Mean field games master equations: from discrete to continuous state space

Alekos Cecchin

joint work with Charles Bertucci (CNRS, École Polytechnique)

Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova

9th Colloquium on Backward SDEs and Mean Field Systems Annecy, June 27 - July 1, 2022

Università degli Studi di Padova

MFG master equations: discrete to continuous state space

Outline	Mean field game	Discretization	Convergence
Introduction			

Mean field games were introduced by [Huang-Malhamé-Caines '06] and [Lasry-Lions '06] as limit models for symmetric non-zero sum dynamic games, when the number N of players tends to infinity.

Outline	Mean field game	Discretization	Convergence
Introduction			

Mean field games were introduced by [Huang-Malhamé-Caines '06] and [Lasry-Lions '06] as limit models for symmetric non-zero sum dynamic games, when the number N of players tends to infinity.

- ▶ We consider here games in continuous time and finite horizon.
- Players are small and symmetric, interaction is mean field, control their dynamics in order to minimize a cost.
 Notion of optimality: Nash equilibrium. N-player game typically untractable because of curse of dimensionality.
 Letting N = ∞ may restore some tractability of the model.
- Mean field games have seen a wide variety of applications, including models of oil production, volatility formation, economic growth, energy production, bitcoin mining...
- Importance of numerical methods:
 We present here a space discretization.

Alekos Cecchin

	Outline	Mean field game	Discretization	Convergence
Outli	ne			

1. Continuous state mean field game

- Diffusion-based model
- Mean field game system and master equation

2. Space discretization

- Finite state mean field game
- Controlled Markov chain
- 3. Results: Convergence of master equation and MFG system as number of states grows, with convergence rate
 - with classical solution to limit master equation
 - without such solution.
 - Here without common noise.

Outline Mean field game Discretization Convergence Mean field dynamics

Dynamics on one-dimensional torus \mathbb{T} , finite horizon \mathcal{T} .

One reference player X chooses its control $\alpha : [0, T] \times \mathbb{T} \to \mathbb{R}$ (in feedback form)

$$dX_t = \alpha(t, X_t)dt + \sqrt{2}dB_t$$

in order to minimize

$$J(\alpha,\mu) = \mathbb{E}\left[\int_0^T \frac{1}{2} |\alpha(t,X_t)|^2 + f(X_t,\mu_t) dt + g(X_T,\mu_T)\right]$$

for fixed flow $\mu : [0, T] \to \mathcal{P}(\mathbb{T})$ deterministic.

Outline Mean field game Discretization Convergence Mean field dynamics

Dynamics on one-dimensional torus \mathbb{T} , finite horizon \mathcal{T} .

One reference player X chooses its control $\alpha : [0, T] \times \mathbb{T} \to \mathbb{R}$ (in feedback form)

$$dX_t = \alpha(t, X_t)dt + \sqrt{2}dB_t$$

in order to minimize

$$J(\alpha,\mu) = \mathbb{E}\left[\int_0^T \frac{1}{2} |\alpha(t,X_t)|^2 + f(X_t,\mu_t) dt + g(X_T,\mu_T)\right]$$

for fixed flow $\mu : [0, T] \to \mathcal{P}(\mathbb{T})$ deterministic.

Definition

A solution of the mean field game is a couple $(lpha,\mu)$ such that

- 1. Optimality: $J(\alpha, \mu) \leq J(\beta, \mu)$ for every β ;
- 2. Mean field condition: $Law(X_t^{\alpha}) = \mu_t$ for any $t \in [0, T]$.

Outline Mean field game Discretization Convergence Mean field game system

Fixed point: $\mu \to \alpha_{\mu}^* \to \operatorname{Flow}(X^{\alpha_{\mu}^*}) = \mu$.

- Given a flow of measures μ find the optimal control via the HJB equation: $\alpha^*_{\mu}(t, x) = -\partial_x u(t, x)$, u value function.
- ► Hamiltonian $H(x, p) = \sup_{a} \left\{ -ap \frac{1}{2}|a|^2 \right\} = \frac{1}{2}|p|^2$ Unique maximizer $a^*(x, p) = -p$.
- Then put α^*_{μ} into the KFP equation for $Law(X^{\alpha}_t)$
- Solution if $\mu_t = Law(X_t^{\alpha})$, fixed point.

