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Outline

– Switching with controlled randomisation: examples,
mathematical formulation, associated BSDE and verification
theorem

– Randomised switching with signed costs: study of the
geometry of the domain and an existence theorem.
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Classical switching problems
– Classical litterature: Hamadène and Jeanblanc (2005, two modes),
Djehiche, Hamadène and Popier (2007, d modes), Hu and Tang (2010,
controlled drift, switched BSDEs, driver f i (t, y i , z i )), Elie, Kharroubi
(2011, controlled volatility), Chassagneux, Elie, Kharroubi (2012, driver
f i (t, y , z i )).

– Notations: Time horizon 0 < T <∞. Probability space (Ω,G,P),
Brownian motion W , F0 = (F0

t )t∈[0,T ] its augmented filtration.
– Control problem, starting from mode i ∈ {1, . . . , d} at time t ∈ [0,T ],

V i
t = ess sup

(τn,ζn)n≥1

E

∫ T

t

ψas (Xs)ds + gaT (XT )−
∑
n≥1

cζn−1,ζn1{τn<T}|F0
t

 ,
where X is an underlying stochastic process.
– A strategy is (τn, ζn)n≥0 where (τn) is a sequence of stopping times
(switching times) and ζn is the mode on [τn, τn+1).
– State process: at =

∑
n≥0 ζn1τn≤t<τn+1 , t ∈ [0,T ].

– Admissibility: strategy with E
[
(
∑

n≥0 1τn≤T )2
]
<∞.

– Process V lives in a convex domain of Rd and solves a BSDE with
oblique reflections.
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Switching with controlled randomisation
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Switching with (controlled)
randomisation

– The agent do not directly choose the new mode when she decides to
switch.

– Randomised switching: the new mode is decided randomly
(independently of everything up to now), according to a (known)
distribution on {1, . . . , d}.
↪→ strategy (τn)n≥1 nondecreasing sequence of random times.
If actual mode is i and the agent decides to switch, she pays cost c̄i .

– Controlled randomisation: the agent first chooses a distribution in
{Pu : u ∈ C}. The new mode is drawn according to this distribution.
↪→ strategy (τn, αn)n≥1 where αn is the chosen distribution at time τn.
If actual mode is i and the agent decides to switch using law Pu, u ∈ C,
the cost is c̄ui .

– Remark: randomised switching is a particular case of controlled
randomisation when C is a singleton.
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Example – randomised switching

– Assume d = 3.

– Here the agent only decides to switch, do not control the distribution of
the new mode.

– New mode decided independently with transition matrix and cost

P =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 , c̄ =

 0.5
0.5
0.5

 .

↪→ When the agent wants to switch, the new mode is determined by
throwing a fair coin.

For example, if the present mode is 1 and the agent wants to switch, the
new mode is 2 with probability 0.5 and 3 with probability 0.5.
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Example – switching with
controlled randomisation

– Here the agent decides when to switch and chooses the distribution of
the new mode.

She chooses u ∈ [0, 1], and the new mode is determined by

Pu =

 0 u 1− u
1− u 0 u
u 1− u 0

 , c̄u =

 1− u(1− u)
1− u(1− u)
1− u(1− u)

 .

– Example: current mode is 1 and switching with control u
↪→ new mode is 2 (resp. 3) with probability u (resp. 1− u).

↪→ To increase the probability to be in mode 2 after the switch, the agent
should take u closer to 1.

↪→ Reducing uncertainty induces a higher cost as c̄u1 is higher with u closer
to 1.

– Applications to risk aversion.
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Classical switching

– For each d ≥ 2, the classical switching problem is a particular case of
switching with controlled randomisation.

– For d = 3 for example, the transition matrices are:

P1 =

 0 1 0
0 0 1
1 0 0

 , c̄1 =

 c1,2

c2,3

c3,1

 ,

P2 =

 0 0 1
1 0 0
0 1 0

 , c̄2 =

 c1,3

c2,1

c3,2

 .
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Some comments

– When the agent decides to switch, the new mode is chosen with some
extra and independent noise ↪→ mathematical analysis must deal with
enlargement of filtrations.

– The enlarged filtration depends on the switching times, hence on the
control.

– Classical switching ↪→ “triangular inequality” ci,j + cj,k > ci,k ↪→ no
simultaneous switches.
Here, in general, the question of simultaneous switches arises: the agent
may not be satisfied with the randomly reached state.
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Setup
– Control set: C an ordered compact metric space.

– Probability space: (Ω,G,P) with G = σ(W , (Un)n≥1).
W is a κ-dimensional Brownian motion and F0 its augmented natural
filtration.
(Un)n≥1 i.i.d. family of uniform r.v.’s on [0, 1], independent of W ↪→
models extra-randomness at switching times.

