0.5,-1\}$ in the example of randomised switching.
For $\bar{c}_{1}=-1$, the domain has empty interior and for $\bar{c}_{1}<-1$ the domain is empty!

Study of the domain of reflection

- We assume that P is irreducible, and we let μ be its unique invariant probability measure.
- In this setting, the domain is

$$
\mathcal{D}=\left\{y \in \mathbb{R}^{d}: y \succcurlyeq P y-\bar{c}\right\}
$$

with \succcurlyeq the component by component partial ordering.

- If $y \in \mathcal{D}$, we have $\mu y \geq \mu P y-\mu \bar{c}=\mu y-\mu \bar{c}$, hence $\mu \bar{c} \geq 0$.
- Questions: Conversely, if $\mu \bar{c} \geq 0$, can we conclude that \mathcal{D} is non-empty? What about the condition $\mu \bar{c}>0$? How to interpret the condition $\mu \bar{c} \geq 0$ in terms of the switching problem?
- Recall that $\mathcal{D}=\mathcal{D}_{0} \oplus \mathbb{R} \cdot(1, \ldots, 1)$
$\hookrightarrow \mathcal{D}$ is non-empty (resp. has non-empty interior) iif \mathcal{D}_{0} is (resp. has non-empty interior) in $\left\{y_{d}=0\right\} \simeq \mathbb{R}^{d-1}$.
- Randomised switching with irreducible transition matrix
$\hookrightarrow \mathcal{D}_{0}$ is a simplex.
\hookrightarrow what are the coordinates of its vertices?

Study of the domain of reflection

- If $\mathcal{V}_{t}=y$, constraints $y_{1} \geq P y-\bar{c}_{1}$ and $y_{2} \geq P y-\bar{c}_{2}$ are both saturated, i.e. if the current mode is 1 or 2 , it is optimal to switch.
\hookrightarrow optimally, if current mode is 1 (or 2), simultaneous switches are needed until mode 3 is reached. Then apply optimal strategy from mode 3 for optimal reward $\mathcal{V}_{t}^{3}=y_{3}=0$.
$\hookrightarrow y_{1}=\mathcal{V}_{t}^{1}=\mathcal{V}_{t}^{3}-C_{1,3}=-C_{1,3}$ with $C_{i, j}=$ mean cost to reach j from i.
$\hookrightarrow y=\left(-C_{1,3},-C_{2,3}, 0\right)$.
- Similar argument can be applied to $z=\left(z_{1}, z_{2}, 0\right)$: optimal to switch to mode 2 , where optimal reward is z_{2}. Thus $z=\left(z_{2}-C_{1,2}, z_{2}, z_{2}-C_{3,2}\right)$, and since $z_{3}=0$, one gets $z_{2}=C_{3,2}$ and $z=\left(C_{3,2}-C_{1,2}, C_{3,2}, 0\right)$.

Study of the domain of reflection

- For $(i, j) \in\{1, \ldots, d\}^{2}$, the key quantity is the expected cost along an excursion from state i to state j :

$$
C_{i, j}=\mathbb{E}\left[\sum_{n=0}^{\tau_{j}-1} \bar{c}_{X_{n}} \mid X_{0}=i\right],
$$

where X is the irreducible Markov chain with transition matrix P and $\tau_{j}=\inf \left\{n \geq 0 \mid X_{n}=j\right\}$.

- More technical \hookrightarrow Combining linear algebra and Markov Chain arguments, link between $\mu \bar{c}$ and the $C_{i, j}$'s.

Theorem

The following conditions are equivalent:
(1) The domain \mathcal{D} is non-empty (resp. has non-empty interior).
(2) There exists $1 \leq i \neq j \leq d$ such that $C_{i, j}+C_{j, i} \geq 0$ (resp. $C_{i, j}+C_{j, i}>0$).
(3) The inequality $\mu \bar{c} \geq 0$ is satisfied (resp. $\mu \bar{c}>0$)
(4) For all $1 \leq i \neq j \leq d$, we have $C_{i, j}+C_{j, i} \geq 0$ (resp. $C_{i, j}+C_{j, i}>0$).

Study of the domain of reflection

- We recover the triangular inequality with the $C_{i, j}$'s:

Corollary

The following conditions are equivalent:
(1) The domain \mathcal{D} is non-empty.
(2) For all $1 \leq i, j, k \leq d$, we have $C_{j, k} \leq C_{j, i}+C_{i, k}$.
(3) For any round trip of length less that d, i.e. $1 \leq n \leq d$ and $1 \leq i_{1} \neq \ldots \neq i_{n} \leq d$, we have $\sum_{k=1}^{n-1} C_{i_{k}, i_{k+1}}+C_{i_{n}, i_{1}} \geq 0$.