Outline Mean field game Discretization Convergence Mean field game system

Fixed point: $\mu \to \alpha_{\mu}^* \to \operatorname{Flow}(X^{\alpha_{\mu}^*}) = \mu$.

- Given a flow of measures μ find the optimal control via the HJB equation: $\alpha^*_{\mu}(t, x) = -\partial_x u(t, x)$, u value function.
- ► Hamiltonian $H(x, p) = \sup_{a} \left\{ -ap \frac{1}{2}|a|^2 \right\} = \frac{1}{2}|p|^2$ Unique maximizer $a^*(x, p) = -p$.
- Then put α^*_{μ} into the KFP equation for $Law(X^{\alpha}_t)$

• Solution if
$$\mu_t = Law(X_t^{\alpha})$$
, fixed point.

A solution of the mean field game system is a couple (u, μ) solving the forward-backward system of PDEs

$$\begin{cases} -\partial_t u - \partial_x^2 u + \frac{1}{2} |\partial_x u|^2 = f(x, \mu_t) \\ \partial_t \mu - \partial_x^2 \mu - \partial_x (\mu \partial_x u) = 0 \\ u(T, x) = g(x, \mu_T) \qquad \mu_0 = m_0. \end{cases}$$
(MFG)

Outline	Mean field game	Discretization	Convergence	
Monotonicity				

Existence: if f, g are W_1 -Lipschitz in m and $\sup_{m \in \mathcal{P}(\mathbb{T})} ||f(\cdot, m)||_{\gamma} < \infty$, $\sup_{m \in \mathcal{P}(\mathbb{T})} ||g(\cdot, m)||_{2+\gamma} < \infty$ then \exists sol. $u \in C^{1+\frac{\gamma}{2},2+\gamma}([0, T] \times \mathbb{T}), \ \mu \in C^{1+\frac{\gamma}{2},2+\gamma}((0, T] \times \mathbb{T})$

Outline	Mean field game	Discretization	Convergence
Monotonicity			

Existence: if f, g are W_1 -Lipschitz in m and $\sup_{m \in \mathcal{P}(\mathbb{T})} ||f(\cdot, m)||_{\gamma} < \infty$, $\sup_{m \in \mathcal{P}(\mathbb{T})} ||g(\cdot, m)||_{2+\gamma} < \infty$ then \exists sol. $u \in C^{1+\frac{\gamma}{2},2+\gamma}([0, T] \times \mathbb{T})$, $\mu \in C^{1+\frac{\gamma}{2},2+\gamma}((0, T] \times \mathbb{T})$

Uniqueness either for small T or under Lasry-Lions monotonicity condition on f and g:

$$egin{aligned} &\int_{\mathbb{T}}(f(x,m)-f(x, ilde{m}))(m- ilde{m})(dx)\geq 0 & & orall m, ilde{m}\in\mathcal{P}(\mathbb{T}) \ & \int_{\mathbb{T}}(g(x,m)-g(x, ilde{m}))(m- ilde{m})(dx)\geq 0 & & orall m, ilde{m}\in\mathcal{P}(\mathbb{T}) \end{aligned}$$

Example: f(x, m) = xMean(m) = x ∫_T ym(dy). Monotonicity means that players prefer to spread, instead of aggregate.

Outline	Mean field game	Discretization	Convergence
Monotonicity			

Existence: if f, g are W_1 -Lipschitz in m and $\sup_{m \in \mathcal{P}(\mathbb{T})} ||f(\cdot, m)||_{\gamma} < \infty$, $\sup_{m \in \mathcal{P}(\mathbb{T})} ||g(\cdot, m)||_{2+\gamma} < \infty$ then \exists sol. $u \in C^{1+\frac{\gamma}{2},2+\gamma}([0, T] \times \mathbb{T})$, $\mu \in C^{1+\frac{\gamma}{2},2+\gamma}((0, T] \times \mathbb{T})$