– Switching: if present mode is i ∈ {1, . . . , d} and agent wants to switch
with control u ∈ C ↪→ new mode F (u, i ,U) ∈ {1, . . . , d} with U uniform on
[0, 1] and cost c̄ui , where c̄ : {1, . . . , d} × C → R is continuous.
We set Pu

i,j = P(F (u, i ,U) = j).

– Data: (similar to Hu and Tang (2010))
terminal condition ↪→ ξ = (ξ1, . . . , ξd) ∈ L2(F0

T ),
driver ↪→ f : Ω× [0,T ]× Rd × Rd×κ → Rd satisfying to

– f (·, 0, 0) ∈ H2(F0) and f is progressive,
– For all (t, y , z) ∈ [0,T ]× Rd × Rd×κ, f i (t, y , z) = f i (t, yi , zi ).
– For all (t, y1, y2, z1, z2) ∈ [0,T ]× (Rd)2 × (Rd×κ)2,

|f (t, y1, z1)− f (t, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|) .
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Strategies
– Strategy for the problem starting at t in i :
φ = (ζ0 = i , τ0 = t, (τn, αn)n≥1) where

– (τn, αn)n≥1 is a sequence of G-random variables valued in [t,∞)× C,
– τn ≤ τn+1 for all n ≥ 0, and
– for n ≥ 0, τn+1 is a Fn-stopping time and αn+1 is Fn

τn+1 -measurable.
We then set Fn+1 = (Fn+1

t )t≥0 with Fn+1
t = Fn

t ∨ σ(Un+11{τn+1≤t})
for all t ≥ 0.

– For all n ≥ 0 and s ∈ [t,T ], we define:
– the state after n + 1 switches as ζn+1 = F (αn+1, ζn,Un+1),
– the state process as as =

∑
n≥0 ζn1[τn,τn+1)(s) and

– the cumulative cost process as Aφs =
∑

n≥0 c̄
αn+1
ζn

1τn+1≤s .

– We define the filtration associated to the strategy as F∞ = (F∞t )t≥0

with F∞t =
∨

n≥0 F
n
t , t ≥ 0.

– A strategy φ is admissible (φ ∈ Ai
t) if

AφT − Aφt ∈ L2(F∞T ) and E
[
(Aφt )2|F0

t

]
< +∞.
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Switching problem with controlled
randomisation

– Given an admissible strategy φ, the associated reward is given by (see Hu
and Tang (2010)):

E
[
Uφt − Aφt |F0

t

]
,

with (Uφ,V φ,Mφ) being the solution in F∞ to the following switched
BSDE: for s ∈ [t,T ],

Us = ξaT +

∫ T

s

f ar (r ,Ur ,Vr )dr −
∫ T

s

VrdWr −
∫ T

s

dMr −
∫ T

s

dAφr ,

– Proposition: For φ admissible, F∞ is right-continuous and there exists a
unique solution to the BSDE.

– Mφ is a F∞-martingale ↪→ we obtain a martingale representation
theorem: Mφ jumps only at the switching times of the strategy associated
to F∞.

– Problem value, starting in mode i ∈ {1, . . . , d} at time t ∈ [0,T ]:

V i
t = ess sup

φ∈Ai
t

E
[
Uφt − Aφt |F0

t

]
.
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Particular case

– Assume the driver does not depend upon U,V : f (ω, t, u, v) = f (ω, t).

– Then, for φ admissible,

E
[
Uφ − Aφt

∣∣∣F0
t

]
= E

[
ξaT +

∫ T

t

f as (s)ds − AφT

∣∣∣∣F0
t

]

= E

ξaT +

∫ T

t

f as (s)ds −
∑
n≥0

c̄
αn+1
ζn

1{τn+1≤T}

∣∣∣∣∣∣F0
t

 .
– The problem thus writes:

V i
t = ess sup

φ∈Ai
t

E

ξaT +

∫ T

t

f as (s)ds −
∑
n≥0

c̄
αn+1
ζn

1{τn+1≤T}

∣∣∣∣∣∣F0
t

 .
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The domain of reflections
– Classical switching: value V linked to the solution of an obliquely
reflected BSDE in some convex domain. Similar here with positive costs.

– Heuristically, the maximal profit is greater than the expected profit
obtained by the strategy:

1 Switching instanteanously with control u ∈ C, leading to mode j with
probability Pu

i,j .
2 Following the optimal strategy in the new mode.

Then V i
t ≥ E[Vζt ]− c̄ui with ζ the (random) mode after switching from i

with control u.

– Since this strategy is available for each u ∈ C, we obtain

V i
t ≥ sup

u∈C

(
d∑

j=1

Pu
i,jV j

t − c̄ui

)
.

