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1. Objective of the talk

Backward doubly stochastic differential equations (BDSDEs for short):

1) Pardoux, Peng (1990): existence and uniqueness of solutions of BSDEs

T T
Yt=f+/ f(s,Ys,Zs)ds—/ Z,dW,, 0<t<T;
t t

2) Pardoux, Peng (1994): existence and uniqueness of solutions of BDSDEs

T T T
Yt=§+/ f(s,lé7Zs)ds+/ g(s,Ys,Zs)dE—/ Z,dW,, 0<t< T;
t t t

3) Such BDSDEs have been intensively studied:
+ Stochastic partial differential equations (Bally, Matoussi (2001); Zhang,
Zhao (2013); Matoussi, Piozin, Popier (2017));
+ Pontryagin maximum principle (Han, Peng, Wu (2010));
+ Zakai equation in filtering (Liptser, Shiryaev (2001));
+ Stochastic viscosity solutions (Buckdahn, Ma (2001));
+ Stochastic Volterra integral equations (Shi, Wen, Xiong (2020));
+ Mean-field BDSDEs (Li, Xing (2022); Li, Xing, Peng (2021))...
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1. Objective of the talk

Mean-field problems:

1) Study of mean-field stochastic differential equations: Li, Min (2016);
Buckdahn, Li, Peng, Rainer (2017); Hao, L. (2016)...

2) Study of mean-field backward stochastic differential equations: Buckdahn, Li,
Peng (2009); Li, Liang, Zhang (2018)...

3) Such Mean-Field SDEs/BSDEs have been intensively studied:

+ In the frame of Mean-Field Games and related topics since 2006-2007 by
J.M.Lasry and P.L.Lions;

+ By P.L.Lions in the frame of his lectures at College de France; notes written
by Cardaliaguet;

+ Mean-Field FBSDEs with jumps and related nonlocal PDEs: Li (2018);

+ Non-zero sum Mean-Field Games: Carmona, Delarue, 2012-2013;

+ Stochastic maximum principle:
+ Pontryagin maximum principle (Buckdahn, Djehiche, Li (2011));
+ Peng's maximum principle (Buckdahn, Li, Ma (2016))...
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1. Objective of the talk

Investigate backward stochastic partial differential equations for a general
type of mean-field backward doubly stochastic differential equations. Extends:
e Pardoux and Peng (PTRF, 1994)

The novelties in our work:

e We investigate mean-field BDSDEs, i.e., BDSDEs whose driving
coefficients also depend on the joint law of the solution process as well as the
solution of an associated mean-field forward SDE;

e We prove the the L2-regularity of the value function V (t,z, P¢):=Y; "%,

In particular, Malliavin calculus will be used to prove some crucial estimates for
Zt%P¢ and its derivatives;

e However, we have to use the (mean-field) 1t6 formula. To overcome this
problem the characterisation of V' = (V (¢, x, P¢)) as the unique solution of the
associated mean-field backward stochastic PDE uses the C;’Q’Q—functions
U(t,z, Pe) :== E[V(t,x, P¢) - n] for suitable n € L>(F;R);

e We extend the classical mean-field |t6 formula to smooth functions of
solutions of mean-field BDSDEs.
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e Preliminaries
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2. Preliminaries

(gallop through)
Spaces we work with: For p > 1, we denote

o LP(Q, Fr, P;R?) is the set of Fr-measurable random variables ¢ : Q — R¢
such that [|€]|z» := (E[|€]P])? < oc.

o SE(t,T;R?) is the set of {F; ;}-adapted measurable continuous processes

1
n:Qx [t,T] — R with ||n]lsr := (E[ sup |n(s)|P])” < oc.
t<s<T

w is the set of {F; s}-adapted measurable processes 7 : 2 x [t,T]
T b1

— R4 with ||n]|xe = (E[(/ In(s)Pds)z]) " < oc.
t

e CF(RP,RY) is the set of functions of class C* from RP into R? whose partial
derivatives of all order less than or equal to k£ are bounded.
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2. Preliminaries

Derivative of a function with respect to a probability measure
(see: course at Institut de France by P.-L. Lions, 2013; notes by Cardaliaguet,
2013; equivalent but more direct approach: Delarue et al. 2015)

A function h : Po(R?) — R is said to be differentiable, if, for all
p € P2(RY), y € RY), there exists

§
+ A measurable function @f :Po(RY) x RT — R s t.

%f(my) = gi{‘rg)é(f((l —e)u+edy) — f(u), (1y) € P2(RY) x RY,

+ A measurable function 9,,f : P2(R%) x RY — R% s.t.

