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In this talk we are interested in the optimal control of large systems

Motivations
@ Large population stochastic wireless power control problems (Huang and al. (03), ...)
@ Swarm robotic systems (Lerman and al. (04), ...)
@ Smart charging of PEVs (Le Floch and al. ('15), Sheppard and al ('17),...)
o ..

(Flock of drones) (Charging station for PEVs)

@ ... and mean field games.
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Optimal control of large particle systems (2)

We consider an optimal control of large particle systems of the form

T 4 N . .
mn B [ [ SO ey F i)yt + Gt |
N f P t T

(QN")/—L...,
where, fori=1,... N,
N _ N T N i pi 1 &
XN = X0 +/ apldt +V2(Bi - By) + 2 (B — BY),  myy = N > o
b ! - !

and

@ Nis the (large) number of particles,

@ x| e RY is the position of a particle at time t,

() af"i € RY is the control for particle i € {1,..., N} attime ¢,

@ (B')cy is a family of d—dimension independent Brownian motions

@ T > 0is the terminal time horizon,

@ (fo,x]) = (t, (x(',\’”),-:L,,WN) € [0, T] x (RY)N is the initial position of the particles,

@ L:R? x RY — Ris akinetic cost,

@ F,G: Pi(RY) — R are interaction costs,
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Optimal control of large particle systems (3)

Let VN be the value function of the problem:
T1d Ny N,
Witoxd):=  min  E / (o SOLOAM, ol + F(m))dt + G(mby) |
(an ; N fo N t T

i=1

where, fori=1,... N,

. . T . : .
X' =" */f apdt + V2(B] - By, + V2a(B] — B}).
0
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Optimal control of large particle systems (3)

Let VN be the value function of the problem:
T1d Ny N,
Witoxd):=  min  E / (o SOLOAM, ol + F(m))dt + G(mby) |
(an ; N fo N t T

i=1
where, fori =1,...,N,
. . T . : .
XN = X +/t ap'dt + v2(B} — Bj)) + V220 (B — BY).
0
To understand:

@ The behavior of VN as N — +co,
@ and the behavior of the optimal trajectories.
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The limit optimal control problem

Following Lacker ('17) and Djete et al. (22) the limit problem as N — +oo is expected to be an optimal
control problem of a McKean-Vlasov equation (here in a strong form)

T 0 0
U(to, mo) = i"fE[/ (L(Xt, ar) + F(LXGFE ) + G(L(XT|FE )]
where F&° = (}—tBo)Ogth denotes the filtration generated by B°, and
Xt = Xt0+/ Cts Xs dS+\[ Bt0)+\/230 BO

Here B is another Brownian motion, )_(,0 is a random initial condition with law mg and B?, B and
Xi, are independent.
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The limit optimal control problem

Following Lacker ('17) and Djete et al. (22) the limit problem as N — +oo is expected to be an optimal
control problem of a McKean-Vlasov equation (here in a strong form)

T 0 0
U(to, mo) = i"fE[/ (L(Xt, ar) + F(LXGFE ) + G(L(XT|FE )]
where F&° = (}—tBo)Ogth denotes the filtration generated by B°, and
Xt = Xt0+/ Cts Xs dS+\[ Bt0)+\/230 BO

Here B is another Brownian motion, )_(,0 is a random initial condition with law mg and B?, B and
Xi, are independent.

Main results (in more general context) of Lacker (*17) and Djete, Possamai and Tan (’22)
@ Convergence of VN to U,
@ Convergence of optimal solutions for VN to relaxed optimal solutions for /.

— Remains open: | Propagation of chaos (or convergence to strong solutions)
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Aim of the talk

@ Let XNx = (xN.1x .. XN.N-%) be optimal in for V. Has mfy, . a limit adapted to (8°)?
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Aim of the talk

@ Let XNx = (xN.1x .. XN.N-%) be optimal in for V. Has mfy, . a limit adapted to (8°)?
@ Main issue: Lack of smoothness in the limit problem (muttiplicity of solutions)

@ Solving this issue requires a careful analysis of &/ and a quantitative approach. Namely

> Quantify the difference between VN and U,
» Understand the structure of the MFC problem, i.e., regularity of ¢/

> Use this regularity to obtain propagation of chaos properties.
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A few references

@ Early references: Huang-Caines-Malhamé (‘03), Lasry-Lions (‘'07), Andersson-Djehiche ('10) for max. principle,
Carmona-Delarue-Lachapelle ('13) for comparison MFG/MFC, Lauriere-Pironneau ('14) for dyn. program.,...

