| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of me |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   |               |          |                                     |                   |

# Propagation of monotoncity for mean field games

#### Chenchen Mou

The 9th colloquium on Backward Stochastic Differential Equations and Mean Field Systems

June 27-July 1, 2022

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
| •       |                                   |               |          |                                     |                   |
|         |                                   |               |          |                                     |                   |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Outline

- 1 Master equation with common noise
- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
  - Lasry-Lions monotonicity
  - Displacement monotonicity
  - Anti-monotonicity

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         | 000000                            |               |          |                                     |                   |
|         |                                   |               |          |                                     |                   |

(日) (四) (日) (日) (日)

### Outline

### 1 Master equation with common noise

- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
  - Lasry-Lions monotonicity
  - Displacement monotonicity
  - Anti-monotonicity



### Master equation with common noise

• The master equation with common noise

$$\begin{cases} \partial_t V(t, x, \mu) + \frac{1+\beta^2}{2} \Delta V(t, x, \mu) - H(x, \mu, \partial_x V(t, x, \mu)) \\ + \mathcal{N}V = 0, \quad \text{in } (0, T) \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d), \\ V(T, x, \mu) = G(x, \mu), \end{cases}$$
(1)

where  $H: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ ,  $G: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$  and

$$\begin{split} \mathcal{N} \mathcal{V} &:= \operatorname{tr} \Big( \mathbb{E} \Big[ \frac{1+\beta^2}{2} \partial_{\tilde{x}\mu} \mathcal{V}(t, x, \mu, \xi) + \beta^2 \partial_{x\mu} \mathcal{V}(t, x, \mu, \xi) \\ - \langle \partial_\mu \mathcal{V}(t, x, \mu, \xi), \partial_\rho \mathcal{H}(\xi, \mu, \partial_x \mathcal{V}(t, \xi, \mu)) \rangle + \frac{\beta^2}{2} \tilde{\mathbb{E}} [\partial_{\mu\mu} \mathcal{V}(t, x, \mu, \tilde{\xi}, \xi)] \Big] \Big). \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         | 000000                            |               |          |                                     |                   |
|         |                                   |               |          |                                     |                   |

### Mean field game

• Let r.v.  $\xi$  be such that  $\mathcal{L}_{\xi}=\mu$  and let  $X^{\xi,\alpha'},\,X^{\xi,\alpha}$  be

$$X_t^{\xi,\alpha'} = \xi + \int_0^t \alpha'_s ds + B_t + \beta B_t^0,$$

$$X_t^{\xi,\alpha} = \xi + \int_0^t \alpha_s ds + B_t + \beta B_t^0.$$

• Let  $(Y^{\xi;\alpha',\alpha}, Z^{\xi;\alpha',\alpha}, Z^{0,\xi;\alpha',\alpha})$  solve

$$Y_t^{\xi;\alpha',\alpha} = G(X_T^{\xi,\alpha'}, \mathcal{L}_{X_T^{\xi,\alpha}|B^0}) + \int_t^T L(X_s^{\xi,\alpha'}, \alpha'_s, \mathcal{L}_{X_s^{\xi,\alpha}|B^0}) - \int_t^T Z_s^{\xi;\alpha',\alpha} dB_s - \int_t^T Z_s^{0,\xi;\alpha',\alpha} dB_s^0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         | 0000000                           |               |          |                                     |                   |
|         |                                   |               |          |                                     |                   |

### Mean field game

• The cost functional

$$J(\mu; \alpha', \alpha) = \mathbb{E}[Y_0^{\xi; \alpha', \alpha}].$$

• The minimization problem

$$V(\mu; \alpha) = \inf_{\alpha'} J(\mu; \alpha', \alpha).$$

### Definition (Nash equilibrium)

We say that  $(\alpha^*,\mu^*)$  is a Nash equilibrium for the above mean field game if

$$V(\mu; lpha^*) = J(\mu; lpha^*, lpha^*)$$
 and  $\mu_t^* = \mathcal{L}_{X_t^{\xi, lpha^*}|B^0}$ 

