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Motivation: A model of bank run
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The N-player game

Consider a group of N agents with a deposit in a given bank.

� The initial deposit is Di
0 > 0;

� The bank offers an interest rate r so that Di
T := erTDi

0 is
promised to be paid back at time T > 0.

� Any of the depositors has the right to early withdraw the
capital (run) and to collect the cumulative interests at the
run time τ i:

E
[
(erτ i

Di
0) ∧ Sτ i

]
,

where S is the market value of the assets of the bank.
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The run mechanism

We interpret runs as the loss of confidence for the depositor
that the bank will be able to pay back the capital at time T .

� Xi is a stochastic process that models the level of trust of
agent i. If Xi hits 0, the agent runs.

� We allow the process Xi to depend on the fractions of
agents who already left the game:

LNt = 1
N

N∑
i=1

1[0,τ i)(t), τ i := inf{t ∈ [0, T ] : Xi
t ∧ St > 0}.

This allows us to capture the self-exciting aspect of runs.
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The run mechanism (cont’ed)

� We allow the process Xi to depend on the performance of
the bank St and on a private noise:

dXi
t = bi(t, αt, Xi

t , St, L
N
t )dt+ σidW i

t .

� The value of the bank St depends on the common noise
and the runs:

dSt = b0(t, St)dt+ σ0(t, St)dW 0
t − ertdLNt .

E. Glaeser, D. Laibson, J. Scheinkman, C. Soutter. Measuring
Trust. The Quarterly Journal of Economics, 115:811–846, 2000.
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The MFG problem
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The MFG model
The control problem

Suppose that a random flow of sub-prob. (t, ω) 7→ µt(ω) is given
and 〈·, µt〉 denotes the integral with respect to µt. The state
dynamics is:

dXt = b(t,Xt, 〈h, µt〉, αt)dt+ σdWt + σ0dW 0
t + η(t)dLt

X0 = ξ

where Lt :=
∫ t

0 k(t− s)Lsds and Lt = 〈1, µt〉. The objective is to
maximize the function

J(α) = E
[ ∫ τx

0
f(t,Xt, µt, αt)dt+G(τx, Xτx)

]
,

with τx := inf{t ∈ [0, T ] : Xt /∈ O} and OC the absorbing set.
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The MFG model
The equilibrium condition

Definition
(Ω,F ,F,P, µ) with µ a random flow of sub-prob. is a MFG
equilibrium if
� there exists an F-progressively measurable α that is

optimal for the control problem with input µ;

� µt(ω0, ·) = P
(
{Xα

t ∈ ·} ∩ {τx > t} | F0
t

)
where Xα is the

state dynamics controlled by α.

Remark
The probability space is part of the solution ↔ weak solutions.
The filtration F may not be the one generated by W 0 only.
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The MFG model
The assumptions

Assumption
The following are standing assumptions:

1. b, f , h, G and η are continuous and bounded on their
domains. Moreover, h is Lipschitz continuous.

2. b is affine in the variable a, i.e., b = b1(t, x,m) + b2(t)a for
some bounded deterministic b2.

3. σ, σ0 are constant with σ of full rank.
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The MFG problem:
The optimal control question

Key points:
� First consider a process Xt = X0 + σWt + σ0dW 0

t . Every
control induces a Girsanov transformation so that, after
the change of probability, the dynamics is the desired one.

� The optimal one is induced by a maximizer of the
Hamiltonian of the system.
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The MFG problem:
The fixed point procedure
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The fixed point procedure
Challenges and possible solutions

Some of the challenges of the present framework:
� The desired equilibrium process is a random flow of

sub-prob., compactness criteria are difficult to handle;
� Some stronger convergence results are needed to take care

of 1τx>t.

The approach to address them:
� First discretize the input flow and then take the limit;
� Work with compactness in τ -topology.
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The fixed point procedure
The random environment

We define a random environment Mn(ω0, dx) whose role is to
describe the distribution of (X,W ) conditional to V n, which is
a sequence of discretization of W 0.