)
Out (i) = 0y (5 £(1,9), (,y) € Pa(RY) x R,
Remark. If f is differentiable, then, for all £, € L?(Q2, F, P; RY),

f(Peqen) — f(Pe) = E[0uf (Pe,&)n] + o(||nllr2cp)), as o(l|nl|z2(py) — 0.
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2. Preliminaries

Mean-field BDSDEs: (see, Li, Xing (JMAA, 2022))
Let

f:00,T] x Q x Py(REFEXd) x RE 5 REXd 5 RF
g:[0,T] x Q x Py(REFFX) 5 RF 5 RFXD _ RFXI
h:[0,T] x Po(RFTFxd) — REXL
be jointly measurable and s.t.:
1) g(.,.,00,0,0) € , 4 , (00 - Dirac measure wit S .
H2.1 80,0,0) € H2(0, T; R**Y), (8 - Di ith 0 € RFHkxd
(H2.2) g is Lipschitz in (p,y,2): 3C >0, a;,az >0 with 0 < ag +as < 1s.t.,
for all g, p/ € Po(RFFFXD) gy 9y € R¥, 29, 29 € RFXD
|g(tvﬂ'7 Y1, Zl) - g(ta /-L/7y27 ZQ)|2 < C|y1 - y2|2 + 061|Z1 - 22|2 + VV2707O¢2 (:U‘v /1’/)2'

Here we use the weighted Wasserstein distance: for any v;,v2 > 0,
Way s (s 1) = inf { Elnal€ = €2 + 32l — ')
(f,ﬂ)a (5/,77/) € LQ(.F, Rk X RkXd) : P(fm) = :U’,P(f’,'r]’) = :U’/}
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2. Preliminaries

(H2.3) f(t,w,d0,0,0) € H2(0,T;RF).
(H2.4) f is Lipschitz in (u,y, z): There exists a constant C' > 0 such that,
for all p, ' € Po(RFFEXD) )y yo € R¥, 21, 2 € RFXD)

|f(tall7y1,2’1) - f(ta ,U’/7y2722)| < C(Wz(ﬂ,,u/) =+ |y1 - y2| + |Z1 - Z2|)

(H2.5) h(t,d0) € H?(0, T; R*¥*?).
(H2.6) h is Lipschitz in p: There exists a constant C' > 0 such that, for all
po i’ € Po(RETEXD),

\h(t, 1) = h(t, p1")]> < CWa(p, p')?.
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2. Preliminaries

Given & € L2(), Fr, P;R¥), we consider the following general mean-field
BDSDEs:

T T
Yt :€+/ f(S,P(YS,ZS)7Y€7Zs)d5+/ g(S7P(YS,ZS)7Y97ZS)d§S
t t (21)
T T
+/ h,(s,P(y_“ZS))dE—/ ZdW,, 0<t <T,
i t

where the integral with respect to B is the It6 backward one, denoted by d%.

Theorem 2.1. (Existence and uniqueness)

Under the assumptions (H2.1)-(H2.6), the general mean-field BDSDE (3.1) has a
unique solution (Y, Z) € S%(0,T;R*) x HZ(0,T; R*¥*4).
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2. Preliminaries

(to gallop)

Theorem 2.2. (Higher order moment estimates)

We assume ¢ satisfies (H2.1) and (H2.2), f satisfies (H2.3) and (H2.4), and h
satisfies (H2.5) and (H2.6)_. Moreover, we suppose that, for some p > 2,

Cplar + ag)® < 1. Here Cp:=2P1C5((:2)P+1)Cy, Cp:=27P7237p%P 425,
Cp= ()3t (201”5”_1\/(6])3)”5%_1), C is the Lipschitz constant in (H2.2),
(H2.4) and (H2.6). (Y, Z) is the solution of the mean-field BDSDE (3.1). Then
there exists C}, € R only depending on the Lipschitz constant C' of the
coefficients and on p, such that

T P T
[ sup [%7)+2( [ 122as)*] <cpm il + (| 165,800,008y -
I

+(.AT|‘Q(S’5O’O’O)2d$)§+(./0 |h(5,5o)\2d8)g]
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2. Preliminaries

(to gallop)
Now we give a general It6's formula which will be used later.

Theorem 2.3. (Itd's formula)

Let FeCr?2([0, T] xR x Py(R)). Given feHZ(0,T;R?), geH2Z(0, T; R¥¥Y),
€ L?(Fr;R?) as well as ue HZ(0, T;RY), ve HZ(0, T; R¥Y), n € L*(Fr;RY).
We consider the solutions (Y, Z), (U, V) € S%(0,T;R?) x H%(0,T; R**?) of the
following both BDSDEs:

T T T
Y, = ¢ +/ Fuds +/ e, — / Z,dW,, t € [0,T], (2.3)
t t t

T T T
Ut:n+/ usds—i—/ vsdE—/ V,dW,, t € [0,T]. (2.4)
t t t

Then, for all t € [0, T, we have
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2. Preliminaries

(to gallop)

Theorem 2.3. (continued.)

T d
F(ta Ut7PY}):F(T7777P§)+/ {_ (asF)(Sa US,PYS) +Z(8xiF)(S7USaPYS)ui
t -

+% Z (8?111 )(9 UL,,PY UZk?}Jk Z Z E x] S US7PY )Vzkvjk}ds

i,7,k=1 i,j=1k=1

T
+/ E[(G#F)i(s, U, Py.,Y, fz—- Z 8y, (0,F);(s,Us, Py,, Y. )szzf’“
i

i,7,k=1
+f Z Za,z (8.F);(s,Us, Py, Y. )qikgék}d
L] 1k=1
/ZZ&CIF (s,Us, Py,) ”dB7 / Z (8, F)(s,Us, Py, )VHdW?.
=1 g=1 4,j=1
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2. Preliminaries

~

Here (Y Z f g) denotes an independent copy of (Y Z, f,g), defined on
another probability space (Q 7, P). The expectation E[] n (Q,F, P) concerns
only random variables endowed with the superscript “™"

Remark: We observe that the It6 formula studied in Buckdahn, Li, Peng, Rainer
(2017, AOP) is a special case of Theorem 2.3.
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e Mean-field SDEs and mean-field BDSDEs
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3. Mean-field SDEs and mean-field BDSDEs

Mean-field stochastic differential equations:

From now on let be given deterministic Lipschitz functions b : R? x Py(R9)
— R?, 0 : R? x Py(RY) — R4*? satisfying
Assumption (H3.1) b and o are bounded and Lipschitz on R? x Py(R9).