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



### Characterization of Nash eqilibrium

 By the Girsanov Theorem and comparison principle for BSDEs, we have

$$X_{t}^{\alpha^{*}} = \xi + B_{t}^{\alpha^{*}} + \beta B_{t}^{0},$$
  

$$Y_{t}^{\alpha^{*}} = G(X_{T}^{\alpha^{*}}, \mu_{T}^{*}) - \int_{t}^{T} H(X_{s}^{\alpha^{*}}, \mu_{s}^{*}, Z_{s}^{\alpha^{*}}) ds$$
  

$$- \int_{t}^{T} Z_{s}^{\alpha^{*}} dB_{s}^{\alpha^{*}} - \int_{t}^{T} Z_{s}^{0,\alpha^{*}} dB_{s}^{0},$$
(2)

where  $\alpha_t^* = -\partial_p H(X_t^{\alpha^*}, \mu_t^*, Z_t^{\alpha^*})$  and  $dB_t^{\alpha^*} = \alpha_t^* dt + dB_t$ .



### Characterization of the Nash eqilibrium

• At the Nash equilibrium, we have the following FBSDE system

$$\begin{split} X_{t}^{\xi} &= \xi - \int_{0}^{t} \partial_{\rho} H(X_{s}^{\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, Z_{s}^{\xi}) + B_{t} + \beta B_{t}^{0}, \\ Y_{t}^{\xi} &= G(X_{T}^{\xi}, \mathcal{L}_{X_{T}^{\xi}|B^{0}}) + \int_{t}^{T} L(X_{s}^{\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, -\partial_{\rho} H(X_{s}^{\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, Z_{s}^{\xi})) ds \\ &- \int_{t}^{T} Z_{s}^{\xi} dB_{s} - \int_{t}^{T} Z_{s}^{0,\xi} dB_{s}^{0}. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• 
$$Y_0^{\xi} = V(0,\xi,\mu).$$

| Outline<br>0 | Master equation with common noise $000000$ | Known results | Road map<br>00 | Propagation of monotonicity for MFG | Propagation of mo |
|--------------|--------------------------------------------|---------------|----------------|-------------------------------------|-------------------|
|              |                                            |               |                |                                     |                   |
| EDC          |                                            |               |                |                                     |                   |

• The master equation (1) is equivalent to the following forward-backward McKean-Vlasov SDEs

$$\begin{split} X_{t}^{\xi} &= \xi - \int_{0}^{t} \partial_{\rho} H(X_{s}^{\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, Z_{s}^{\xi}) + B_{t} + \beta B_{t}^{0}, \\ Y_{t}^{\xi} &= G(X_{T}^{\xi}, \mathcal{L}_{X_{T}^{\xi}|B^{0}}) + \int_{t}^{T} L(X_{s}^{\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, -\partial_{\rho} H(X_{s}^{\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, Z_{s}^{\xi})) ds \\ &- \int_{t}^{T} Z_{s}^{\xi} dB_{s} - \int_{t}^{T} Z_{s}^{0,\xi} dB_{s}^{0}, \\ X_{t}^{x,\xi} &= x - \int_{0}^{t} \partial_{\rho} H(X_{s}^{x,\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, Z_{s}^{x,\xi}) + B_{t} + \beta B_{t}^{0}, \\ Y_{t}^{x,\xi} &= G(X_{T}^{x,\xi}, \mathcal{L}_{X_{T}^{\xi}|B^{0}}) + \int_{t}^{T} L(X_{s}^{x,\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, -\partial_{\rho} H(X_{s}^{x,\xi}, \mathcal{L}_{X_{s}^{\xi}|B^{0}}, Z_{s}^{x,\xi})) ds \\ &- \int_{t}^{T} Z_{s}^{x,\xi} dB_{s} - \int_{t}^{T} Z_{s}^{0,x,\xi} dB_{s}^{0}, \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   | 0000          |          |                                     |                   |

### Outline

### Master equation with common noise

- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
  - Lasry-Lions monotonicity
  - Displacement monotonicity
  - Anti-monotonicity

### Literature for global wellposedness

- Buckdahn-Li-Peng-Rainer (2017)
   Linear equation, not MFG, so monotonicity is not required
- Chassagneux-Crisan-Delarue (2014), Carmona-Delarue (2018), Cardaliaguet-Delarue-Lasry-Lions (2019)
   Separable H and Lasry-Lions monotonicity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Gangbo-Meszaros (2020), Bensoussan-Graber-Yam (2020)
   ◊ Potential MFG with displacement monotonicity
- Cecchin-Delarue (2022)
  - Otential MFG without monotonicity, weak solutions