Uniqueness either for small T or under Lasry-Lions monotonicity condition on f and g:

$$\begin{split} &\int_{\mathbb{T}} (f(x,m) - f(x,\tilde{m}))(m - \tilde{m})(dx) \geq 0 \qquad \forall m, \tilde{m} \in \mathcal{P}(\mathbb{T}) \\ &\int_{\mathbb{T}} (g(x,m) - g(x,\tilde{m}))(m - \tilde{m})(dx) \geq 0 \qquad \forall m, \tilde{m} \in \mathcal{P}(\mathbb{T}) \end{split}$$

- Example: f(x, m) = xMean(m) = x ∫_T ym(dy). Monotonicity means that players prefer to spread, instead of aggregate.
- Monotonicity implies also stability of the system.

Alekos Cecchin

Master equation

MFG completely understood by means of the master equation $U: [0, T] \times \mathbb{T} \times \mathcal{P}(\mathbb{T}) \to \mathbb{R}$

- U is decoupling field of forward-backward system: $u(t,x) = U(t,x,\mu_t)$
- MFG system is the system of characteristics of (M): $U(t_0, x, m_0) := u(t_0, x)$ defines a solution, where (u, μ) solves the MFG system with $\mu_{t_0} = m_0$.

$$\begin{cases} -\partial_t U + \frac{1}{2} |\partial_x U|^2 + \int_{\mathbb{T}} \partial_x U(t, y, m) \partial_y \frac{\delta U}{\delta m}(t, x, m; y) m(dy) \\ -\partial_x^2 U - \int_{\mathbb{T}} \partial_y^2 \frac{\delta U}{\delta m} U(t, x, m; y) m(dy) = f(x, m) \\ U(T, x, m) = g(x, m). \end{cases}$$
(M)

Master equation

MFG completely understood by means of the master equation $U: [0, T] \times \mathbb{T} \times \mathcal{P}(\mathbb{T}) \to \mathbb{R}$

- U is decoupling field of forward-backward system: $u(t,x) = U(t,x,\mu_t)$
- MFG system is the system of characteristics of (M): $U(t_0, x, m_0) := u(t_0, x)$ defines a solution, where (u, μ) solves the MFG system with $\mu_{t_0} = m_0$.

$$\begin{cases} -\partial_t U + \frac{1}{2} |\partial_x U|^2 + \int_{\mathbb{T}} \partial_x U(t, y, m) \partial_y \frac{\delta U}{\delta m}(t, x, m; y) m(dy) \\ -\partial_x^2 U - \int_{\mathbb{T}} \partial_y^2 \frac{\delta U}{\delta m} U(t, x, m; y) m(dy) = f(x, m) \\ U(T, x, m) = g(x, m). \end{cases}$$
(M)

Requires chain rule for flat derivative on $\mathcal{P}(\mathbb{T})$: for a function $U : \mathcal{P}(\mathbb{T}) \to \mathbb{R}, \frac{\delta U}{\delta m}(m; y)$ is defined by

$$\lim_{h\to 0^+}\frac{U(m+h(m'-m))-U(m)}{h}=\int_{\mathbb{T}}\frac{\delta U}{\delta m}(m;y)(m-m')(dy)$$

Alekos Cecchin

0		Mean field game	Discretization	Convergence
Classica	al solution			

U is a classical solution if all derivatives $\partial_t U, \partial_x U, \partial_x^2 U, \partial_y \frac{\delta U}{\delta m}(t, x, m; y), \partial_y^2 \frac{\delta U}{\delta m} U(t, x, m; y)$ exist continuous. Theorem [Cardaliaguet-Delarue-Lasry-Lions '19]: There exists a classical solution if f, g monotone and smooth in the measure

argument.

Outline	Mean field game	Discretization	Convergence
Classical solution	1		

U is a classical solution if all derivatives $\partial_t U, \partial_x U, \partial_x^2 U, \partial_y \frac{\delta U}{\delta m}(t, x, m; y), \partial_y^2 \frac{\delta U}{\delta m} U(t, x, m; y)$ exist continuous. Theorem [Cardaliaguet-Delarue-Lasry-Lions '19]: There exists a classical solution if f, g monotone and smooth in the measure argument.