We consider for the initial data (t,z) € [0,7] x R? and & € L?(G;; RY) the
following both stochastic differential equations (SDEs):

s
Xtﬁ _£_|_/t (X £ , P tg)d’f‘—f— ) U(Xﬁ’f,PXi,E)dWr7 (31)

and

Xbet :x+/ b(Xﬁ’z’g,PXﬁ,g)dr—i—/ o (X8, Pye)dW,, s € [t,T]. (3.2)
t t
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3. Mean-field SDEs and mean-field BDSDEs

Theorem 3.1. (see Buckdahn, Li, Peng, Rainer (2017, AOP))

Under assumption (H3.1), the equations (3.1) and (3.2) admit unique solutions
X8 = (X5 sepe,m) and X576 = (XE8) o7y in SG(¢, T3 R?). The solution
Xt%¢ is independent of G;.

Remark: (i) From the uniqueness of equation (3.1) for X**, we have
X;’E — X‘g,m’£|w:£ _ Xgﬁ’&’ s € [t,T].

(ii) The solutions of equations (3.1) and (3.2) satisfy a Flow Property:

s,X;’£

t,x,€ t,€
PO X (xte X06), 1 e [5, 11,

(X

forall 0 <t<s<T, ze€R% ¢ec L?Gy;RY).
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3. Mean-field SDEs and mean-field BDSDEs

Proposition 3.1. (Buckdahn, Li, Peng, Rainer (2017, AOP))

Suppose Assumption (H3.1) holds true. Then, for all p > 2 there is a constant
Cp > 0 only depending on the Lipschitz constants of b and o, such that for all
te[0,7), z,% € RY, £,€ € L2(G;; RY), P-as.,
() B sup 107 = XiPP 1G] < §y (Jo = 3P + WalPe, P,
se|t

(ii) E[ sup | X wvf|P|gt] <C, (1+|x\1>)
s€[t,T) (3.3)
(iii) SEPT]Wz( Pyees Pyig) < CoWa(Pe, P),

(iv) E{ sup |Xb®¢ —ff|p|gt} < Cpht.
s€[t,t+h]

Remark: The processes X*#¢1 and X*®:¢2 are indistinguishable, whenever the
laws of &;,& € L?(Gy; RY) are the same. This means that X*®¢ depends on ¢
only through its law. Hence, we can define

XtoPe .= xt8 (¢ ) € [0,T] x R, € € L*(Gy; RY). (3.4)
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3. Mean-field SDEs and mean-field BDSDEs

Mean-field BDSDEs:

Let ®: R? x Po(RY) = R, f: R xR x R? x Po(R4 x R x RY) — R,
g:REXR xRYx Py(REx R x RY) — R and h: Po(RY x R x RY) — R be
deterministic and satisfy:

Assumption (H3.2) The functions f, g, h and ® are bounded and Lipschitz, i.e.,
there exist constants C' > 0, and ay, as > 0 with 0 < a1 + as < 1 such that, for
all z, 2" € R?, y, 9/ €R, 2,2/ € RY, p, ' € Po(RF x RY),

(') |f(1:,y, Zy :U‘) - f(l’/,y,, Z/’:u/)| + |h(:u) - h(#')| + |‘I)(:L‘,p,) - (I)(x/7ul)|
<C(z =2 +ly =y + |z =2+ Walp, 1)),

(”) |g(m7yazvﬂ’) _g(xlvylvzlmu’/”z
SO(lz =P+ ly—y'1*) + onlz = 2 + Wa o, (1 1)
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3. Mean-field SDEs and mean-field BDSDEs

Given x € R? and ¢ € L%(Gy; R?) we consider the following split BDSDEs:
for s € [t, T,

d{—sz’g:—f(l;[gg, PHQ'E)dS - (Q(Hi’ga PH§’§)+h(PH§’5))d§S+Z£’€dW57 (3.5)

Vit = ®(XfE, Pyre),

dytst’z’é :#(H?m’gapn"ﬁ)ds7(9(1_[?1’5’PH2-5)+h(Pnﬁf))dgs‘kzz’w’gdwsa 3.6

sz,w,ﬁ _ (D<X§‘7w,§7PXt1§)7 ( . )
T

where IT0¢ .= (X108 Y€ Z08) TTLo€ .= (XLl Yhot Zhot),
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3. Mean-field SDEs and mean-field BDSDEs

Proposition 3.2.

Under assumptions (H3.1) and (H3.2), the equations (3.5) and (3.6) admit
unique solutions (Y4¢, Z4¢) and (Y1©€, Z424) € SZ(t, T;R) x HL (¢, T;RY).
The solution (Y®¢, Z5%:€) is independent of G;.

Remark: (i) From the uniqueness of solution we have
LS = Tp™ | = TS, in S3(4, TS RY) x S:(t, T R) x HE(t, T;RY).