### Literature for global wellposedness

- Bayraktar-Cohen (2018), Bertucci-Lasry-Lions (2019), Bertucci (2020), Bertucci-Cecchin (2022)
   Finite state MFG with Lasry-Lions monotonicity
- Bayraktar-Cecchin-Cohen-Delarue (2019), Cecchin-Delarue (2020)
   Finite state MFG without monotonicity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Gomes-Voskanyan (2013), Carmona-Lacker (2015), Carmona-Delarue (2018), Cardaliaguet-Lehalle (2018), Kobeissi (2020)
  - MFGC with Lasry-Lions monotonicity
  - ◊ MFG system, not master equation

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   | 0000          |          |                                     |                   |

### Our works

Gangbo-Meszaros-M.-Zhang (2021)
 MFG master equation with non-separable H and displacement monotonicity

- M.-Zhang (2022a)
   MFG master equation with anti-monotonicity
- M.-Zhang (2022b)
   MFGC master equation with Lasry-Lions monotonicity, displacement monotonicity, anti-monotonicity

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         | 000000                            | 0000          | •0       | 0000000000                          | 00000             |

(日) (四) (日) (日) (日)

# Outline

- Master equation with common noise
- 2 Known results

### 3 Road map

- Propagation of monotonicity for MFG
  - Lasry-Lions monotonicity
  - Displacement monotonicity
  - Anti-monotonicity

| Outline<br>0 | Master equation with common noise | Known results | Road map<br>⊙● | Propagation of monotonicity for MFG | Propagation of mo |
|--------------|-----------------------------------|---------------|----------------|-------------------------------------|-------------------|
| _            |                                   |               |                |                                     |                   |

### Road map

- Step 1: Assume that *H* and *G* satisfy certain monotonicity condition. Show that the solution *V* of the master equation propagates the monotonicity condition.
- Step 2: Using the monotonicity condition of V (not the data H and G), show that V is Lipschitz continuous in  $\mu$  with respect to the metric  $W_2/W_1$ .
- Step 2': *W*<sub>2</sub>-Lipschitz continuity implies *W*<sub>1</sub>-Lipschitz continuity.
- Step 3: Use *W*<sub>1</sub>-Lipschitz continuity of *V* to patch local solutions to obtain a global one.

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   |               |          | 0000000000                          |                   |

(日) (四) (日) (日) (日)

# Outline

- Master equation with common noise
- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
  - Lasry-Lions monotonicity
  - Displacement monotonicity
  - Anti-monotonicity

| Outline<br>0 | Master equation with common noise | Known results<br>0000 | Road map<br>00 | Propagation of monotonicity for MFG | Propagation of mo |
|--------------|-----------------------------------|-----------------------|----------------|-------------------------------------|-------------------|
| Lasry-Li     | ons monotonicity                  |                       |                |                                     |                   |
| Out          | line                              |                       |                |                                     |                   |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Master equation with common noise
- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
   Lasry-Lions monotonicity
   Displacement monotonicity
   Anti-monotonicity
- 5 Propagation of monotonicity for MFGC

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   |               |          | 0000000000                          |                   |
|         |                                   |               |          |                                     |                   |

Lasry-Lions monotonicity

### Lasry-Lions monotonicity

#### Definition (Lasry-Lions monotonicity)

We say that  $G: \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$  is Lasry-Lions monotone if  $\forall \xi_1, \xi_2$ 

 $\mathbb{E}[G(\xi_1, \mathcal{L}_{\xi_1}) + G(\xi_2, \mathcal{L}_{\xi_2}) - G(\xi_1, \mathcal{L}_{\xi_2}) - G(\xi_2, \mathcal{L}_{\xi_1})] \geq 0.$ 

• If G is smooth, then the Lasry-Lions monotonicity is equivalent to  $\forall \xi, \eta$ 

$$\mathbb{E}\big[\langle \tilde{\mathbb{E}}[\partial_{x\mu}G(\xi,\mathcal{L}_{\xi},\tilde{\xi})\tilde{\eta}],\eta\rangle\big]\geq 0.$$

| Outline<br>0 | Master equation with common noise | Known results<br>0000 | Road map<br>00 | Propagation of monotonicity for MFG | Propagation of mo |
|--------------|-----------------------------------|-----------------------|----------------|-------------------------------------|-------------------|
| Displace     | ment monotonicity                 |                       |                |                                     |                   |
| Out          | line                              |                       |                |                                     |                   |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Master equation with common noise
- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
   Lasry-Lions monotonicity
   Displacement monotonicity
   Anti-monotonicity
- Propagation of monotonicity for MFGC