@ Analysis of mean field control (MFC) problems:

> Deterministic setting: Fornasier-Solombrino ('14), Fornasier-Lisini-Orrieri-Savaré ('17), Cesaroni-Cirant
("21) for pbs with density constraints, Cavagnari-Lisini-Orrieri-Savaré ('22) with ' —convergence techniques, ...

> Stochastic setting: Buckdahn-Li-Ma (17) for pbs with partial observations, Lacker ('17), Barrasso-Touzi
("22) for exit-time pbs, Djete-Possamai-Tan ('22) for dyn. prog. with common noise,...

@ Analysis of the mean field limit: Kolokoltsov ('12) in finite state, Lacker (17), Cecchin ('21) in finite state,
Gangbo-Mayorga-Swiech ("21) for pbs without idyo. noise, Germain-Pham-Warin ('21) for rate in the smooth case,
Talbi-Touzi-Zhang ('21) for exit-time pbs, Djete-Possamai-Tan ('22) with common noise, Djete ('22) extended MFC,

@ Analysis of the HJ eq.: C.-Quincampoix (08) for pbs arising in diff. games, Feng-Katsoulakis ('09) for controlled
gradient flows, Lasry-Lions ('08) for first order pbs, Ambrosio-Feng ('14) for first order pbs,
Burzoni-Ignazio-Reppen-Soner ('20) under a structure condition, Gangbo-Mayorga-Swiech ('21) for viscosity sols without
idyo. noise, Wu-Zhang ('20) for viscosity sols, Conforti-Kraaij-Tonon ('21), Cosso-Gozzi-Kharroubi-Pham-Rosestolato
("21) for an intrinsic approach, Cecchin-Delarue ('22) for semiconcave sols,...
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Outline

a Heuristic arguments

e The convergence rate

e Propagation of chaos
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Heuristic arguments (when ag = 0)

@ The value function VN of the N—particle system is a classical solution to

N N
—0VN(t,x) — ; A VN X) + 1N /; H(x!, NDVN(t,x)) = F(mbY)
in (0, T) x (RN
YT, x) =g(ml)  in (RN

where H(x, p) = sup —p.a— L(x, a).

acRrd
@ The value function U of the limit problem is expected to satisfy

—ou(t.m) — [ d(Ontd(t.m.y)m(dy) + | H(y. Dotd(t. m.y))m(cy) = F(m)
in (0, T) x Py (RY)
U(T,m)y=G(m)  inPy(RY)

However U/ is not smooth in general and the equation has just to be understood in a weak
sense (see Cosso and al. (preprint 21) or Cecchin-Delarue ('22) when for ag = 0).

Pierre Cardaliaguet Convergence rate in MFC Sept. 2021 10/27



Heuristic arguments (when ag = 0) — continued

@ Assume U is smooth (as in Germain and al. (21)). Then setting N (t, x) := U(t, mY), we have
D UN(t,x) = ND’"u(t mi x),  etc..

and therefore UN satisfies

N
—auN(t,x) — ZAX,Z/{N(I‘ X)+ — ZH(XJ ND UM (t,x))
1 1
" =fémx)+EN(r,x) in (0, ) x (RN
uN(T,x)=g(m)  in RV

where En(t,X) = Ztr Dmml(t, m}, x;, x;)) = O(1/N).
j=1
@ By comparison we can then conclude the convergence rate

luN —vN < c/N

and (following C.-Delarue-Lasry-Lions) @ quantified propagation of chaos.
@ Unfortunately, argument not correct in general when U/ is not smooth.
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The value functions

@ VN is the value function for the N—particle system:

VN(tO,X(’)V) = (N m|n

(—ZLXN’ aly + F(mly ))dr+g(m W

fo i=1

where, fori=1,... N,

; T
X=X+ Yidt + v2(Bj - Bf) + V229 (B) —
4]
@ Definition of the value function i/ for the limit system: Given
(to, mg) € [0, T] x Po(R?), we define a control rule R € A(ty, mp) to be a tuple
= (Q,F,F,P,B% m,«), where
o (Q,F,F= (}})OS,S 1, P) is a filtered probability space supporting the d-dimensional
Brownian motion B°
o = (at)yp<t<7 i a F-progressively measurable taking values in L>°(R%; R9) and
such that « is uniformly bounded,
m satisfies the stochastic McKean-Vlasov equation

dmy(x) = [(1 + a0) Amy(x) — div(mroy(x))] dt + /280 Dmy(x) - dB?,  m,

o = mg.
We define

T
Z/{(to, mo) = Rej\r(];;)mo) EP {/to (/]Rd L(X, a,(x))m,(dx) + ]-'(mt))dt + g(mr)} .
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Standing assumptions

The maps H: RY x RY — R, F : P;(RY) — Rand G : P;(R?) — R satisfy
@ His of class C? and strictly convex. In addition we assume that there exists a constant
C > 0 such that
C'p? = C < H(x,p) < C(IpP+1)  ¥(x,p) € R? x RY,
IDeH(x,p)| < Clpl + 1) V(x,p) € RY x RY
and that, for any R > 0, there exists Cr > 0 such that
|D&H(x,p)| + |DH(x,p)| < Cr  V(x,p) € RI x RY, |p| < R.
@ The map F : Py(RY) — Ris of class C? with F, DnF, D2, F and D2, F uniformly

bounded. The map G : P{(R%) — R is of class C* with all derivatives (in m and then in the
additional variables) up to order 4 uniformly bounded.
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The maps H: RY x RY — R, F : P;(RY) — Rand G : P;(R?) — R satisfy
@ His of class C? and strictly convex. In addition we assume that there exists a constant
C > 0 such that
C'p? = C < H(x,p) < C(IpP+1)  ¥(x,p) € R? x RY,
IDeH(x,p)| < Clpl + 1) V(x,p) € RY x RY
and that, for any R > 0, there exists Cr > 0 such that
|D&H(x,p)| + |DH(x,p)| < Cr  V(x,p) € RI x RY, |p| < R.
@ The map F : Py(RY) — Ris of class C? with F, DnF, D2, F and D2, F uniformly

bounded. The map G : P{(R%) — R is of class C* with all derivatives (in m and then in the
additional variables) up to order 4 uniformly bounded.

— Note that 7 and G are not assumed to be convex and thus i/ is not smooth in general. (cf.
Briani-C. ('18), Bardi-Fischer ('19))
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Main result on the convergence rate

Theorem (C.-Daudin-Jackson-Souganidis)

Under our standing assumptions, there exists 3 € (0, 1] (depending only on d) and C > 0
(depending on the data) such that, for any (t,x) € [0, T] x (R?)N,

VN x) —u(t,m)| < CN=B(1 4+ Ma(m)).
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Main result on the convergence rate

Theorem (C.-Daudin-Jackson-Souganidis)

Under our standing assumptions, there exists 3 € (0, 1] (depending only on d) and C > 0
(depending on the data) such that, for any (t,x) € [0, T] x (R?)N,

VN x) —u(t,m)| < CN=B(1 4+ Ma(m)).

The proof relies on

@ (uniform in N) regularity estimates for VN
@ and concentration inequalities
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Idea of proof (1): regularity estimates

Lemma

Under our standing assumptions, there exists a constant C > 0 such that,

@ forany N > 1,
VN ]loo + Nisup |0V ||oo + [[0VV] oo < C.
J

@ (Semiconcavity) for any ¢ = (¢/) € (R9)N and €0 € R,

Z D% VN (tx)¢’ 5’+2Z D% VN(t,x)-€'€%+ DRV (t,%)(£°)2 Zlé 2+ C(e%).

i,j=1

A

Remark: As a consequence, the limit value function ¢/ is Lipschitz continuous in [0, T] x P;(RY)
and (displacement) semiconcave.
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Idea of proof (2): The easy inequality

Let
N

~ . i d
YN(t, m) = /(Rdw VN(t,x)gm(dxf) Y(t,m) € [0, T] x P;(RY).