(ii) From the flow property and the uniqueness of the solution of (3.5) and (3.6)
we have the following properties: Forall 0 <t < s < T, x € R?, ¢ € L?(G;; RY),

xtwE xtE xt€
o (V0 R YR = (YIRS Y, € [5,T), P-as.;

s, Xb®e xbe g x1E (3.7)
o (e N gy = (254, 258, drdP-a.e. on [s,T] x Q.
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3. Mean-field SDEs and mean-field BDSDEs

Assumption (H3.3) For some p > 2, Cplar + @)% < 1. Here
Op::21’*10;((%)p+1)01’,, C’]’?::(%)”3”*1(26’1’5”*1\/(6]93)?5%*1),
c; :=27P=23Pp3P 1 23 (' is the Lipschitz constant in Assumption (H4.1).

Proposition 3.3.
Suppose the Assumptions (H3.1), (H3.2) and (H3.3) hold true. Then, for all

p > 2, there is a constant C, > 0 only depending on the Lipschitz constants of b,
o, f, g, h and ®, such that, for t € [, T}, 2,7 € RY, £, & € L2(G; RY),

(i) E[si‘épﬂ Y8 P 4 ( / Vs SHARY X

~ T s
(ii) E[ sup |Y;t,x,§_yst,f,£|p+(/ |Z§’””’§ _ Zz,z,‘f'?ds)%‘gt]
s€(t, T t

<Gy (Jo—2P +Wa(Pe, PP );

T
(III) /t WQ(PH§‘57PH§,€)2 < CWQ(P§7P§)2.
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3. Mean-field SDEs and mean-field BDSDEs

Remark: Due to Proposition 3.3 Y%%¢ and Z»®¢ depend on & only through its
law, hence we can define

t,z, P, t,z, P,
Y €. Yst’I"S, Zo0TE = Z?w’&.

Now we introduce the value function:

V(t,z, Pe) =Y, (t,, Pr) € [0,T] x R? x Py(RY). (3.8)
Remark: (i) V(t,z, P) is ]-'ET—measurable, for all (¢, ).

st.zYlygapxtqé
s

(i) V(s, X", Pree) = Vs =vioP s e T).
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0 First and second order derivatives of X«
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4. First and second order derivatives of X%

Preparation for the study of regularity of V:
e Assuming regularity of ®, b, o, f, g
e We study the regularity of X*® e Xt& (ytoPe ztaPe) (yte 7€)

Study of the first order derivatives of X*: s (For details: Buckdahn, Li,
Peng, Rainer (2017, AOP))

Assumption (H4.1) (b,0) € CpH (R x Py(RY) — RY x R¥*9), that is, the
components b;, 0; 5, 1 <1,j < d, have the following properties:

(i) by (), 015z, -) € O (Po(RY), & € R,

(it) bj (-, 1), 04,5 ( ) € Cp(RY), p € Pa(RY);

(iii) Ozbj, 040y j: R x Po(RY) — R, 9,b;, 0,04 5:
R? x Py(R?) x R? — R? are bounded and Lipschitz continuous.
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4. First and second order derivatives of X%*

(galopp through)

Theorem 4.1. (Derivative w.r.t. x; results are classical)

Suppose Assumption (4.1) holds true. Then the L2—derivativ_e of X% Fe with
respect to x exists, it is denoted by 0, X% = (9, X1*Ped) ) and it
satisfies the following SDE: s € [¢t,T], 1 <4,j <d,

d s
t,x,Pe,j t,x, P t,x,Pe .k
By, X0 :5H+§j/ B by (X058, Py 0, X0  dp
k=171

d s
+>° / D, T (Xr ™8 Pyt )0y, Xe ™ T AW,
k=171
Moreover, For all p > 2, there exists a constant C}, > 0 only depending on the
Lipschitz constants of 9,.b and 9,0, such that, for all t € [0, 7], z,2" € R,
£,¢ € L2(Gy; RY), P-as.,
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4. First and second order derivatives of X’

Theorem 4.1. (continued.)

() B[ swp 10.X077|6] < Gy

s€t,T]
() B[ st 10,557 ~ 0,527 P|G] < Gy o' + WallPe, Pe )
sg|t,
(iii) E[ up 19, X507 Pe _ Idxd|P\gt] <ChE, 0<t<t+h<T.
sE[t,t+h

Here ;4 denotes the unit matrix in dimension d.

Proof. For the proof the reader is referred to Theorem 3.1 in Buckdahn, Li, Peng,
Rainer (AOP, 2017), and for the case with jumps also to Theorem 4.1 in Hao, Li
(NODEA, 2016).
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4. First and second order derivatives of X1

Theorem 4.2. (Derivative w.r.t. P¢; Buckdahn, Li, Peng, Rainer
(AOP, 2017))
Let (b,0) satisfy Assumption (H4.1). Then, forall 0 <t < s < T, z € RY,

Po(RY) 5 p— XL¥H € L2(G,; RY) is differentiable, and the derivative is given by
O XM (y) = U™ (y)

where, for y € RY, UH%Fe () = ((U‘;J”;E’JPg ¥))sep,)1<i,j<d € SG(t, T; RP>*4) is

the unique solutlon of the SDE (for shortness: b =0): s € [t,T], 1 <4,j <d,

,z, P,
U0 = 3 [ dnoX R P U )]
k,l=1

+ Z/ E[(8,011) (2, Pyue, Xr¥76)0,, xLv-Fek
k,l=1

+ (8u04,1) (2, Pyre, X ’5)U7k,j(y)]| v, P AW,

z=X,

where U (y) = ((Uy5 ;(4))seft.1)1<ij<a = U (y)’ng € S§(t, T; R™9)

ERN]

satisfies this SDE with x replaced by &.