– The problem value lies into the following convex domain of Rd :

D =

{
y ∈ Rd

∣∣∣∣∣ yi ≥ sup
u∈C

(
d∑

j=1

Pu
i,jyj − c̄ui

)
, 1 ≤ i ≤ d

}
.
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Examples of domains
– Easy lemma: let D0 := {y ∈ D | yd = 0}. Then D = D0 ⊕ R · (1, . . . , 1).
↪→ D is obtained by translating D0 along the axis R · (1, . . . , 1).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Graphs of D0 = D ∩ {y3 = 0} as a subset of {(y1, y2, 0)} ' R2.
Blue: the usual switching domain with cost 1,

Red: domain from example 1,
Green: domain from example 2.
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The BSDE
- Heuristically, as in the classical case, one expects that V = Y , where
(Y ,Z ,K) is the solution to the following Obliquely Reflected BSDE

Y i
t = ξi +

∫ T

t

f i (s,Y i
s ,Z

i
s )ds −

∫ T

t

Z i
sdWs +

∫ T

t

dK i
s , (1)

Yt ∈ D and
∫ T

0

(
Y i

t − sup
u∈C

(
d∑

j=1

Pu
i,jY

j
t − c̄ui

))
dK i

t = 0, (2)

and that an optimal strategy starting at t = τ0 ∈ [0,T ] and mode
ζ0 ∈ {1, . . . , d} is given by

τ?k+1 = inf

{
s ≥ τ?k

∣∣∣∣∣Y ζ?k
s = sup

u∈C

(
d∑

j=1

Pu
ζ?
k
,jY

j
s − c̄uζ?

k

)}
∧ (T + 1),

α?k+1 = inf argsup
u∈C

(
d∑

j=1

pu
ζ?
k
,jY

j
s − c̄uζ?

k

)
.

– This is indeed true in a positive costs setting.
– One easily deduces uniqueness of solutions in a signed costs setting.
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Randomised switching with signed costs
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Study of the domain of reflection
– We now assume randomisd switching: C = {0}, i.e. the agent do not
control the distribution of the new state.
– We set P = (Pi,j)i,j and c̄ = (c̄i )i ∈ Rd (signed costs).
– A first issue is that it is not a priori guaranteed that the domain D has
non-empty interior, or at least is non-empty.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

Domain D0 = D ∩ {y3 = 0}, for c̄1 ∈ {0.5, 0,−0.5,−1} in the example of
randomised switching.
For c̄1 = −1, the domain has empty interior and for c̄1 < −1 the domain is
empty!
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Study of the domain of reflection
– We assume that P is irreducible, and we let µ be its unique invariant
probability measure.

– In this setting, the domain is

D =
{
y ∈ Rd : y < Py − c̄

}
,

with < the component by component partial ordering.

– If y ∈ D, we have µy ≥ µPy − µc̄ = µy − µc̄, hence µc̄ ≥ 0.

– Questions: Conversely, if µc̄ ≥ 0, can we conclude that D is non-empty?
What about the condition µc̄ > 0? How to interpret the condition µc̄ ≥ 0
in terms of the switching problem?

– Recall that D = D0 ⊕ R · (1, . . . , 1)
↪→ D is non-empty (resp. has non-empty interior) iif D0 is (resp. has
non-empty interior) in {yd = 0} ' Rd−1.

– Randomised switching with irreducible transition matrix
↪→ D0 is a simplex.
↪→ what are the coordinates of its vertices?
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Study of the domain of reflection

– If Vt = y , constraints y1 ≥ Py − c̄1 and y2 ≥ Py − c̄2 are both saturated,
i.e. if the current mode is 1 or 2, it is optimal to switch.
↪→ optimally, if current mode is 1 (or 2), simultaneous switches are needed
until mode 3 is reached. Then apply optimal strategy from mode 3 for
optimal reward V3

t = y3 = 0.
↪→ y1 = V1

t = V3
t − C1,3 = −C1,3 with Ci,j = mean cost to reach j from i .

↪→ y = (−C1,3,−C2,3, 0).

– Similar argument can be applied to z = (z1, z2, 0): optimal to switch to
mode 2, where optimal reward is z2. Thus z = (z2 − C1,2, z2, z2 − C3,2),
and since z3 = 0, one gets z2 = C3,2 and z = (C3,2 − C1,2,C3,2, 0).
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Study of the domain of reflection
– For (i , j) ∈ {1, . . . , d}2, the key quantity is the expected cost along an
excursion from state i to state j :

Ci,j = E

τj−1∑
n=0

c̄Xn

∣∣∣∣∣∣X0 = i

 ,
where X is the irreducible Markov chain with transition matrix P and
τj = inf {n ≥ 0|Xn = j}.
– More technical ↪→ Combining linear algebra and Markov Chain
arguments, link between µc̄ and the Ci,j ’s.

