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Optimal control of large particle systems (1)

In this talk we are interested in the optimal control of large systems

Motivations

Large population stochastic wireless power control problems (Huang and al. (’03), ...)

Swarm robotic systems (Lerman and al. (’04), ...)

Smart charging of PEVs (Le Floch and al. (’15), Sheppard and al (’17),...)

...

(Flock of drones) (Charging station for PEVs)

... and mean field games.
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Optimal control of large particle systems (2)

We consider an optimal control of large particle systems of the form

min
(αN,i )i=1,...,N

E

[∫ T

t0
(

1
N

N∑
i=1

L(X N,i
t , αN,i

t ) + F(mN
XN

t
))dt + G(mN

XN
T

)

]
,

where, for i = 1, . . . ,N,

X N,i
t = xN,i

0 +

∫ T

t0
αN,i

t dt +
√

2(Bi
t − Bi

t0 ) +
√

2a0(B0
t − B0

t0
), mN

XN
t

=
1
N

N∑
i=1

δ
XN,i

t

and
N is the (large) number of particles,

X N,i
t ∈ Rd is the position of a particle at time t ,

αN,i
t ∈ Rd is the control for particle i ∈ {1, . . . ,N} at time t ,

(Bi )i∈N is a family of d−dimension independent Brownian motions
T > 0 is the terminal time horizon,
(t0, xN

0 ) = (t0, (xN,i
0 )i=1,...,N ) ∈ [0,T ]× (Rd )N is the initial position of the particles,

L : Rd × Rd → R is a kinetic cost,
F ,G : P1(Rd )→ R are interaction costs,
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Optimal control of large particle systems (3)

Let VN be the value function of the problem:

VN (t0, xN
0 ) := min

(αN,i )i=1,...,N

E

[∫ T

t0
(

1
N

N∑
i=1

L(X N,i
t , αN,i

t ) + F(mN
XN

t
))dt + G(mN

XN
T

)

]
,

where, for i = 1, . . . ,N,

X N,i
t = xN,i

0 +

∫ T

t0
αN,i

t dt +
√

2(Bi
t − Bi

t0 ) +
√

2a0(B0
t − B0

t0
).

To understand:
The behavior of VN as N → +∞,

and the behavior of the optimal trajectories.
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The limit optimal control problem

Following Lacker (’17) and Djete et al. (’22) the limit problem as N → +∞ is expected to be an optimal
control problem of a McKean-Vlasov equation (here in a strong form)

U(t0,m0) = inf
α

E[

∫ T

t0

(
L(Xt , αt ) + F(L(Xt |FB0

t ))
)

+ G(L(XT |FB0

T ))]

where FB0
= (FB0

t )0≤t≤T denotes the filtration generated by B0, and

Xt = X̄t0 +

∫ t

t0
αs(Xs)ds +

√
2(Bt − Bt0 ) +

√
2a0(B0

t − B0
t0

).

Here B is another Brownian motion, X̄t0 is a random initial condition with law m0 and B0, B and
X̄t0 are independent.

Main results (in more general context) of Lacker (’17) and Djete, Possamaï and Tan (’22)
Convergence of VN to U ,

Convergence of optimal solutions for VN to relaxed optimal solutions for U .

−→ Remains open: Propagation of chaos (or convergence to strong solutions)
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Aim of the talk

Let XN,∗ = (X N,1,∗, . . . ,X N,N,∗) be optimal in for VN . Has mN
XN,∗ a limit adapted to (B0)?

Main issue: Lack of smoothness in the limit problem (multiplicity of solutions)

Solving this issue requires a careful analysis of U and a quantitative approach. Namely

I Quantify the difference between VN and U ,

I Understand the structure of the MFC problem, i.e., regularity of U

I Use this regularity to obtain propagation of chaos properties.
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A few references

Early references: Huang-Caines-Malhamé (’03), Lasry-Lions (’07), Andersson-Djehiche (’10) for max. principle,

Carmona-Delarue-Lachapelle (’13) for comparison MFG/MFC, Laurière-Pironneau (’14) for dyn. program.,...