- Remark: In the case of classical switching problems, this triangular inequality is satisfied with the costs to switch from mode i to mode j. Here, with randomised switching, we need to consider the expected cost to switch from mode i to j.

Existence of solutions to the BSDE

- Chassagneux and Richou (2020): studied obliquely reflected BSDEs in general.
\hookrightarrow They study solutions (Y, Z, K) to obliquely BSDEs of the form

$$
\begin{aligned}
& Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) \mathrm{d} s-\int_{t}^{T} Z_{s} \mathrm{~d} W_{s}-\int_{t}^{T} H\left(s, Y_{s}, Z_{s}\right) \Phi_{s} \mathrm{~d} s \\
& Y \in \mathcal{D}, \Phi \in n_{\mathcal{D}}(Y), \int_{0}^{T}\left|\Phi_{t}\right| 1_{\left\{Y_{t} \notin \partial \mathcal{D}\right\}} \mathrm{d} t=0
\end{aligned}
$$

where

- $n_{\mathcal{D}}(y)$ is the outward normal cone at Y for the convex domain \mathcal{D},
- $H \in \mathbb{R}^{d \times d}$ is a given operator allowing for oblique reflections satisfying to technical assumptions.
- Our task: construct an operator H such that $H(y) n_{\mathcal{D}}(y) \subset C_{o}(y)$ the oblique cone for y for our problem, and check that H mets the technical assumptions to apply the existence results.
\hookrightarrow compute the cones at each $y \in \partial \mathcal{D}_{0}$, define $H=H(y)$ first on $\partial \mathcal{D}_{0}$, then extend it to \mathcal{D}_{0} by convexity, to \mathcal{D} and finally to \mathbb{R}^{d} by projection.

Existence of solutions to the BSDE

- Notations: $Q:=I_{d}-P$ and for each $1 \leq i \leq d$, we set $Q^{(i, i)}$ the square matrix of size $d-1$ obtained from Q by deleting row i and column i.
- Markovian framework: $\xi=g\left(X_{T}^{t, x}\right)$ and $f(\omega, s, y, z)=\psi\left(s, X_{s}^{t, x}(\omega), y, z\right)$ for some maps $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{d}$ and $\psi:[0, T] \times \mathbb{R}^{q} \times \mathbb{R}^{d} \times \mathbb{R}^{d \times \kappa}$ and X a Itô diffusion.

Theorem

Assume some technical conditions on the maps g, f and the coefficients b and σ of the dynamics of X.
Assume \mathcal{D} has non-empty interior.
Moreover, assume that for all $1 \leq i \leq d$, the matrix $Q^{(i, i)}$ satisfies the following copositivity hypothesis: for all $\mathbb{R}^{d-1} \ni x \succcurlyeq 0, x \neq 0$, we have

$$
x^{\top} Q^{(i, i)} x>0
$$

Then

- we can construct a H satisfying to the technical assumptions,
- the reflected BSDE (1)-(2) admits a solution.

Remarks

C. Bénézet

Switching

- The copositivity hypothesis is always satisfied when $d=3$.
- In dimension $d \geq 3$, this hypothesis is satisfied for the randomised switching with transition matrix $P_{i, j}=\frac{1}{d-1} 1_{i \neq j}$.
- A counter-example in dimension $d=4$:

$$
P=\left(\begin{array}{cccc}
0 & \frac{\sqrt{3}}{2} & 0 & 1-\frac{\sqrt{3}}{2} \\
1-\frac{\sqrt{3}}{2} & 0 & \sqrt{3}-1 & 1-\frac{\sqrt{3}}{2} \\
0 & 1 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Conclusion and further work

- We defined a new switching problem with uncertainty on the new mode when the agent decides to switch.
- When the costs are positive, we obtained a representation theorem in terms of a BSDE with oblique reflection, which implies the uniqueness for the BSDE.
- When the costs are signed and in the setting of randomised switching, we obtain a characterisation of the non-emptiness (using the control problem data) for the domain of reflections.
- We obtain existence in a Markovian framework for the randomised switching problem. In the paper, we have examples of existence for a controlled randomisation, and in a non-Markovian framework.
- The general study of existence of the BSDEs associated to switching problems with controlled randomisation remains open.
- A representation theorem with signed costs is not proved.
- Extension to time-dependent and random costs and transition probabilities.
C. Bénézet

Switching
with
controlled
randomisa-

tion

Examples
The control problem

Randomised switching with signed costs
Geometry of the domain
Domain study
The existence
theorem

Thank you for your attention!