Theorem
The following conditions are equivalent:

1 The domain D is non-empty (resp. has non-empty interior).

2 There exists 1 ≤ i 6= j ≤ d such that Ci,j + Cj,i ≥ 0 (resp.
Ci,j + Cj,i > 0).

3 The inequality µc̄ ≥ 0 is satisfied (resp. µc̄ > 0)

4 For all 1 ≤ i 6= j ≤ d , we have Ci,j + Cj,i ≥ 0 (resp. Ci,j + Cj,i > 0).
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Study of the domain of reflection

– We recover the triangular inequality with the Ci,j ’s:

Corollary
The following conditions are equivalent:

1 The domain D is non-empty.

2 For all 1 ≤ i , j , k ≤ d , we have Cj,k ≤ Cj,i + Ci,k .

3 For any round trip of length less that d , i.e. 1 ≤ n ≤ d and
1 ≤ i1 6= . . . 6= in ≤ d , we have

∑n−1
k=1 Cik ,ik+1 + Cin,i1 ≥ 0.

– Remark: In the case of classical switching problems, this triangular
inequality is satisfied with the costs to switch from mode i to mode j .
Here, with randomised switching, we need to consider the expected cost to
switch from mode i to j .
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Existence of solutions to the BSDE

– Chassagneux and Richou (2020): studied obliquely reflected BSDEs in
general.

↪→ They study solutions (Y ,Z ,K) to obliquely BSDEs of the form

Yt = ξ +

∫ T

t

f (s,Ys ,Zs)ds −
∫ T

t

ZsdWs −
∫ T

t

H(s,Ys ,Zs)Φsds,

Y ∈ D,Φ ∈ nD(Y ),

∫ T

0
|Φt |1{Yt 6∈∂D}dt = 0,

where
• nD(y) is the outward normal cone at Y for the convex domain D,
• H ∈ Rd×d is a given operator allowing for oblique reflections satisfying to
technical assumptions.

– Our task: construct an operator H such that H(y)nD(y) ⊂ Co(y) the
oblique cone for y for our problem, and check that H mets the technical
assumptions to apply the existence results.
↪→ compute the cones at each y ∈ ∂D0, define H = H(y) first on ∂D0,
then extend it to D0 by convexity, to D and finally to Rd by projection.
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Existence of solutions to the BSDE
– Notations: Q := Id − P and for each 1 ≤ i ≤ d , we set Q(i,i) the square
matrix of size d − 1 obtained from Q by deleting row i and column i .

– Markovian framework: ξ = g(X t,x
T ) and f (ω, s, y , z) = ψ(s,X t,x

s (ω), y , z)
for some maps g : Rq → Rd and ψ : [0,T ]× Rq × Rd × Rd×κ and X a Itô
diffusion.

Theorem
Assume some technical conditions on the maps g , f and the coefficients b
and σ of the dynamics of X .
Assume D has non-empty interior.
Moreover, assume that for all 1 ≤ i ≤ d , the matrix Q(i,i) satisfies the
following copositivity hypothesis: for all Rd−1 3 x < 0, x 6= 0, we have

x>Q(i,i)x > 0.

Then
• we can construct a H satisfying to the technical assumptions,
• the reflected BSDE (1)-(2) admits a solution.
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Remarks

– The copositivity hypothesis is always satisfied when d = 3.

– In dimension d ≥ 3, this hypothesis is satisfied for the randomised
switching with transition matrix Pi,j = 1

d−11i 6=j .

– A counter-example in dimension d = 4:

P =


0

√
3

2 0 1−
√

3
2

1−
√

3
2 0

√
3− 1 1−

√
3

2
0 1 0 0
1
3

1
3

1
3 0

 .
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Conclusion and further work

– We defined a new switching problem with uncertainty on the new mode
when the agent decides to switch.
– When the costs are positive, we obtained a representation theorem in
terms of a BSDE with oblique reflection, which implies the uniqueness for
the BSDE.
– When the costs are signed and in the setting of randomised switching,
we obtain a characterisation of the non-emptiness (using the control
problem data) for the domain of reflections.
– We obtain existence in a Markovian framework for the randomised
switching problem. In the paper, we have examples of existence for a
controlled randomisation, and in a non-Markovian framework.

– The general study of existence of the BSDEs associated to switching
problems with controlled randomisation remains open.
– A representation theorem with signed costs is not proved.
– Extension to time-dependent and random costs and transition
probabilities.
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Thank you for your attention!
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