Analysis of mean field control (MFC) problems:
I Deterministic setting: Fornasier-Solombrino (’14), Fornasier-Lisini-Orrieri-Savaré (’17), Cesaroni-Cirant

(’21) for pbs with density constraints, Cavagnari-Lisini-Orrieri-Savaré (’22) with Γ−convergence techniques, ...

I Stochastic setting: Buckdahn-Li-Ma (’17) for pbs with partial observations, Lacker (’17), Barrasso-Touzi
(’22) for exit-time pbs, Djete-Possamaï-Tan (’22) for dyn. prog. with common noise,...

Analysis of the mean field limit: Kolokoltsov (’12) in finite state, Lacker (’17), Cecchin (’21) in finite state,

Gangbo-Mayorga-Swiech (’21) for pbs without idyo. noise, Germain-Pham-Warin (’21) for rate in the smooth case,

Talbi-Touzi-Zhang (’21) for exit-time pbs, Djete-Possamaï-Tan (’22) with common noise, Djete (’22) extended MFC,

Analysis of the HJ eq.: C.-Quincampoix (’08) for pbs arising in diff. games, Feng-Katsoulakis (’09) for controlled
gradient flows, Lasry-Lions (’08) for first order pbs, Ambrosio-Feng (’14) for first order pbs,
Burzoni-Ignazio-Reppen-Soner (’20) under a structure condition, Gangbo-Mayorga-Swiech (’21) for viscosity sols without
idyo. noise, Wu-Zhang (’20) for viscosity sols, Conforti-Kraaij-Tonon (’21), Cosso-Gozzi-Kharroubi-Pham-Rosestolato
(’21) for an intrinsic approach, Cecchin-Delarue (’22) for semiconcave sols,...
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Outline

1 Heuristic arguments

2 The convergence rate

3 Propagation of chaos

Pierre Cardaliaguet Convergence rate in MFC Sept. 2021 8 / 27



Outline

1 Heuristic arguments

2 The convergence rate

3 Propagation of chaos

Pierre Cardaliaguet Convergence rate in MFC Sept. 2021 9 / 27



Heuristic arguments (when a0 = 0)

The value function VN of the N−particle system is a classical solution to
−∂tVN (t , x)−

N∑
j=1

∆x jVN (t , x) +
1
N

N∑
j=1

H(x j ,NDx jVN (t , x)) = F(mN
x )

in (0,T )× (Rd )N

VN (T , x) = G(mN
x ) in (Rd )N

where H(x , p) = sup
a∈Rd

−p.a− L(x , a).

The value function U of the limit problem is expected to satisfy
−∂tU(t ,m)−

∫
Rd

div(DmU(t ,m, y))m(dy) +

∫
Rd

H(y ,DmU(t ,m, y))m(dy) = F(m)

in (0,T )× P1(Rd )

U(T ,m) = G(m) in P1(Rd )

However U is not smooth in general and the equation has just to be understood in a weak
sense (see Cosso and al. (preprint ’21) or Cecchin-Delarue (’22) when for a0 = 0).
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Heuristic arguments (when a0 = 0) — continued

Assume U is smooth (as in Germain and al. (’21)). Then setting UN (t , x) := U(t ,mN
x ), we have

DxiU
N (t , x) =

1
N

DmU(t ,mN
x , xi ), etc...

and therefore UN satisfies
−∂tUN (t , x)−

N∑
j=1

∆x jUN (t , x) +
1
N

N∑
j=1

H(x j ,NDx jUN (t , x))

= F(mN
x )+EN (t , x) in (0,T )× (Rd )N

UN (T , x) = G(mN
x ) in (Rd )N

where EN (t , x) = −
1

N2

N∑
j=1

tr(DmmU(t ,mN
x , xi , xi )) = O(1/N).

By comparison we can then conclude the convergence rate

|UN − VN | ≤ C/N

and (following C.-Delarue-Lasry-Lions) a quantified propagation of chaos.

Unfortunately, argument not correct in general when U is not smooth.
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Outline
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2 The convergence rate

3 Propagation of chaos
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The value functions

VN is the value function for the N−particle system:

VN (t0, xN
0 ) := min

(αN,i )i=1,...,N

E

[∫ T

t0
(

1
N

N∑
i=1

L(X N,i
t , αN,i

t ) + F(mN
XN

t
))dt + G(mN

XN
T

)

]
,

where, for i = 1, . . . ,N,

X N,i
t = xN,i

0 +

∫ T

t0
αN,i

t dt +
√

2(Bi
t − Bi

t0 ) +
√

2a0(B0
t − B0

t0
).