- existence of classical solutions implies uniqueness of MFG system.
- Assumption on f, g smooth is typically too strong, they might be just W₁-Lipschitz in m.
- Notions of *weak solutions*, assuming monotonicity and thus uniqueness of MFG system, considered in [Bertucci '20, 21], [Mou-Zhang '20], [Gangbo-Meszaros '20], ...

- [Achdou, Capuzzo-Dolcetta '10], [Achdou, Capuzzo-Dolcetta, Camilli '12]: finite difference scheme for MFG sysyem.
- Image: Figure [Benamou, Carlier '15]: augmented Lagrangian methods.
- [Chassagneux, Crisan, Delarue '19]: McKean-Vlasov forward-Backward SDEs.
- [Laurière '21 (survey)]: machine learning based methods.
- [Hadikhanloo, Silva '19]: probabilistic method for deterministic MFG, based of Kushner's Markov chain approximation method for stochastic control.

Discretized problem is a finite state-discrete time MFG; convergence via tightness and probabilistic weak convergence arguments.

Mean field game Discretization Numerical methods

- [Achdou, Capuzzo-Dolcetta '10], [Achdou, Capuzzo-Dolcetta, Camilli '12]: finite difference scheme for MFG system.
- ▶ [Benamou, Carlier '15]: augmented Lagrangian methods.
- [Chassagneux, Crisan, Delarue '19]: McKean-Vlasov forward-Backward SDFs
- [Laurière '21 (survey)]: machine learning based methods.
- [Hadikhanloo, Silva '19]: probabilistic method for deterministic MFG, based of Kushner's Markov chain approximation method for stochastic control.

Discretized problem is a finite state-discrete time MFG; convergence via tightness and probabilistic weak convergence arguments.

We consider a space discretization (for diffusions) such that discretized model is a continuous time finite state MFG, and corresponding MFG system is finite difference scheme. Study convergence of the master equations, the main result being to provide a conv<u>ergence rate.</u> Alekos Cecchin MFG master equations: discrete to continuous state space

Annecy, 30/06/22

Outline

Space discretization

For any *n*, consider *n* states $S^n = \{x_1^n, \ldots, x_n^n\} = \{1/n, \ldots, 1\}$ with mutual distance 1/n, with the convention $x_0^n = x_n^n$, $x_{n+1}^n = x_1^n$. X^n Markov chain in [0, T], continuous time. Control the jump rate on the right and on the left by 2 feedback functions $\alpha_+^n, \alpha_-^n : [0, T] \times S^n \to [0, +\infty)$:

$$\mathbb{P}(X_{t+\Delta t}^{n} = x_{i+1}^{n} | X_{t}^{n} = x_{i}^{n}) = \left(\frac{\alpha_{+}^{n}(t, x_{i}^{n})}{1/n} + \frac{1}{1/n^{2}}\right) \Delta t + o(\Delta t),$$
$$\mathbb{P}(X_{t+\Delta t}^{n} = x_{i-1}^{n} | X_{t}^{n} = x_{i}^{n}) = \left(\frac{\alpha_{-}^{n}(t, x_{i}^{n})}{1/n} + \frac{1}{1/n^{2}}\right) \Delta t + o(\Delta t),$$
(2)

The cost is given by

$$J^{n}(\alpha_{\pm}^{n},\mu^{n}) = \mathbb{E}\left[\int_{0}^{T} \frac{1}{2} |\alpha_{+}^{n}(t,X_{t}^{n})|^{2} + \frac{1}{2} |\alpha_{-}^{n}(t,X_{t}^{n})|^{2} + f(X_{t}^{n},\mu_{t}^{n})dt + g(X_{T}^{n},\mu_{T}^{n})\right]$$

with $\mu^{n}:[0,T] \to \mathcal{P}(S^{n})$ fixed and deterministic.

Outline Mean field game Discretization Convergence Discrete mean field game

 $\mathcal{P}(S^n) \cong \text{simplex of probability measures on } \mathbb{R}^n$, elements $m^n = \sum_{j=1}^n m_j^n \delta_{x_j^n}$.