— - = — Ty
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4. First and second order derivatives of X1

Extension to the second order derivatives:
Assumption (H4.2) (b,0) € C72(R? x Py(R?) — RY x R?¥4), that is, (b, o)
€ CP (R x Py(RY) — R x R4*9) and:
(i) Dupbi(s 1), Op0i (-, p) € CLRY), for all p € Po(RY), 1 <k < d;
(ii) Dubj(, p,+), 0poij(w, p,-) € CLRY — RY), for all z € RY, p € Pr(RY);
(iii) All the derivatives of b;, o; ; up to order 2 are bounded and Lipschitz
Theorem 4.3. (Buckdahn, Li, Peng, Rainer (AOP, 2017))

Under Assumption (H4.2) the first order derivatives z — 9,, X%,
0, Xtm e (y) € SE(t,T; R?) are differentiable w.r.t. « and y, respectively, and for

METTE(y) = (2., X1, 0,,(0, X0 (y))), 1 <4, < d,

$,2,] x IJ

we have that, for all p > 2, EIC’,, € R, such that, for all ¢ € 0,77,
z,7',y,y €RY, £,¢ € L2(G;;RY), 1 <4,5 <d,

x, tiE P/
()E[ Sl[‘lp |M;ijg( ) M31j 5( )|]<C (|£L' z |p+|y y|p+W2(P§7P§’) )
se(t
(i) B[ sup |[MyPTE(y)P) <Cph%, 0<t<t+h<T.
s€E[t,t+h] ’
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© First and second order derivatives of (Y% Fe, zt:#:Fs)
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5. First and second order derivatives of (Y'#:fe Ztx.Fe)

Study of the first order derivatives of (Y*:Pe 7t.2.F¢):

To simplify, but w.l.o.g: d=1,1=1and f(II}™%, Pree) = f(Z555, Pue),
T - g ,z, Py : ,x, P,
UL P =g (207, P ), (P =h(Pyee), SX 7™ Pyrg = 2(XE").

Assumption (H5.1) Let e C}(R), feC ' (RxPy(R)), g€ Cr' (RxPy(R))
and he C}(P2(R?)). In addition we suppose Assumption (H4.1)-(ii), i.e., there
exist constants aq, as > 0 with 0 < oy + as < 1 such that

lg(z, 1) — (2", 1) < anlz — 2|2 + coWalp, i)
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

The derivatives for

{dYst””’f=—f(H§’x’57Pnga)d8—(9(Hﬁ’”’g,Png,&)ﬂLh(Pn;-f))dEJrZﬁ’x’des, 56)

Y’It;7xvf — (D(X;Jx’E7PXt,£), s € [taT]
T

Theorem 5.1. (Derivative w.r.t. z)

Under the Assumptions (H3.3), (H4.1) and (H5.1), the L*-derivative of the
solution of Eq. (3.6) with respect to z, (0,Y%%Fs 9,742 F¢) exists and is the
unique solution of the following BDSDE: s € [t, T,

T
DY = o(XLPT) 0, XE e + / 0-f(Zr "%, Pyue)0u Zy™ e dr
’ (5.1)

r P P r P
+ / B.9(Z1"%, P )0, 20" S, — / 8, 2% W,
S S
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

Proposition 5.1.

For all p > 2, there exists a constant C, > 0 only depending on the Lipschitz
constants of 9,b and 8,0, such that, for all t€[0, 7], z,2' €R, &, & € L2(Gy; R),
P-as.,

T
() B[ sup 185" +( / 10,257 [2ds) ¥ ds|G,] < Cp
sE

(i) B[ sup |0,Y5 " — 0,y 7 o4 ( / 10,2577 9,207 12ds) 3 |G)]
s€(t,T]

< CpMP(|z — 2'|P + Wa(Pe, Per)?) + paap(t, 2, Pe),

with M > 1, parp(t,, Pe) = 0, as M — oo, Elpamp(t, &, Pe)] — 0, as M — oo.

v

Remark. The term pas,(t, x, P¢) in (ii) comes from the estimate of

T
/ (E)‘Ig(Zﬁg“Dg Pyie) — 8zg(Zm e p Ztg))a thPde using (i).
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

Can one make better with Malliavin derivate?

Proposition 5.2.

Let the Assumptions (H3.3), (H4.1) and (H5.1) hold true. Then for all

(t,x) € [0,T] x R, £ € L*(Gi;R), s € [t, T, (Yo'™, 20" e L2(¢, T; (DV?)?)
and a version of {DpY?" ¢ DeZl™% 1 0,5 € [t, T|} is given by:

(i) DeYS ™ =0, DpZt™™ =0, t <s <0< T;

(ii) {(DgYt®:Fe Dyzt®Fe) . s € [0, T} is the unique solution of the linear
BDSDE: s € [t,T], dfdP-ae., t <6 < s,

T
DoY? ™ =9, (X" ey Dy x 1™ 4 / 0. f(ZE" T P i) Doz dr
. 5 , (5.2)
+ / 8,9(Zo%%, Pyue) Do 22 Ped B, - / D2 aw,.

