Convergence Rates of Random Walk Approximations of Forward-Backward SDEs

Christel Geiss (University of Jyväskylä)
joint work with
Philippe Briand, Céline Labart (Université Savoie Mont-Blanc) Stefan Geiss (University of Jyväskylä)

BSDE 2022
Annecy June 27 - July 1

Forward Backward Stochastic Differential Equations (FBSDEs)

$$
\begin{aligned}
& X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}, \quad 0 \leq t \leq T \\
& Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}
\end{aligned}
$$

Replacing $\left(B_{t}\right)_{t \in[0, T]}$ by a random walk $\left(B_{t}^{n}\right)_{t \in[0, T]}$ what kind of convergence one can expect:

$$
\left(\left(Y_{t}^{n}\right)_{t \in[0, T]},\left(Z_{t}^{n}\right)_{t \in[0, T]}\right) \rightarrow\left(\left(Y_{t}\right)_{t \in[0, T]},\left(Z_{t}\right)_{t \in[0, T]}\right) ?
$$

Forward Backward Stochastic Differential Equations (FBSDEs)

$$
\begin{aligned}
& X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}, \quad 0 \leq t \leq T \\
& Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}
\end{aligned}
$$

Replacing $\left(B_{t}\right)_{t \in[0, T]}$ by a random walk $\left(B_{t}^{n}\right)_{t \in[0, T]}$ what kind of convergence one can expect:

$$
\left(\left(Y_{t}^{n}\right)_{t \in[0, T]},\left(Z_{t}^{n}\right)_{t \in[0, T]}\right) \rightarrow\left(\left(Y_{t}\right)_{t \in[0, T]},\left(Z_{t}\right)_{t \in[0, T]}\right) ?
$$

Briand, Delyon and Mémin (2001)

If b, σ, f and g are Lipschitz and $\left(B_{t}^{n}\right)_{t \in[0, T]}$ such that $\sup _{0 \leq t \leq T}\left|B_{t}^{n}-B_{t}\right| \rightarrow 0, \quad n \rightarrow \infty, \quad$ in probability, then

$$
\sup _{0 \leq t \leq T}\left|Y_{t}^{n}-Y_{t}\right|^{2}+\int_{0}^{T}\left|Z_{s}^{n}-Z_{s}\right|^{2} d s \rightarrow 0 \text { when } n \rightarrow \infty \text { in probability. }
$$

Random walk approximation of the Brownian motion
Let $t_{k}:=k h, k=0, \ldots, n$ be a regular grid of $[0, T]$, where $h=\frac{T}{n}$ and define

$$
\begin{aligned}
& B_{t}^{n}:=\sqrt{h} \sum_{j=1}^{[t / h]} \varepsilon_{j},\left(\varepsilon_{j}\right)_{j=1}^{n} \text { i.i.d. Rademacher r.v.: } \mathbb{P}\left(\varepsilon_{j}= \pm 1\right)=\frac{1}{2} \\
& {\left[B^{n}\right]_{t}=h \sum_{j=1}^{n} j \mathbf{1}_{\left(t_{j-1}, t_{j}\right]}(t) \quad \text { quadratic variation. }}
\end{aligned}
$$

Random walk approximation of the Brownian motion
Let $t_{k}:=k h, k=0, \ldots, n$ be a regular grid of $[0, T]$, where $h=\frac{T}{n}$ and define

$$
\begin{aligned}
& B_{t}^{n}:=\sqrt{h} \sum_{j=1}^{[t / h]} \varepsilon_{j},\left(\varepsilon_{j}\right)_{j=1}^{n} \text { i.i.d. Rademacher r.v.: } \mathbb{P}\left(\varepsilon_{j}= \pm 1\right)=\frac{1}{2} \\
& {\left[B^{n}\right]_{t}=h \sum_{j=1}^{n} j \mathbf{1}_{\left(t_{j-1}, t_{j}\right]}(t) \quad \text { quadratic variation. }}
\end{aligned}
$$

- Donsker's Theorem:

Convergence of the processes in the Skorokhod space $D[0, T]$:

$$
\left(B_{t}^{n}\right)_{t \in[0, T]} \rightarrow\left(B_{t}\right)_{t \in[0, T]} \quad \text { in distribution. }
$$

Random walk approximation of the Brownian motion
Let $t_{k}:=k h, k=0, \ldots, n$ be a regular grid of $[0, T]$, where $h=\frac{T}{n}$ and define

$$
\begin{aligned}
& B_{t}^{n}:=\sqrt{h} \sum_{j=1}^{[t / h]} \varepsilon_{j},\left(\varepsilon_{j}\right)_{j=1}^{n} \text { i.i.d. Rademacher r.v.: } \mathbb{P}\left(\varepsilon_{j}= \pm 1\right)=\frac{1}{2} \\
& {\left[B^{n}\right]_{t}=h \sum_{j=1}^{n} j \mathbf{1}_{\left(t_{j-1}, t_{j}\right]}(t) \quad \text { quadratic variation. }}
\end{aligned}
$$

- Donsker's Theorem:

Convergence of the processes in the Skorokhod space $D[0, T]$:

$$
\left(B_{t}^{n}\right)_{t \in[0, T]} \rightarrow\left(B_{t}\right)_{t \in[0, T]} \quad \text { in distribution. }
$$

- We get the $\mathrm{FBS} \Delta \mathrm{E}$ (Forward-backward stochastic difference equation)

$$
\begin{aligned}
& X_{t}^{n}=x+\int_{(0, t]} b\left(s, X_{s-}^{n}\right) d\left[B^{n}\right]_{s}+\int_{(0, t]} \sigma\left(s, X_{s-}^{n}\right) d B_{s}^{n}, \\
& Y_{t}^{n}=g\left(X_{T}^{n}\right)+\int_{(t, T]} f\left(s, X_{s-}^{n} Y_{s-}^{n}, Z_{s}^{n}\right) d\left[B^{n}\right]_{s}-\int_{(t, T]} Z_{s}^{n} d B_{s}^{n}, \quad 0 \leq t \leq T .
\end{aligned}
$$

BSDEs and $\mathrm{BS} \Delta \mathrm{Es}$

$$
Y_{t}=g\left(B_{s_{1}}, . ., B_{s_{K}}\right)+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}
$$

$B d$-dimensional $d \geq 2, \Longrightarrow\left(B_{t}^{n}\right)$ does not possess the representation property. (M_{t}^{n}) is a martingale orthogonal to $\left(B_{t}^{n}\right)$:
$Y_{t}^{n}=g\left(B_{s_{1}}^{n}, . ., B_{s_{K}}^{n}\right)+\int_{(t, T]} f\left(s, Y_{s^{-}}^{n}, Z_{s}^{n}\right) d\left[B^{n}\right]_{s}-\int_{(t, T]} Z_{s}^{n} d B_{s}^{n}-\left(M_{T}^{n}-M_{t}^{n}\right)$
Cheridito and Stadje (2013): BSDEs and BS Δ Es
f sub-quadratic growth in z, Lipschitz in y, g bounded and Lipschitz and $\left(B_{t}^{n}\right)_{t \in[0, T]}$ such that
$\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|B_{t}^{n}-B_{t}\right|^{2}\right] \rightarrow 0, \quad n \rightarrow \infty$, then
$\mathbb{E}\left[\sup _{0 \leq t \leq T}\left(\left|Y_{t}^{n}-Y_{t}\right|+\left|\int_{0}^{t} Z_{s}^{n} d B_{s}^{n}-\int_{0}^{t} Z_{s} d B_{s}\right|+\left|M_{t}^{n}\right|\right)^{2}\right] \rightarrow 0$ when $n \rightarrow \infty$.

Other results

Random walk schemes: convergence in probability or weak convergence:

- Nakayama (2002) (multidimensional), Toldo (2005) (with random terminal time), Numerical schemes: Ma, Protter, San Martín and Torres (2002) (path-dependent terminal condition), Peng, Xu (2008) (Implicit and explicit schemes for BSDEs) Mémin, Peng and Xu (2008), Martinez, San Martín and Torres (2011) (reflected BSDEs), Jańczak $(2008,2009)$ (generalized reflected BSDEs with random terminal time), ...