MFG solution (α_{\pm}^n, μ^n) , with α_{\pm}^n optimal for μ^n and $\mu_t^n = Law(X_t^n)$

Discrete mean field game

 $\mathcal{P}(S^n) \cong \text{simplex of probability measures on } \mathbb{R}^n$, elements $m^n = \sum_{j=1}^n m_j^n \delta_{x_j^n}$.

Mean field game

MFG solution (α_{\pm}^n, μ^n) , with α_{\pm}^n optimal for μ^n and $\mu_t^n = Law(X_t^n)$

Discretization

For $u : \mathbb{T} \to \mathbb{R}$, denote the right and left first order finite difference and the second order finite difference by

$$\begin{aligned} \Delta_{+}^{n} u(x) &= \frac{u(x+1/n) - u(x)}{1/n}, \qquad \Delta_{-}^{n} u(x) = \frac{u(x-1/n) - u(x)}{1/n}, \\ \Delta_{2}^{n} u(x) &= \frac{u(x+1/n) - 2u(x) + u(x-1/n)}{1/n^{2}} \end{aligned}$$

Obtain unique optimal controls, given by

$$\alpha^n_+(t,x)=(\Delta^n_+u(t,x))_-,\qquad \alpha^n_-(t,x)=(\Delta^n_-u(t,x))_-,\qquad x\in S^n.$$

where u(t,x) is the value function and r_{-} is the negative part of r.

Alekos Cecchin

Outline Mean field game Discretization Convergence
Discrete mean field game system

The discrete MFG system is a system of ODEs, indexed by $x \in S^n$, backward HJB equation and forward KFP equation.

$$\begin{cases} -\frac{d}{dt}u^{n} + \frac{1}{2}(\Delta_{+}^{n}u^{n}(x))_{-}^{2} + \frac{1}{2}(\Delta_{-}^{n}u^{n}(x))_{-}^{2} - \Delta_{2}^{n}u^{n}(x) = f(x,\mu_{t}^{n}), \\ \frac{d}{dt}\mu^{n}(t,x) - \Delta_{2}^{n}\mu^{n}(t,x) - \Delta_{-}^{n}[(\Delta_{+}^{n}u^{n}(x))_{-}\mu^{n}(t,x)] \\ -\Delta_{+}^{n}[(\Delta_{-}^{n}u^{n}(x))_{-}\mu^{n}(t,x)] = 0, \\ u^{n}(t,x) = g(x,\mu_{t}^{n}), \qquad \mu_{0}^{n} = m_{0}^{n} \end{cases}$$
(MFG:n)

Existence and uniqueness under monotonicity assumptions

The discrete MFG system is a system of ODEs, indexed by $x \in S^n$, backward HJB equation and forward KFP equation.

$$\begin{cases} -\frac{d}{dt}u^{n} + \frac{1}{2}(\Delta_{+}^{n}u^{n}(x))_{-}^{2} + \frac{1}{2}(\Delta_{-}^{n}u^{n}(x))_{-}^{2} - \Delta_{2}^{n}u^{n}(x) = f(x,\mu_{t}^{n}), \\ \frac{d}{dt}\mu^{n}(t,x) - \Delta_{2}^{n}\mu^{n}(t,x) - \Delta_{-}^{n}[(\Delta_{+}^{n}u^{n}(x))_{-}\mu^{n}(t,x)] \\ -\Delta_{+}^{n}[(\Delta_{-}^{n}u^{n}(x))_{-}\mu^{n}(t,x)] = 0, \\ u^{n}(t,x) = g(x,\mu_{t}^{n}), \qquad \mu_{0}^{n} = m_{0}^{n} \end{cases}$$
(MFG:n)

Existence and uniqueness under monotonicity assumptions

Formally, we should have $\lim_{n\to\infty} \Delta^n_{\pm} u(x) = \pm \partial_x u(x)$ and $\lim_{n\to\infty} \Delta^n_2 u(x) = \partial^2_x u(x)$.

Thus, heuristically, we see that $u^n
ightarrow u$ and $\mu^n
ightarrow \mu$.