Moreover,
t,x, P, q t,x,P,
Zg" ¢ = P- lim DY, ¢

s<uls

, dsdP-a.e. (5.3)
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

Proposition 5.2. (continued.)

Furthermore, for all p > 2 there exists a constant C}, > 0 such that

T
(i) E[ sup [DgYs™" [P+ ( / |De 25" ds) ] < Cps
t

s€[t,T]
’ T ’
(i) E[ up DY ™ — Dy ™ TP 4 ( / 1D 2™ — Dz "% 12ds) 8]
set,T t

< CpMP (|2 — &' |P + Wa(Pe, Per)?) + prp,o(t, z, Pe).-
In particular,

. t,x,P¢ p
() E[1Zs7 5] < Gy

., Pz - t,fE/,PE/
s s

(i) Ef|Z Z [P] < CpMP (|2 — 2'P + Wa(Pe, Per)?) + parp(t, 2, Fe),

with M > 1, parp(t,, Pe) = 0, as M — oo, Elpamp(t, &, Pe)] = 0, as M — oco.

v

32/52



5. First and second order derivatives of (Y&#Fe 7t2.Fe)

Theorem 5.2. (Derivative w.r.t. F)

Assume the Assumptions (H3.3), (H4.1) and (H5.1) hold. Then, for all z € R,
0<t<s<T, Po(R)>pu—Yh®# e L2(Fs;R), and
Po(R) 3 p — ZL*#+ € HE(t, T;R) are differentiable, with the derivatives

0uY; ™ (y) = O™ (y), s € [t,T], P-a.s.,

8thu _ Nta,u (54)
12 57 ’ (77) _6257 ’ (y)a dsdP-a.e.,

where for all y € R, u = P (£ € L*(Gi,R),
(Ot=Fe(y), Q4P (y)) € SZ(¢, T;R)x HZ(t,T;R) is the unique solution of the
BDSDE:

T
0L (y) = X 10, X5 () + [ (@N)(ZT Py )@ ()

T P, P,
+/ (0.9)(ZE°"%, Pye) Q™ (y)d B+
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

Theorem 5.2. (continued.)

T
+ / E[(0uf)(2:Pyre, Zr " )00 20" + (8 ) (2,P 1.6 ZE5) QL (y)]

t,@, Pg dr
z2=2Z,

T
+ / E[((049)(2,P e, 20" )+ 0uh) Py, 20 7)) 0,200 | . B,

T

+ [ EL(0u9)(e Pyse, 209+ O (Pyucs Z8)QEW]|_ v B
T

- [ @ waw,, se 1),

where (Ob¢, Q%) = (Ob&Fe Q14F¢) is the unique solution of the above BDSDE
with x replaced by &.

v
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

As before, (0% Fe Qt:@:F¢) is the derivative of (Y1%:Fe Z12:Fe) wrt. the
measure P, i.e., O Y“”Pﬁ(y) = 055 (y), 0,207 (y) == QY ().

Proposition 5.3.
Forallp>2,3C,>0,st, forallt€0,T], z,2/,y,y €R, ¢ € L*(Gy;R),

T
() E[ sup (3, Y”P&<>|P+</ 10,257 (y)Pds) 2] < G,

s€[t,T] t
T
t,z, P, t,z’, Py t,2, P ta', Py 2
(0 5[5 0,32 ) -0, ([ 0,257 ) 0,237 ) 9]
LIS &
< CpMP(|z —a'|P + |y — /' |P + Wa(Pe, Per)P)
+P1\,~I,p(t7 z,y, Pf) + p]W,p(t'/ Y, Pf) + E[p]V[=p(t’ 6’ Y PE)]’

with M > 1, pM,p(t,m,y,Pg) — 0, pM7p(t,y,P§) — 0, E[pM,p(t,f,y,Pg)] — 0,
as M — oo.
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

Extension to the second order derivatives:

Assumption (H5.2) Let feCP? (RO Py (RIHIH)) & e C22(REx Py(RY))
and he C2(Py(RH1H) 5 RY).

Assumption (H5.3) The coefficient g is affine in z: for all x € RY, y € R,
z € R, p € Po(RIHL x RY),

9(z,y, 2, 0) = " (v, y, 1) + ¢*(u(- x R x RY))z,

where g' € 7% (R x Py(RT1+4) 5 RY) and g2 € OZ(P2(R?) — RY). In
addition we suppose |g%|? < ay, ZZ=1 Zizl 1009 a+1+k|* < aa, where
constants ar, ap > 0 with 0 <y 4as <1.

To simplify, but w.l.o.g: d =1, 1 =1 and g(II%™¢, Pie) = g*(P b Pe

X?&)Zs '
T ,x, P, ,z, P,
hW(Pyee) =h(Pyre grs)), FIIE™E Pyec) =0 and (X7 iPXtT,g):cb(X; ).
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5. First and second order derivatives of (Y'#:fe Ztx.Fe)

Remark: (i) In order to understand better why we need Assumption (H5.3),

consider for d =1 = 1 and for the functions ®, g € CZ(R) with |0,9|*> < oy < 1,
the BDSDE

S

P P, r P, T P,
YO a4 [ g ds, - [ 2w, s e 1,
Then, as we have seen, (8$Yf’w’P§,awZ;’$’PE) is the solution of the linear BDSDE
8Yt$P§_a@( tzP&)aXth§+/a tZP§ th§d§