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of m |
|---------|-----------------------------------|---------------|----------|-------------------------------------|------------------|
|         |                                   |               |          | 0000000000                          |                  |

Displacement monotonicity

### Displacement monotonicity

#### Definition (Displacement monotonicity)

We say that  $G: \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$  is displacement monotone if  $\forall \xi_1, \xi_2$ 

$$\mathbb{E}[\langle \partial_x G(\xi_1,\mathcal{L}_{\xi_1}) - \partial_x G(\xi_2,\mathcal{L}_{\xi_2}),\xi_1 - \xi_2 \rangle] \geq 0.$$

• If G is smooth, then the displacement monotonicity is equivalent to  $\forall \xi, \eta$ 

 $\mathbb{E}\big[\langle \partial_{xx} G(\xi, \mathcal{L}_{\xi})\eta, \eta \rangle + \langle \tilde{\mathbb{E}}[\partial_{x\mu} G(\xi, \mathcal{L}_{\xi}, \tilde{\xi})\tilde{\eta}], \eta \rangle \big] \geq 0.$ 



### Displacement monotonicity

• We find the displacement monotonicity assumption for non-separable *H* to guarantee the uniqueness of MFG system and thus we are able to derive the global well-posedness of the master equation.

#### Definition (Displacement monotonicity on H)

We say that  $H : \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$  is displacement monotone if  $\forall \xi, \eta$  and  $\forall \varphi \in C^1(\mathbb{R}^d; \mathbb{R}^d)$ 

$$\begin{split} \operatorname{displ}_{\xi}^{\varphi} \mathcal{H}(\eta,\eta) &:= \mathbb{E}\Big[ \langle \partial_{xx} \mathcal{H}(\xi, \mathcal{L}_{\xi}, \varphi(\xi))\eta, \eta \rangle ] + \langle \tilde{\mathbb{E}}[\partial_{x\mu} \mathcal{H}(\xi, \mathcal{L}_{\xi}, \tilde{\xi}, \varphi(\xi))\tilde{\eta}], \eta \rangle \\ &+ \frac{1}{4} \big| (\partial_{\rho\rho} \mathcal{H}(\xi, \mu, \varphi(\xi)))^{-\frac{1}{2}} \tilde{\mathbb{E}}[\partial_{\rho\mu} \mathcal{H}(\xi, \mu, \tilde{\xi}, \varphi(\xi))\tilde{\eta}] \big|^{2} \Big] \leq 0. \end{split}$$

| Displacer | ment monotonicity                 |               |          |                                     |                |
|-----------|-----------------------------------|---------------|----------|-------------------------------------|----------------|
|           |                                   |               |          | 00000000000                         |                |
| Outline   | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of |

Displacement monotonicity

• It remains a challenge to extend the Lasry-Lions monotonicity assumption for non-separable Hamiltonian *H* to guarantee the uniqueness of the mean field game.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Displacement monotonicity

### Propagation of monotonicity

#### Consider

$$\begin{aligned} X_t &= \xi - \int_0^T \partial_p H(X_s, \mathcal{L}_{X_s}, \partial_x V(s, X_s, \mathcal{L}_{X_s})) ds + B_t + \beta B_t^0; \\ \delta X_t &= \eta - \int_0^t \partial_{px} H(X_s) + \tilde{\mathbb{E}}_{\mathcal{F}_t} [\partial_{p\mu} H(X_s, \tilde{X}_s) \delta \tilde{X}_t] \\ &+ \partial_{pp} H(X_s) [\tilde{\mathbb{E}}_{\mathcal{F}_s} [\partial_{x\mu} V(X_s, \tilde{X}_s) \delta \tilde{X}_s] + \partial_{xx} V(X_s) \delta X_s] ds. \end{aligned}$$

Define

$$D_t := J_t^1 + J_t^2 := \mathbb{E}[\langle I_t, \delta X_t \rangle] + \langle \overline{I}_t, \delta X_t \rangle]$$

where

$$I_t = \tilde{\mathbb{E}}_{\mathcal{F}_t}[\partial_{x\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t] \quad \text{and} \quad \bar{I}_t := \partial_{xx} V(X_t) \delta X_t.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Displacement monotonicity