Outline	Mean field game	Discretization	Convergence	
<u> </u>	C			
Convergence c	of trajectories			

Convergence of optimal trajectories X^n to X in distribution, (formally) by means of convergence of the generators:

The generator of X^n is given by

$$\begin{split} \mathcal{L}_{t}^{n}\phi(x) &= \left(\frac{(\Delta_{+}^{n}u(x))_{-}}{1/n} + \frac{1}{1/n^{2}}\right) \left[\phi(x+1/n) - \phi(x)\right] \\ &+ \left(\frac{(\Delta_{-}^{n}u(x))_{-}}{1/n} + \frac{1}{1/n^{2}}\right) \left[\phi(x-1/n) - \phi(x)\right] \\ &= (\Delta_{+}^{n}u(x))_{-}\Delta_{+}^{n}\phi(x) + (\Delta_{-}^{n}u(x))_{-}\Delta_{-}^{n}\phi(x) + \Delta_{2}^{n}\phi(x). \\ &\approx (\partial_{x}u(t,x))_{-}\partial_{x}\phi(x) - (\partial_{x}u(t,x))_{+}\partial_{x}\phi(x) + \partial_{x}^{2}\phi(x) \\ &= -\partial_{x}u(t,x)\partial_{x}\phi(x) + \partial_{x}^{2}\phi(x), \end{split}$$

which is the generator of X: $dX_t = -\partial_x u(t,x)dt + \sqrt{2}dB_t$.

Outline Mean field game Discretization Convergence
Discrete master equation

Decoupling field $U^n : [0, T] \times S^n \times \mathcal{P}(S^n)$, such that $u^n(t, x) = U^n(t, x, \mu_t^n)$ solves the first order PDE on the simplex:

$$\begin{aligned} &-\partial_{t}U^{n}(x,m) + \frac{1}{2}(\Delta_{+}^{n}U^{n}(x,m))_{-}^{2} + \frac{1}{2}(\Delta_{-}^{n}U^{n}(x,m))_{-}^{2} - \Delta_{2}^{n}U^{n}(x,m) - f(x,m) \\ &-\sum_{y\in S^{n}}m_{y}\left(\frac{(\Delta_{+}^{n}U^{n}(y,m))_{-}}{1/n} + \frac{1}{1/n^{2}}\right)\left(\partial_{m_{y+1/n}}U^{n}(x,m) - \partial_{m_{y}}U^{n}(x,m)\right) \\ &-\sum_{y\in S^{n}}m_{y}\left(\frac{(\Delta_{-}^{n}U^{n}(y,m))_{-}}{1/n} + \frac{1}{1/n^{2}}\right)\left(\partial_{m_{y-1/n}}U^{n}(x,m) - \partial_{m_{y}}U^{n}(x,m)\right) = 0 \\ &U^{n}(T,x,m) = g(x,m) \end{aligned}$$
(M:n)

For U defined on $\mathcal{P}(S^n)$, we denote by $\partial_{m_j} U$ its derivative along direction e_j ; and equivalently $\partial_{m_j} U = \partial_{m_{x_j}} U$, because we view $m \in \mathcal{P}(S^n)$ as $m = \sum_{j=1}^n m_j \delta_{x_j}$.

Outlin		Mean	tield
leuristic	limit		

Assume that, formally, $U^n(t, x, m^n) \approx U(t, x, \sum_{j=1}^n m_j^n \delta_{x_j^n})$. By definition, if U is C^1 on $\mathcal{P}(\mathbb{T})$, we have $\partial_{m_i} U(\sum_{j=1}^n m_j^n \delta_{x_j^n}) = \frac{\delta U}{\delta m}(\sum_{j=1}^n m_j^n \delta_{x_j^n}; x_i)$