(5.5)
—/ 0. 2L aw,, s € [t, T,
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5. First and second order derivatives of (Y'#:fe Ztx.Fe)

and the formal second derivative (92,Y:""%,02, Z5") should solve the BDSDE
(92 tdfpg 82 ( t:EPE)(a Xtdfpg) +a @( tIP§)82 ;I,Pg

/(02 ( t.LPg)(d Zt.LPg)Q_Fa ( th5)62 thg d?/ tw,PgdWT’

S

T
€[t, T]. However, to give sense to / 8§Zg(Zﬁ""E’P£)(8,,;Z£’J:7P5)2d§,., set,T),
T S
we need P(/ |8$Zﬁ’x’P5|4dr<oo):1, while equation (5.5) only allows to
t

T
conclude that E[(/ |0, 27 |Zdr)P] < o0, p > 1.

t
This is why we suppose (H5.3).
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5. First and second order derivatives of (Y'#:fe Ztx.Fe)

Remark:

(i) Forallp>2,3C, >0, s.t, forall 2,2’ € R, £, € L?(Gy;R), s € [t,T),

o E[|ZV"TE P < )y
(5.6)

ta; P§’

o E[|zL"F P] < Cy (|2 — '[P + Wa(Pe, Per)P).

(ii) Forallp > 2,3 C, > 0, s.t., for all z,2’ € R, £, € L*(G;R), s € [t,T),

o E[|0,2577¢P) < Oy
t,a ’PE/ (57)

o E[|0,20"7 — 0,7, P] < Cp(|z — '[P + Wo(Pe, Per)P).
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5. First and second order derivatives of (Y&#Fe 7t2.Fe)

Under Assumptions (H3.3), (H4.2), (H5.2) and (H5.3). Forall t € [0,T], z € R,
€ € L*(G;R), we have
(i) The differentiability (in L?) of the mappings
Rz — (0, YH™F 9,20%F) € S2(t, T;R) x H%(t,T;R),

R >y — (9, Y (y),0,2""%(y)) € S£(t, T;R) x H%(t, T;R).
(ii) Moreover, for all p > 2, for o, ag > 0 small enough (depending on p)
3C, >0, s.t. for both (¢C&™ Fe(y), 500 (y)) €
{@2,Y5"",02,2077), (9,0, (1),0,0, 25" )},

T
(a) B[ sup [P @) + ( / 165%P (y) 2ds) E] < G

SE[t,T) t

T
T, [ T, t,x’ P 2l
(6) B[ sup 474 ) = ™ e+ ([ 1087 (y) - 8875 Py )
t

s€[t,T)
< Cy(lz — '[P + Wa(Pe, Per)P).




@ Related backward SPDEs of mean-field type
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6. Related backward SPDEs of mean-field type

+ We have to study the twofold differentiability of
(2, Pe) = V(t,2, Pe) = ¥,

with Assumptions (H3.3), (H4.2), (H5.2) and (H5.3).

+ Combining the results in Section 5, we know that for all ¢ € [0, T],

(i) x = V(t,z, P) is twice L*-differentiable,

(i) V(t,,-) : P2(R?) — R is differentiable,

(i) y — (8,V)(t,z, Pe,y) is L*-differentiable,

(iv) the Lipschitz property in L? of all these derivatives (with Lipschitz
constants independent of t).
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6. Related backward SPDEs of mean-field type

Proposition 6.1. (Representation Formulas)

Under the Assumptions (H3.3), (H4.2), (H5.2) and (H5.3) we have the following
representation formulas:

Yo" = V(s, Xo™'™, Pyye), P-as., s € [t,T);

(6.1)
zbeFe _ (0:V)(s, X, ”PE Pth) (XﬁmPE Py, ¢), dsdP-a.e.

Moreover,

E[1Ze" — (8,V)(s,2, Pe)o(z, Pe)[?] <C(s —t), 0<t<s<T. (6.2)

v,
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6. Related backward SPDEs of mean-field type

Problem: V(¢t,-,-) € 05’2(]Rd X Pa(R%))?

+ In Pardoux and Peng (PTRF, 1994), Kolmogorov's continuity criterion
played a crucial role for the proof;

+ (t,z, Pe) € [0,T] x R? x Py(RY) runs an infinite dimensional space;

+ We cannot apply Kolmogorov's continuity criterion to the value function
V(t,z, Pe) = Y, "

The consequence is that we have to content with the continuity and
differentiability of first and second order of V/(¢,-,-) in the only L?-sense.
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6. Related backward SPDEs of mean-field type

However, we can make the following observation.

Let o : Q x R? = R be F ® B(R?)-measurable and  — ¢(-, z) L3-differentiable.

Then, for all n € L>(F;R), the deterministic function ¥(x) := E[p(:, x) - 7],
x € RY, is differentiable w.r.t. z on R?, and 0,V (x) = E[0,¢(-, ) -], * € RY,
where 0,¢(z) denotes the L?-derivative of (-, -) at z.

Proof. For simplicity, let d = 1. For all n € L?(F), x € R:

§<w<x+q>—w<x>>=E[($<so<~,x+q>—w<~,m>>—aww<-,w)) ] + Edsel-2) -

— E[0:¢(-,x) -n], as ¢ — 0.
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6. Related backward SPDEs of mean-field type

+ For n € L®(F;R), (t,x, P) € [0,T] x R? x Py(RY), we define

U(t,z, Pe) ==V, (t,x, Pe) .= E[V(t,x, P¢) - ).