### Propagation of monotonicity

#### ۲

$$\begin{split} j_t^1 &= \mathbb{E}\Big[-\langle \partial_{\rho\rho} H(X_t) I_t, I_t \rangle - \langle \tilde{\mathbb{E}}_{\mathcal{F}_t} [\partial_{\rho\mu} H(X_t, \tilde{X}_t) \delta \tilde{X}_t], \bar{I}_t - I_t \rangle \\ &+ \langle \tilde{\mathbb{E}}_{\mathcal{F}_t} [\partial_{x\mu} H(X_t, \tilde{X}_t) \delta \tilde{X}_t], \delta X_t \rangle \Big]. \end{split}$$

#### and

$$\begin{split} \dot{D}_t &= \mathbb{E}\Big[-\left|\partial_{\rho\rho}H(X_t)^{\frac{1}{2}}[I_t+\bar{I}_t]\right|^2 - \langle \tilde{\mathbb{E}}_{\mathcal{F}_t}[\partial_{\rho\mu}H(X_t,\tilde{X}_t)\delta\tilde{X}_t], I_t+\bar{I}_t \rangle \\ &+ \langle \tilde{\mathbb{E}}_{\mathcal{F}_t}[\partial_{x\mu}H(X_t,\tilde{X}_t)\delta\tilde{X}_t] + \partial_{xx}H(X_t)\delta X_t, \delta X_t \rangle \Big] \\ &= \mathbb{E}\Big[-\left|\partial_{\rho\rho}H(X_t)^{\frac{1}{2}}[I_t+\bar{I}_t] + \frac{1}{2}\partial_{\rho\rho}H(X_t)^{-\frac{1}{2}}\tilde{\mathbb{E}}_{\mathcal{F}_t}[\partial_{\rho\mu}H(X_t,\tilde{X}_t)\delta\tilde{X}_t]\right|^2 \\ &+ \mathrm{displ}_{X_t}^{\partial_x V(t,\cdot,\rho_t)}(\delta X_t, \delta X_t)\Big]. \end{split}$$

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   |               |          | 000000000000                        |                   |
| Anti-mo | notonicity                        |               |          |                                     |                   |
| _       |                                   |               |          |                                     |                   |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Outline

- Master equation with common noise
- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
  - Lasry-Lions monotonicity
  - Displacement monotonicity
  - Anti-monotonicity

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         | 000000                            | 0000          |          | 00000000000                         | 00000             |

Anti-monotonicity

### Anti-monotonicity

### Definition (Anti-monotonicity)

We say that  $G : \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$  is anti-monotone if, for some appropriate constants  $c_1, c_2 > 0$ ,

$$\begin{split} & \mathbb{E}\big[\langle \partial_{xx} G(\xi, \mathcal{L}_{\xi})\eta, \eta \rangle + \langle \tilde{\mathbb{E}}[\partial_{x\mu} G(\xi, \mathcal{L}_{\xi}, \tilde{\xi})\tilde{\eta}], \eta \rangle \big] \\ & \leq -\mathbb{E}\big[c_1 \|\partial_{xx} G(\xi, \mathcal{L}_{\xi})\eta\|^2 - c_2 \|\tilde{\mathbb{E}}[\partial_{x\mu} G(\xi, \mathcal{L}_{\xi}, \tilde{\xi})\tilde{\eta}]\|^2 \big] \quad \forall \xi, \eta. \end{split}$$

• See a more general condition in the paper.

#### Anti-monotonicity

### Propagation of anti-monotonicity

#### Denote

$$A_t := \mathbb{E}\big[c_1 \|\partial_{xx} G(\xi, \mathcal{L}_{\xi})\eta\|^2 + c_2 \|\tilde{\mathbb{E}}_{\mathcal{F}_{\mathcal{T}}}[\partial_{x\mu} G(\xi, \mathcal{L}_{\xi}, \tilde{\xi})\tilde{\eta}]\|^2\big].$$

• Assume that G is anti-monotone, i.e.  $D_T + A_T \leq 0$ . Then, under certain condition on H, we are able to show that

$$\dot{D}_t + \dot{A}_t \ge 0, \quad \forall t$$

which implies that

$$D_t + A_t \leq 0, \quad \forall t.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   |               |          |                                     | •0000             |