Discretization

Thus in the master equation we get

$$\begin{split} &\int_{\mathbb{T}} m(dy) \frac{(\Delta_{+}^{n} U^{n}(y,m))_{-}}{1/n} \left(\partial_{m_{y+1/n}} U^{n}(x,m) - \partial_{m_{y}} U^{n}(x,m) \right) \\ &\int_{\mathbb{T}} m(dy) \frac{(\Delta_{-}^{n} U^{n}(y,m))_{-}}{1/n} \left(\partial_{m_{y-1/n}} U^{n}(x,m) - \partial_{m_{y}} U^{n}(x,m) \right) \\ &\int_{\mathbb{T}} m(dy) \frac{1}{1/n^{2}} \left(\partial_{m_{y+1/n}} U^{n}(x,m) - 2\partial_{m_{y}} U^{n}(x,m) + \partial_{m_{y-1/n}} U^{n}(x,m) \right) \\ &\approx \int_{\mathbb{T}} m(dy) \left[(\partial_{y} U(y,m))_{-} \partial_{y} \frac{\delta U}{\delta m}(x,m;y) - (\partial_{y} U(y,m))_{+} \partial_{y} \frac{\delta U}{\delta m}(x,m;y) \right] \\ &+ \int_{\mathbb{T}} m(dy) \partial_{y}^{2} \frac{\delta U}{\delta m}(x,m;y) \end{split}$$

which provide the terms in (M), thus U "solves" limit master equation. Alekos Cecchin MFG master equations: discrete to continuous state space Annecy, 30/06/22 Outline

Convergence

Concergence of classical solutions

 U^n, U master equation, X^n, X optimal trajectories.

Theorem

Assume that (M:n) and (M) has a classical solution U, limit U with Lipschitz derivatives. Then

$$\sup_{t\in[0,T],x\in S^n,m\in\mathcal{P}(S_n)} |U^n(t,x,m) - U(t,x,m)| \leq \frac{C}{n}$$
$$\mathbb{E}\int_0^T |\Delta^n_{\pm}(U^n - U)(t,X^n_t,\operatorname{Law}(X^n_t))|^2 dt \leq \frac{C}{n^2}$$

We obtain also (assume $W_1(m_0^n, m_0) \leq \frac{1}{n}$):

Yⁿ Markov chain (2) with rates given by limit master equation: E[sup_{t∈[0,T]} |Xⁿ_t - Yⁿ_t|] ≤ C/n
 lim_n Xⁿ = X in law in D([0, T], T)

 $\sup_{t\in[0,\mathcal{T}]}W_1(\mathrm{Law}(X_t^n),\mathrm{Law}(X_t))\leq \frac{C}{n^{1/3}}$

Idea of the proof

- $U^n(m^n) := U(\sum_{i=1}^n m_i^n \delta_{x_i^n})$ almost solves (M:n), with a reminder of order $\mathcal{O}(1/n)$
- Argument of stability of forward-backward systems, if exists classical decoupling field ([Ma-Protter-Yong '94]): expand d|Uⁿ(t, Xⁿ_t, Law(Xⁿ_t)) U(t, Xⁿ_t, Law(Xⁿ_t))|². Method employed also in [Cardaliaguet, Delarue, Lasry, Lions '19] to prove convergence of N-player game
- Laplacian (non-degeneracy) required to get estimate on the gradients

Idea of the proof

- $U^n(m^n) := U(\sum_{i=1}^n m_i^n \delta_{x_i^n})$ almost solves (M:n), with a reminder of order $\mathcal{O}(1/n)$
- Argument of stability of forward-backward systems, if exists classical decoupling field ([Ma-Protter-Yong '94]): expand d|Uⁿ(t, Xⁿ_t, Law(Xⁿ_t)) U(t, Xⁿ_t, Law(Xⁿ_t))|². Method employed also in [Cardaliaguet, Delarue, Lasry, Lions '19] to prove convergence of N-player game
- Laplacian (non-degeneracy) required to get estimate on the gradients

To obtain estimate on trajectories in W_1 , use the following: Proposition. Let $dY_t = \alpha(t, Y_t)dt + \sqrt{2}dB_t$, with α regular (Hölder), and Y^n the Markov chain (2) with rates α_+ , α_- positive and negative part of α . Then

$$\sup_{\in [0,T]} W_1(\text{Law}(Y_t^n), \text{Law}(Y_t)) \leq \frac{C}{n^{1/3}}$$

t

If there are no classical solutions (coefficients not smooth), convergence via MFG system