Definition of the value function U for the limit system: Given
(t0,m0) ∈ [0,T ]× P2(Rd ), we define a control rule R ∈ A(t0,m0) to be a tuple
R = (Ω,F ,F,P,B0,m, α), where

1 (Ω,F ,F = (Ft )0≤t≤T ,P) is a filtered probability space supporting the d-dimensional
Brownian motion B0

2 α = (αt )t0≤t≤T is a F-progressively measurable taking values in L∞(Rd ;Rd ) and
such that α is uniformly bounded,

3 m satisfies the stochastic McKean-Vlasov equation

dmt (x) = [(1 + a0)∆mt (x)− div(mtαt (x))] dt +
√

2a0Dmt (x) · dB0
t , mt0 = m0.

We define

U(t0,m0) := inf
R∈A(t0,m0)

EP
[ ∫ T

t0

( ∫
Rd

L(x , αt (x))mt (dx) + F(mt ))dt + G(mT )
]
.
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Standing assumptions

The maps H : Rd × Rd → R, F : P1(Rd )→ R and G : P1(Rd )→ R satisfy

H is of class C2 and strictly convex. In addition we assume that there exists a constant
C > 0 such that

C−1|p|2 − C ≤ H(x , p) ≤ C(|p|2 + 1) ∀(x , p) ∈ Rd × Rd ,

|Dx H(x , p)| ≤ C(|p|+ 1) ∀(x , p) ∈ Rd × Rd

and that, for any R > 0, there exists CR > 0 such that

|D2
xx H(x , p)|+ |D2

xpH(x , p)| ≤ CR ∀(x , p) ∈ Rd × Rd , |p| ≤ R.

The map F : P1(Rd )→ R is of class C2 with F , DmF , D2
ymF and D2

mmF uniformly
bounded. The map G : P1(Rd )→ R is of class C4 with all derivatives (in m and then in the
additional variables) up to order 4 uniformly bounded.

−→ Note that F and G are not assumed to be convex and thus U is not smooth in general. (cf.

Briani-C. (’18), Bardi-Fischer (’19))
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Main result on the convergence rate

Theorem (C.-Daudin-Jackson-Souganidis)

Under our standing assumptions, there exists β ∈ (0, 1] (depending only on d) and C > 0
(depending on the data) such that, for any (t , x) ∈ [0,T ]× (Rd )N ,∣∣∣VN (t , x)− U(t ,mN

x )
∣∣∣ ≤ CN−β(1 + M2(mN

x )).

The proof relies on
(uniform in N) regularity estimates for VN

and concentration inequalities
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Idea of proof (1): regularity estimates

Lemma

Under our standing assumptions, there exists a constant C > 0 such that,

for any N ≥ 1,
‖VN‖∞ + N sup

j
‖Dx jVN‖∞ + ‖∂tVN‖∞ ≤ C.

(Semiconcavity) for any ξ = (ξi ) ∈ (Rd )N and ξ0 ∈ R,

N∑
i,j=1

D2
x i x jVN (t , x)ξi ·ξj +2

N∑
i=1

D2
x i tV

N (t , x) ·ξiξ0 +D2
ttV

N (t , x)(ξ0)2 ≤
C
N

N∑
i=1

|ξi |2 +C(ξ0)2.

Remark: As a consequence, the limit value function U is Lipschitz continuous in [0,T ]× P1(Rd )
and (displacement) semiconcave.
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Idea of proof (2): The easy inequality

Let

V̂N (t ,m) :=

∫
(Rd )N

VN (t , x)
N∏

j=1

m(dx j ) ∀(t ,m) ∈ [0,T ]× P1(Rd ).