+ It can easily be verified that W(t,-,-) € C7*(R? x Py(RY)).
+ In order to study the regularity properties w.r.t. ¢t of ¥(t,x, P¢), we make the

following additional assumption on 7:

Assumption (H6.1) The random variable 1 € L%((, F({?T, P;R) is such that, for
the (F¥ = (FPr)o<s<r)-adapted process 67 € H7, (0, T5R) with

n=En + fo Hng, there exists a constant C,, € R+, such that 07| < C,,,
dsdP-a.e.
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6. Related backward SPDEs of mean-field type

Proposition 6.2

Under assumptions (H3.3), (H4.2), (H5.2) and (H5.3), for all n € L°(F;R) with
(H6.2), U € C})*2([0,T] x R? x Py(R%)), and for all ¢ € {¥,8,¥,52,V,8,7,
0,(8, )} it holds for 0 <t <t+¢q <T, (z, P, y) € R x Po(RY) x RY,

|<P(t+97$apfay)_<P(ta$7P§ay)| SC?%\/&’ (63)

where 0, Y(t,z, Pe,y) = E[0,V (t,x, P¢,y) - n], and the constant C; € Ry
depends on 7 and C,.
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6. Related backward SPDEs of mean-field type

Definition 6.1

We say that random field ¢ belongs to €%2:2(Q x [0, 7] x R% x Py(R%)), if
©: Q% [0,T] x R? x Py(R%) — R satisfies:

(i) @(t, z, ) is Fp-measurable, (t,z,u) € [0,T] x R x Py(RY);

(i) 2 — (t, z, ) is twice continuously L2-differentiable;

(i) u — p(t, z, p) is differentiable;

(iv) y = 9up(t, x, p,y) is continuously L2-differentiable;

(v) The first and second order derivatives are L2-continuous on [0, 7] x R?
xPa(R?) x RY;

(vi)T e C0’2’2([0 T] x R x Py(R9)), where T'(t, z, u) := E[p(t, =, i) - 1],
for all n € L>°(FP; R) satisfying (H9.1), and all (¢, 2, u) € [0,T] x R x Py (R%).

v
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6. Related backward SPDEs of mean-field type

T
V(t,z, P) = ®(x, P) /t {Za V(s,x, Pe)bi(x, Pe)

=1

d
> (02, V)(s, 2, Pe) (0 k0 k) (, Pe)
i,k=1

DN | =

+

d
+ (@ V(s,2,Pe), Y 0:,V(s,m, Pe)oi(w, Pe), Peysiepe)y)  (6:4)

i=1

Ml

+E [ (auv) (9 .T,Pg,f)bi(f,Pg)

Il
—

[

IS8

- dzyi<a;,,V>j<s,x,Pf,§><oi,kaj,k><5,Pg>}}ds

ijk=1
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6. Related backward SPDEs of mean-field type

d —
/ Zgj 2,V (s, @, Pe), Y 02,V (5,3, Pe)oi(w, Pe), Pley(s.c.pe)) ) ABY,
1

1=

/ Zhj Ple (s, p5>>)dB (t,z,&, Pe) € [0,T] x RY x L?(Gy; RY) x Py(R?),
Jit

where ¢ (s, z, P¢) == (V(s,x,Pg),Zle 02,V (s,z, Pt)o;(x, Pe)), and the
derivatives 0,,V, 95,V and 9,,(9,V) are in L*-sense.
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6. Related backward SPDEs of mean-field type

Theorem 6.1

Under the Assumptions (H3.3), (H4.2), (H5.2) and (H5.3), V € ¢%%2(Q x [0,T]
xIR% x Py(RY)) is a classical solution of backward SPDE (6.4), and it is unique in
€022(Q x [0,T] x R4 x Py(R)).

Sketch of the proof of existence. For simplicity but w.l.o.g., let us restrict to
d=1,l=1landtob=0, f=0,g¢* =0, h(Pné,s) = h(PX;,s), O(x, 1) = d(x).

Let € Loo(]:(fT;R) be such that (H6.1) holds true, and s — 67 is
continuous. We show that ¥(¢,z, P:) is differentiable w.r.t. ¢, and

1 - SN
OV (t,x, Pe)=— 5(6290\1/)@, z, Pe)o(z, Pe)*— %E [0,(0,9)(t, 2, Pe,&)o (&, Pe)?]

—E[g*(Pe)(0,V)(t,x, Pe)o(x, Pe) - 07 ] —E[h(P:) - 0]], t € [0,T].
(6.5)
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6. Related backward SPDEs of mean-field type

Consequently, from the formula for 0, U (¢, z, P¢),

E[(V t Z, Pg) @(.’E Pg)) ] \I/(t,x,Pg) — \II(T,x,Pg)

/ 0,¥(s, 3, Pe)ds = By 1(t,, P,

T o~ o~ o~
I(t,x,Pg)::/t (%(ang)(r,x,Pg)a(x,P5)2+%E[8y(8HV)(r7m,Pg,f)a(f,P5)2])d7"
T T
+ / G (Pe)(0,V)(r,x, Pe)o(a, Pe)dB, + / h(Pe)dB,.

But, since these 7 satisfying (H9.1) such that s — 07 is continuous form a dense
subset of LQ(}'(fT;R), we prove that V (¢, z, P) is a solution of (6.4).
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Thank you very much
for your attention!
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