Theorem

Assume f, g W_1 -Lipschitz and monotone, f Lipschitz in x, g $(2 + \gamma)$ -Hölder, $\gamma \ge 1/3$. (u^n, μ^n) and (u, μ) solutions of MFG systems. Then

$$\sup_{0 \le t \le T} \sup_{x \in S^n} |u^n(t,x) - u(t,x)| + \sup_{0 \le t \le T} W_1(\mu_t^n,\mu_t) \le \frac{C}{n^{1/6}}.$$
$$\sup_{t \in [0,T], x \in S^n, m \in \mathcal{P}(S_n)} |U^n(t,x,m) - U(t,x,m)| \le \frac{C}{n^{1/6}}$$

Worse convergence rate

Idea of the proof

 show that (u, μ) almost solves the discrete MFG system (MFG:n)

From previous proposition,

$$\sup_{t\in[0,T]} W_1(\operatorname{Law}(Y_t^n),\operatorname{Law}(X_t)) \leq \frac{C}{n^{1/3}},$$

with X limit optimal trajectory $dX_t = -\partial_u(t, X_t)dt + \sqrt{2}dB_t$, and Yⁿ the Markov chain (2) with rates $\alpha^n_+(t, x) = (\Delta^n_+u(t, x))_-$, $\alpha^n_-(t, x) = (\Delta^n_-u(t, x))_-$, $\tilde{\mu}^n_t = \text{Law}(Y^n_t)$, then

$$-\frac{d}{dt}u + \frac{1}{2}(\Delta_{+}^{n}u(x))_{-}^{2} + \frac{1}{2}(\Delta_{-}^{n}u(x))_{-}^{2} - \Delta_{2}^{n}u(x) = f(x,\widetilde{\mu}_{t}^{n}) + \mathcal{O}\left(\frac{1}{n^{1/3}}\right)$$

Idea of the proof

 show that (u, μ) almost solves the discrete MFG system (MFG:n)

From previous proposition,

$$\sup_{t\in[0,T]} W_1(\operatorname{Law}(Y_t^n),\operatorname{Law}(X_t)) \leq \frac{C}{n^{1/3}},$$

with X limit optimal trajectory $dX_t = -\partial_u(t, X_t)dt + \sqrt{2}dB_t$, and Yⁿ the Markov chain (2) with rates $\alpha^n_+(t, x) = (\Delta^n_+ u(t, x))_-$, $\alpha^n_-(t, x) = (\Delta^n_- u(t, x))_-$, $\tilde{\mu}^n_t = \text{Law}(Y^n_t)$, then

$$-\frac{d}{dt}u + \frac{1}{2}(\Delta_{+}^{n}u(x))_{-}^{2} + \frac{1}{2}(\Delta_{-}^{n}u(x))_{-}^{2} - \Delta_{2}^{n}u(x) = f(x,\widetilde{\mu}_{t}^{n}) + \mathcal{O}\left(\frac{1}{n^{1/3}}\right)$$

Rely on variant of the the stability argument for MFG system under monotonicity (plus uniform convexity of Lagrangian).

Alekos Cecchin

	Outline	Mean field game	Discretization	Convergence
Conclu	sions			

Without common noise, we show convergence of the discretized master equation to the continuous one, with a convergence rate, in case there is a classical solution and in case there is not (with a worse rate).

Outline	Mean field game	Discretization	Convergence	
Conclusions				

Without common noise, we show convergence of the discretized master equation to the continuous one, with a convergence rate, in case there is a classical solution and in case there is not (with a worse rate).

We also deal with a type of common noise made of common jumps of the whole population (introduced in [Bertucci-Lasry-Lions '18])

- Use notion of monotone solution to the master equation introduced by [Bertucci '20, '21]
- Convergence via compactness arguments, PDE method.

Outline	Mean field game	Discretization	Convergence	
Conclusions				

Without common noise, we show convergence of the discretized master equation to the continuous one, with a convergence rate, in case there is a classical solution and in case there is not (with a worse rate).

We also deal with a type of common noise made of common jumps of the whole population (introduced in [Bertucci-Lasry-Lions '18])

- Use notion of monotone solution to the master equation introduced by [Bertucci '20, '21]
- Convergence via compactness arguments, PDE method.

THANK YOU FOR YOUR ATTENTION