Lemma

The map V̂N is smooth and satisfies the inequality
−∂t V̂N (t ,m)−

∫
Rd

div(DmV̂N (t ,m, y))m(dy) +

∫
Rd

H(y ,DmV̂N (t ,m, y))m(dy) ≤ F̂(m)

in (0,T )× P1(Rd )

V̂N (T ,m) = Ĝ(m) in P1(Rd )

where F̂N (m) :=

∫
(Rd )N

F(mN
x )

N∏
j=1

m(dx j ) and ĜN (m) :=

∫
(Rd )N

G(mN
x )

N∏
j=1

m(dx j ).

Hence, the exists constants C, β > 0 such that, for any (t , x0) ∈ [0,T ]× (Rd )N ,

VN (t ,mN
x0

) ≤ U(t ,mN
x0

) + C(1 + M1/2
2 (mN

x0
))N−β ,
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Idea of proof (3): The difficult inequality

Proposition

There exists a constant β ∈ (0, 1] (depending on dimension only) and a constant C > 0
(depending on the data) such that, for any N ≥ 1 and any (t , x) ∈ [0,T ]× (Rd )N , it holds:

U(t ,mN
x )− VN (t , x) ≤ CN−β(1 +

1
N

N∑
i=1

|x i |2).

Proof by penalization: we consider, for θ, λ ∈ (0, 1),

MN := max
(t,x),(s,y)∈[0,T ]×(Rd )N

es(U(s,mN
y )−VN (t , x))−

1
2θN

N∑
i=1

|x i−y i |2−
1
2θ
|s−t |2−

λ

2N

N∑
i=1

|y i |2.

By combining Lipschitz and semiconcavity estimates and concentration inequalities we show
that, for a suitable choice of θ, λ,

MN ≤ CN−β .
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Outline

1 Heuristic arguments

2 The convergence rate

3 Propagation of chaos
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Our aim is to study the behavior of optimal trajectories of VN and prove a (quantitative)
propagation of chaos property.

For this we assume from now on that there is no common noise: a0 = 0. Then the value
function of the limit problem is given by

U(t0,m0) := inf

{∫ T

t0
(

∫
Rd

L(x , α(t , x))m(t , dx) + F(m(t)))dt + G(m(T ))

}

where the infimum is taken over the pairs (m, α) ∈ C0([t0,T ],P1(Rd ))× L0([t0,T ]× Rd ;Rd )

such that
∫ T

t0

∫
Rd |α(t , x)|2m(t , dx)dt < +∞ and (m, α) satisfies in the sense of distributions

∂t m −∆m + div(mα) = 0 in (t0,T )× Rd , m(0) = m0 in Rd .

The analysis is split into two parts:

Regularity properties of the function U ,

Propagation of chaos.
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Regularity of U

Theorem (C.-Souganidis)

The map U is globally Lipschitz continuous on [0,T ]× P1(Rd ) and there exists an open and
dense subset O of [0,T )× P2(Rd ) on which U is of class C1. Moreover U satisfies in a classical
sense in O the Hamilton-Jacobi equation:

−∂tU(t ,m)−
∫
Rd

div(DmU(t ,m, y))m(dy) +

∫
Rd

H(y ,DmU(t ,m, y))m(dy) = F(m).

(Compare with Cosso and al. (’21) and Cecchin-Delarue (’22))

The set O is defined as follows:

O :=

{
(t0,m0) ∈ [0,T )× P2(Rd ),

there exists a unique minimizer for U(t0,m0)
and this minimizer is stable

}
.
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Proof (1): Stability of a minimizer

Proposition (Lasry-Lions)

Let (m, α) be a minimizer for U(t0,m0). There exists a unique multiplier u : [t0,T ]× Rd → R of
class C1,2 such that α = −DpH(x ,Du) and the pair (u,m) satisfies


−∂t u −∆u + H(x ,Du) = F (x ,m(t)) in (t0,T )× Rd

∂t m −∆m − div(Hp(x ,Du)m) = 0 in (t0,T )× Rd

m(t0) = m0, u(T , x) = G(x ,m(T )) in Rd

where F (x ,m) =
δF
δm

(m, x), G(x ,m) =
δG
δm

(m, x).