Lemma

The map PV is smooth and satisfies the inequality

—aVN(t, m) — /R div(DmPN(t, m, y))m(dy) + / H(y, DmVN(t, m, y))m(dy) <
in (0, T) x Py(RY)
VN(T, m)=G(m)  inPy(RY)

N N
here N(m) := W dx/) and GN(m) := g(mf dx’).
where #(m) i [ )gm( /) and G(m) /(Rd)N (m) T i)

(RN j=1

Hence, the exists constants C, 3 > 0 such that, for any (t, o) € [0, T] x (RN,

YNt m )y <u(t,mid) + (1 + My/2(mld ))N=2,

F(m)
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Idea of proof (3): The difficult inequality

Proposition

There exists a constant 8 € (0, 1] (depending on dimension only) and a constant C > 0
(depending on the data) such that, for any N > 1 and any (t,x) € [0, T] x (R?)V, it holds:

N
1 ;
N N — 2
u(t,mdy —vN(,x) < CN=A(1 + 7 Ei:1:|x’\ ).

Proof by penalization: we consider, for 6, A € (0, 1),

N N

1 A A .
MN .= max eS(U(s,mM)=VN(t,x))— — E Xyl —|s—t]P— = f2.
(t,%),(s,¥)€[0, T x (RE)N (U(s, my) (t,%)) 20N < X =yl 20' | 2NI,:Z1|‘V‘

By combining Lipschitz and semiconcavity estimates and concentration inequalities we show
that, for a suitable choice of 9, \,
MN < CN—58.
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Our aim is to study the behavior of optimal trajectories of VN and prove a (quantitative)
propagation of chaos property.

For this we assume from now on that there is no common noise: a; = 0. Then the value
function of the limit problem is given by

.
Ulty, mo) = inf {/ (/Rd L(x, a(t, x))m(t, dx) + F(m(t)))dt + g(m(T))}

where the infimum is taken over the pairs (m, «) € CO([ty, T], Py(RY)) x LO([ty, T] x RY; RY)
such that ftOT Jra la(t, x)|2m(t, dx)dt < 400 and (m, o) satisfies in the sense of distributions

om— Am+ div(ma) = 0in (f, T) x R, m(0) = my in RY.

The analysis is split into two parts:
@ Regularity properties of the function ¢/,
@ Propagation of chaos.
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Regularity of &/

Theorem (C.-Souganidis)
The map U is globally Lipschitz continuous on [0, T] x P4 (R?) and there exists an open and

dense subset O of [0, T) x Pp(R?) on which ¢/ is of class C'. Moreover U satisfies in a classical
sense in O the Hamilton-Jacobi equation:

— O (t, m) — /]Rd div(Dml(t, m, y))m(dy) + /]Rd H(y, DmU(t, m, y))m(dy) = F(m).

(Compare with Cosso and al. ('21) and Cecchin-Delarue ('22))

The set O is defined as follows:

= dy there exists a unique minimizer for U(fy, mg)
0= {(to’ mo) € [0, T) x P(R7), and this minimizer is stable ’
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Proof (1): Stability of a minimizer

Proposition (Lasry-Lions)

Let (m, «) be a minimizer for U(ty, mg). There exists a unique multiplier u : [ty, T] x RY — R of
class C'-? such that o« = —DpH(x, Du) and the pair (u, m) satisfies

drm — Am — div(Hp(x, Du)ym) =0  in (f, T) x RY

{ —8iu — Au + H(x, Du) = F(x,m(t))  in(ty, T) x RY
m(ty) = mg, u(T,x) = G(x,m(T))  inR

where F(x, m) = %(m, X), G(x,m) = s—i(m, X).