Other results

Random walk schemes: convergence in probability or weak convergence:

- Nakayama (2002) (multidimensional), Toldo (2005) (with random terminal time), Numerical schemes: Ma, Protter, San Martín and Torres (2002) (path-dependent terminal condition), Peng, Xu (2008) (Implicit and explicit schemes for BSDEs) Mémin, Peng and Xu (2008), Martinez, San Martín and Torres (2011) (reflected BSDEs), Jańczak $(2008,2009)$ (generalized reflected BSDEs with random terminal time), ...
Time discretization schemes with L_{2} or L_{p}-rate ($p \geq 2$)
- Zhang (2004) Bouchard \& Touzi (2004) ,..., Richou (2011), Lionnet \& dos Reis \& Szpruch (2016), S. Geiss \& Ylinen (2018) (regularity of Y), Han \& Jentzen (2017), Chassagneux, Richou (2019), Sun et al. (2022),...

Other results

Random walk schemes: convergence in probability or weak convergence:

- Nakayama (2002) (multidimensional), Toldo (2005) (with random terminal time), Numerical schemes: Ma, Protter, San Martín and Torres (2002) (path-dependent terminal condition), Peng, Xu (2008) (Implicit and explicit schemes for BSDEs) Mémin, Peng and Xu (2008), Martinez, San Martín and Torres (2011) (reflected BSDEs), Jańczak $(2008,2009)$ (generalized reflected BSDEs with random terminal time), ...
Time discretization schemes with L_{2} or L_{p}-rate ($p \geq 2$)
- Zhang (2004) Bouchard \& Touzi (2004) ,..., Richou (2011), Lionnet \& dos Reis \& Szpruch (2016), S. Geiss \& Ylinen (2018) (regularity of Y), Han \& Jentzen (2017), Chassagneux, Richou (2019), Sun et al. (2022),...

Random walk schemes: with L_{2}-rate

- C.G., Labart, Luoto (2020, 2021) f Lipschitz, g - -Hölder continuous:

$$
\sup _{0 \leq t<T}\left(\mathbb{E}\left|Y_{t}-Y_{t}^{n}\right|^{2}\right)^{\frac{1}{2}} \leq C n^{-\frac{\varepsilon}{4}},\left(\mathbb{E} \int_{0}^{T}\left|Z_{t}-Z_{t}^{n}\right|^{2} d t\right)^{\frac{1}{2}} \leq C_{2} n^{-\beta} \text { for } \beta \in\left(0, \frac{\varepsilon}{4}\right)
$$

Why only $n^{-\frac{\varepsilon}{4}}$?

- C.G., Labart, Luoto (2020, 2021) f Lipschitz, $g \varepsilon$-Hölder continuous:

$$
\sup _{0 \leq t<T}\left(\mathbb{E}\left|Y_{t}-Y_{t}^{n}\right|^{2}\right)^{\frac{1}{2}} \leq C n^{-\frac{\varepsilon}{4}},\left(\mathbb{E} \int_{0}^{T}\left|Z_{t}-Z_{t}^{n}\right|^{2} d t\right)^{\frac{1}{2}} \leq C_{2} n^{-\beta} \text { for } \beta \in\left(0, \frac{\varepsilon}{4}\right)
$$

Why only $n^{-\frac{\varepsilon}{4}}$?

- C.G., Labart, Luoto (2020, 2021) f Lipschitz, g - -Hölder continuous:

$$
\sup _{0 \leq t<T}\left(\mathbb{E}\left|Y_{t}-Y_{t}^{n}\right|^{2}\right)^{\frac{1}{2}} \leq C n^{-\frac{\varepsilon}{4}},\left(\mathbb{E} \int_{0}^{T}\left|Z_{t}-Z_{t}^{n}\right|^{2} d t\right)^{\frac{1}{2}} \leq C_{2} n^{-\beta} \text { for } \beta \in\left(0, \frac{\varepsilon}{4}\right)
$$

- B^{n} is constructed from B by Skorohod embedding:

$$
\left(\mathbb{E}\left|B_{T}^{n}-B_{T}\right|^{2}\right)^{\frac{1}{2}} \leq C n^{-\frac{1}{4}}
$$

\Longrightarrow the rate for $\left(Y^{n}, Z^{n}\right) \rightarrow(Y, Z)$ can not be expected to be better.