We say that (m, α) is stable if (z, µ) = (0, 0) is the only solution to the linearized system


−∂t z −∆z + Hp(x ,Du) · Dz =

δF
δm

(x ,m(t))(µ(t)) in (t0,T )× Rd

∂tµ−∆µ− div(Hp(x ,Du)µ)− div(Hpp(x ,Du)Dzm) = 0 in (t0,T )× Rd

µ(t0) = 0, z(T , x) =
δG
δm

(x ,m(T ))(µ(T )) in Rd
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Proof (2): Key property of stable solutions

Proposition

1 Assume that there is a unique minimizer (m, α) for U(t0,m0) and that this minimizer is
stable. Then there exists a neighborhood O′ of {(t ,m(t)), t ∈ [t0,T ]} such that, for any
(t1,m1) ∈ O′, there is a unique minimizer for U(t1,m1) and this minimizer is stable.

2 If (m, α) is a minimizer for U(t0,m0), then for any t1 ∈ (t0,T ) there is a unique minimizer
for U(t1,m(t1)) and this minimizer is stable.

Reminiscent of similar results in finite dimension.

The proof uses on a Lions-Malgrange (’60) type argument, generalized by
Cannarsa-Tessitore (’94) to forward-backward systems.

Similar result obtained by Briani-C. (’18) in the torus.
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Proof (3): Regularity of U

Proposition

The map U is of class C1 in O with DmU(t0,m0, ·) = Du(t0, ·) for any (t0,m0) ∈ O, where u is
the multiplier associated to the unique minimizer (m, α) for U(t0,m0).

Relies on constructions developed in C.-Delarue-Lasry-Lions (’19) for mean field games.

In contrast with this paper, stability replaces the monotonicity condition.
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Main result on the propagation of chaos

Theorem (C.-Souganidis)

Fix (t0,m0) ∈ O. There exists a constant γ ∈ (0, 1) (depending on dimension only) and C > 0
(depending on (t0,m0)) such that, if (Z k ) is a sequence of independent r.v. with law m0 and
YN = (Y N,k ) is the optimal trajectories for VN (t0, (Z k )k=1,...,N ):

Y N,k
t = Z k −

∫ t

t0
Hp(Y k

s ,DxkVN (s,YN
s ))ds +

√
2(Bk

t − Bk
t0 ),

then

E

[
sup

t∈[t0,T ]
d1(mN

YN
t
,m(t))

]
≤ CN−γ ,

where (m, α) is optimal for U(t0,m0).

Following Sznitman, this implies the propagation of chaos for the (Y N,k ).
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Idea of proof

For δ > 0, letWδ := δ−neighborhood of {(t ,m(t)), t ∈ [t0,T ]} contained in O and
WN
δ := {x ∈ (Rd )N , mN

x ∈ Wδ}.

Let XN = (X N,i
t ) be the solution to

dX N,j
t = Z j −

∫ t

t0
Hp(X N,j

s ,DmU(s,mN
XN

s
,X N,j

s ))ds +
√

2(Bj
s − Bj

t0
),

on the time interval [t0, τN ], where τN = inf
{

t ∈ [t0,T ], (t ,XN
t ) /∈ VN

δ/2

}
.

Following Horowitz-Karandikar (’94) and standard argument on the propagation of chaos,

E

[
sup

t∈[t0,τN ]

d1(mN
XN

t
,m(t))

]
≤ CN−1/(d+8) and P

[
τN < T

]
≤ CN−1/(d+8).

By the strict convexity of H and the estimate ‖UN − VN‖∞ ≤ CN−β , we get

E
[∫ τN

t0
N−1

∑
j

|Hp(Y N,j
t ,NDx jUN )− Hp(Y N,j

t ,NDx jVN )|2dt
]
≤ CN−2β ,

...from which we infer that E
[
sups∈[t0,t∧τN ] N−1∑

j |X
N,j
s − Y N,j

s |
]
≤ CN−β .

Pierre Cardaliaguet Convergence rate in MFC Sept. 2021 26 / 27



Conclusion and open problems

Conclusion: in these works we have obtained

a converge rate for the value function,

the smoothness of the limit value function in an open and dense set,

and the propagation of chaos for initial data in this set.

Open problems

sharper convergence rate

generalization of the propagation of chaos to problems with a common noise

propagation of chaos for general initial conditions

application to potential mean field game problems.

Thank you!
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