We say that (m, «) is stable if (z, u) = (0, 0) is the only solution to the linearized system

—0tz — Az + Hp(x,Du) - Dz = %(X, m(t))(u(t)) in (f, T) x RY
Brp — Ap — div(Hp(x, Du)p) — div(Hpp(x, Du)Dzm) =0 in (fy, T) x RY
w(lo) =0, 2(T,x) = 2767(*7 m(T)((T))  inR?
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Proof (2): Key property of stable solutions

Proposition

@ Assume that there is a unique minimizer (m, ) for (ty, mo) and that this minimizer is
stable. Then there exists a neighborhood O’ of {(t, m(t)), t € [y, T]} such that, for any
(t1,mq) € O, there is a unique minimizer for Z(t;, my) and this minimizer is stable.

e If (m, o) is @ minimizer for U (%, mg), then for any ¢ € (&, T) there is a unique minimizer
for U(t;, m(t)) and this minimizer is stable.

@ Reminiscent of similar results in finite dimension.

@ The proof uses on a Lions-Malgrange ('60) type argument, generalized by
Cannarsa-Tessitore ('94) to forward-backward systems.

@ Similar result obtained by Briani-C. ('18) in the torus.
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Proof (3): Regularity of &/

Proposition

The map U is of class C' in © with Dt (ty, Mg, -) = Du(ty, -) for any (ty, mg) € O, where u is
the multiplier associated to the unique minimizer (m, «) for U(ty, mg).

@ Relies on constructions developed in C.-Delarue-Lasry-Lions ('19) for mean field games.
@ In contrast with this paper, stability replaces the monotonicity condition.
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Main result on the propagation of chaos

Theorem (C.-Souganidis)

Fix (ty, mp) € O. There exists a constant v € (0, 1) (depending on dimension only) and C > 0
(depending on (ty, my)) such that, if (Z¥) is a sequence of independent r.v. with law mg and
YN = (YNK) is the optimal trajectories for VN (ty, (Z¥)k=1,... .n):

t
YK = Zk — [ Hp(YE, DuVN(s, YY))ds + V2(Bf — BY),
1}
then

E

sup_ dq(miy, m(t))| < CN~7,
t€lto, ] ‘

where (m, ) is optimal for U (ty, mo).

Following Sznitman, this implies the propagation of chaos for the (YN:).
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Idea of proof

@ Foré > 0, let W5 := §—neighborhood of {(t, m(t)), t € [t, T]} contained in O and

Wl = {x € (RN, m{ € Ws}.
@ LetXV = (X,'\’*') be the solution to

. _ t . . . .
ax =2 - : Ho(X", Dmld (s, M X3'))ds + V2(B, - B,),
0
on the time interval [ty, 7], where 7N = inf {t €lto, T, (£, XN) ¢ V(,sv/z}'

@ Following Horowitz-Karandikar ('94) and standard argument on the propagation of chaos,

< CN—1/(d+8) gng p [T’V < T] < CN—1/(d+8),

E { sup i (M, m(1))
telty,™] t

@ By the strict convexity of H and the estimate ||/N — VN|loc < CN—8, we get

N
o= N,j N,j -
IE[/t N~ ST I Ho(YM, NDUN) — Ho( Y, ND W) o] < CN-28,
o 7

@ ...from which we infer that E [supse[,oyw,v] NS X YS’\’*/@ < CN-5.
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Conclusion and open problems

Conclusion: in these works we have obtained
@ a converge rate for the value function,
@ the smoothness of the limit value function in an open and dense set,
@ and the propagation of chaos for initial data in this set.

Open problems
@ sharper convergence rate
@ generalization of the propagation of chaos to problems with a common noise
@ propagation of chaos for general initial conditions
@ application to potential mean field game problems.
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Conclusion and open problems

Conclusion: in these works we have obtained
@ a converge rate for the value function,
@ the smoothness of the limit value function in an open and dense set,
@ and the propagation of chaos for initial data in this set.

Open problems
@ sharper convergence rate
@ generalization of the propagation of chaos to problems with a common noise
@ propagation of chaos for general initial conditions
@ application to potential mean field game problems.

Thank you!

Pierre Cardaliaguet Convergence rate in MFC Sept. 2021 27/27



	Heuristic arguments
	The convergence rate
	Propagation of chaos