### Outline

- Master equation with common noise
- 2 Known results
- 3 Road map
- Propagation of monotonicity for MFG
   Lasry-Lions monotonicity
   Displacement monotonicity
  - Anti-monotonicity

| Outline<br>0 | Master equation with common noise | Known results | Road map<br>00 | Propagation of monotonicity for MFG | Propagation of mo<br>0●000 |
|--------------|-----------------------------------|---------------|----------------|-------------------------------------|----------------------------|
| MF           | GC                                |               |                |                                     |                            |

• The dynamic at the Nash equilibrium:

$$X_{t} = \xi + \int_{0}^{t} \alpha_{s}^{*} ds + B_{t} + \beta B_{t}^{0}; \quad \nu_{t} := \mathcal{L}_{(X_{t}, \alpha_{t}^{*})|B^{0}}; \quad \mu_{t} := \mathcal{L}_{X_{t}|B^{0}}.$$

• The control at the Nash equilibrium:

$$\alpha_t^* = -\partial_{\rho} H(X_t, \nu_t, Z_t), \quad Z_t := \partial_x V(t, X_t, \mu_t)$$

• The fixed point :

$$\nu_t = \mathcal{L}_{(X_t, \alpha_t^*)} = \mathcal{L}_{(X_t, -\partial_p H(X_t, \nu_t, Z_t))} \Rightarrow \nu_t = \psi(\mathcal{L}_{(X_t, Z_t)}).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of mo |
|---------|-----------------------------------|---------------|----------|-------------------------------------|-------------------|
|         |                                   |               |          |                                     | 00000             |

### MFGC Master equations

#### • The MFGC master equation

$$\begin{cases} \partial_t V(t, x, \mu) + \frac{1+\beta^2}{2} \Delta V(t, x, \mu) - \hat{H}(x, \mathcal{L}_{(\xi, \partial_x V(t, \xi, \mu))}, \partial_x V(t, x, \mu)) \\ + \hat{\mathcal{N}} V = 0, \quad \text{in } (0, T) \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d), \\ V(T, x, \mu) = G(x, \mu), \end{cases}$$
(5)

where  $\hat{H}(x, \mathcal{L}_{(\xi,\eta)}, p) := H(x, \psi(\mathcal{L}_{(\xi,\eta)}), p)$  and

$$egin{aligned} \hat{\mathcal{N}} \mathcal{V} &:= \mathrm{tr} \Big( \mathbb{E} \Big[ rac{1+eta^2}{2} \partial_{ ilde{x}\mu} \mathcal{V}(t,x,\mu,\xi) + eta^2 \partial_{x\mu} \mathcal{V}(t,x,\mu,\xi) \ &- \langle \partial_\mu \mathcal{V}(t,x,\mu,\xi), \partial_\rho \hat{\mathcal{H}}(\xi, \mathcal{L}_{(\xi,\partial_x \mathcal{V}(t,\xi,\mu))}, \partial_x \mathcal{V}(t,\xi,\mu)) 
angle \ &+ rac{eta^2}{2} ilde{\mathbb{E}} [\partial_{\mu\mu} \mathcal{V}(t,x,\mu, ilde{\xi},\xi)] \Big] \Big). \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

### Propagation of monotonicity

• The condition for  $\hat{H}$  to propagate the displacement monotonicity:

$$\mathbb{E}\Big[\langle\partial_{xx}\hat{H}(\xi)\eta,\eta\rangle] + \langle \tilde{\mathbb{E}}[\partial_{x\nu_{1}}\hat{H}(\xi,\tilde{\xi})\tilde{\eta}],\eta\rangle \\ + \frac{1}{4}\big|(\partial_{\rho\rho}\hat{H}(\xi) - \|\partial_{x\nu_{2}}\hat{H}(\xi,\cdot)\|_{\infty})^{-\frac{1}{2}}\tilde{\mathbb{E}}[(\partial_{\rho\nu_{1}}\hat{H}(\xi,\tilde{\xi}) + \partial_{\rho\nu_{2}}\hat{H}(\xi,\tilde{\xi}))\tilde{\eta}]\big|^{2}\Big] \leq 0.$$

• Assume above and G is displacement monotone, then  $V(t,\cdot,\cdot)$  is displacement monotone for all t.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Similarly we can derive conditions for Lasry-Lions monotonicity and anti-monotoncity.

| Outline | Master equation with common noise | Known results | Road map | Propagation of monotonicity for MFG | Propagation of m |
|---------|-----------------------------------|---------------|----------|-------------------------------------|------------------|
|         |                                   |               |          |                                     | 00000            |

# Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