Mn(ω0) :=
|Vn|∑
k=1

mn
k1Ak

(ω0), ω0 ∈ Ω0,

where mn
k are deterministic flows of probabilities. The

random environment induces:

µt(ω0, B) :=
∫
C([0,T ];Rd)

1B(xt)1{τ(x)>t}M
n(ω0, dx),

with τ(x) := inf{t ∈ [0, T ] : xt /∈ O}.
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The fixed point procedure

We define

E :=
{
P′ ∈M1(Ω1) : P′ � P, E

[(
dP′/dP

)2
]
≤M

}

with M depending only on the coefficients of the problem. This
is a compact set w.r.t. the τ-topology. The iteration is
� Start with (m1, . . . ,m|Vn|) inducing a discretized input µ;
� Solve the optimal control problem which induces a change

of measure Pµ;
� Compute

m̂k(·) := Pµ(Ak × (X,W )−1(·))
Pµ(Ak × Ω1) , k = 1, . . . , |Vn|.
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The fixed point procedure
The result

Proposition
The map Φ : (m1, . . . ,m|Vn|) 7→ (m̂1, . . . , m̂|Vn|) is well defined
on E |Vn| and continuous. In particular, since E is τ -compact, Φ
admits a fixed point.

Key points:
� Suitable stability results for BSDEs;
� Prove convergence in total variation induced by

convergence of relative entropy.
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The MFG problem:
Tightness and convergence of fixed points
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Convergence of equilibria

Let Mn be the random enivronment induced by the sequence of
fixed points of the map Φ.

Proposition
There exists a weak limit of Pn ◦ (Mn)−1 denoted by
P∞ ◦ (M∞)−1. M∞ is a version of the conditional distribution
of (X,W ) given (W 0,M∞) and the measure P∞ is induced by
an optimal control for the limiting problem.

Remark
We cannot control the progressive measurability of the limiting
point M∞. Good news: the extra randomness introduced by
M∞ does not provide information on the future evolution of the
state dynamics. The natural filtration is indeed immersed in
the one generated by the common noise.
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The main existence result

Theorem (B., Campi (21))
There exists a weak MFG equilibrium (Ω,F ,F,P,M∞), namely:

� there exists an F-progressively measurable α that is optimal
for the control problem with input µ∞ induced by M∞;

� µt(ω0, ·) = P
(
{Xα

t ∈ ·} ∩ {τx > t} | F0
t

)
where Xα is the

state dynamics controlled by α;
� M∞(ω0)(·) = L(Xα(ω0, ·),W (·)) for every ω0 outside a

P-null set.
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Existence of ε-Nash equilibria
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The idea

We aim at constructing ε-Nash equilibria using the solutions to
the MFG problem.

� We first construct ε-Nash equilibria for the problem
induced by the discretization V n of the common noise;

� We prove that for n ∈ N large enough, the approximation is
good enough for the original problem.

Remark
For the second step we need stronger assumptions which are
nevertheless satisfied in the bank run model. The advantage is
that we do not need to study the Master equation to derive
ε-Nash equilibria.
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The approximate problem
The equations

Xi
t = X0 +

∫ t

0
b̃(s,Xi

s, ρ
N,n, αs)ds+ σW i

t + σ0W 0
t ,

where
ρN,nt = EN,n

[
µNt | F

ξ,W,V n

t

]
,

and

µNt := 1
N

N∑
i=1

δXi
t
(·)1[0,τ i

x)(t), τ ix := inf{t ∈ [0, T ] : Xi
t /∈ O}

The players do not interact with the empirical sub-distribution
µN but rather on an integrated version with respect to a finite
number of events of the common noise.
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The approximate problem
The first existence result

Proposition (B., Campi (21))
There exist ε-Nash equilibria for the approximated problem.

Key points:
� Extension of strong propagation of chaos results to the case

of common noise;
� Combination of large deviation principle and convergence

of relative entropy;
� Search for open-loop controls.
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Uniform approximation
The assumptions

Assumption
In this part we further assume that:

1. b(t, x,m, a) is Lipschitz in the variable m.

2. The running cost is of the from f = f(t, x).
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Uniform approximation

Proposition
|JN (α)− JN,n(α)| → 0 as n→∞, uniformly in N and α.

Key points:
� In the presence of common noise, Sanov’s Theorem is not

enough to guarantee that

µNt := 1
N

N∑
i=1

δXi
t
(·)1[0,τ i

x)(t)
N→∞−→ µt,

where µ is the limiting equilibrium flow;
� However, the change of measures measures induced by µN

and ρN,n can be made uniformly close in total variation.
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The main result on the N-player model

Theorem (B., Campi (21))
There exist ε-Nash equilibria for the N-player model.
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Conclusions

MFG with absorption26/27



Conclusions

� We proposed a new model of bank run using mean field
games with absorption;

� We studied the existence of equilbria for mean field games
with absorption in the presence of common noise;

� We studied the existence of ε-Nash equilibria for the
N-player game.

Thank you for your kind attention!
(Preprint available at arxiv.org/abs/2107.00603)
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