Why only $n^{-\frac{\varepsilon}{4}}$?

- C.G., Labart, Luoto (2020, 2021) f Lipschitz, g - -Hölder continuous:

$$
\sup _{0 \leq t<T}\left(\mathbb{E}\left|Y_{t}-Y_{t}^{n}\right|^{2}\right)^{\frac{1}{2}} \leq C n^{-\frac{\varepsilon}{4}},\left(\mathbb{E} \int_{0}^{T}\left|Z_{t}-Z_{t}^{n}\right|^{2} d t\right)^{\frac{1}{2}} \leq C_{2} n^{-\beta} \text { for } \beta \in\left(0, \frac{\varepsilon}{4}\right)
$$

- B^{n} is constructed from B by Skorohod embedding:

$$
\left(\mathbb{E}\left|B_{T}^{n}-B_{T}\right|^{2}\right)^{\frac{1}{2}} \leq C n^{-\frac{1}{4}}
$$

\Longrightarrow the rate for $\left(Y^{n}, Z^{n}\right) \rightarrow(Y, Z)$ can not be expected to be better.

- Changing the metric to improve the rate?

Wasserstein distances

For $r>0$ put $\psi_{r}(x):=e^{|x|^{r}}-1$. For a real random variable X we define the Orlicz norm

$$
\|X\|_{\psi_{r}}:=\inf \left\{a>0: \mathbb{E}\left[\psi_{r}(X / a)\right] \leq 1\right\}, \quad \inf \emptyset:=+\infty
$$

Then for any $p>0$,

$$
\|X\|_{\mathrm{L}^{p}} \leq\left(\sup _{x>0}\left\{\frac{x^{p \vee r}}{\psi_{r}(x)}\right\}\right)^{1 /(p \vee r)}\|X\|_{\psi_{r}}
$$

For X, X^{\prime} random variables with $\operatorname{law}(X)=\mu, \operatorname{law}\left(X^{\prime}\right)=\nu$ and $r \geq 1$,

$$
W_{\psi_{r}}(\mu, \nu)=W_{\psi_{r}}\left(X, X^{\prime}\right):=\inf \left\{\left\|Y-Y^{\prime}\right\|_{\psi_{r}}: \operatorname{law}(Y)=\mu, \operatorname{law}\left(Y^{\prime}\right)=\nu\right\} .
$$

is a metric, the Wasserstein distance associated to ψ_{r}.

Wasserstein convergence rates for $B^{n} \rightarrow B$

Theorem 1 (Rio (2009))
$\left(X_{k}\right)_{k \geq 1}$ i.i.d. with
$\mathbb{E}\left[X_{1}\right]=0$,
$\mathbb{E}\left[X_{1}^{2}\right]=1$, and
$\mathbb{E}\left[e^{c\left|X_{1}\right|}\right]<+\infty$ for some $c>0$.
Let $\mathcal{G} \sim N(0,1)$.
Then $\exists C>0$ such that, for $n \geq 1$,

$$
W_{\psi_{1}}\left(\frac{X_{1}+\ldots+X_{n}}{n^{1 / 2}}, \mathcal{G}\right) \leq C n^{-1 / 2} .
$$

For $x \in \mathbb{R}$ and $0 \leq t \leq s \leq T$ we put

$$
B_{s}^{t, x}:=x+B_{s}-B_{t} \quad B_{s}^{n, t, x}:=x+B_{s}^{n}-B_{t}^{n} .
$$

Lemma 2 (Briand, C.G., S.Geiss, Labart (2021))
(1) $\exists C>0$ such that $\forall x \in \mathbb{R}$ and $0 \leq t \leq s \leq T$,

$$
W_{\psi_{1}}\left(B_{s}^{n, t, x}, B_{s}^{t, x}\right) \leq C \sqrt{T} n^{-1 / 2}
$$

(2) If $g: \mathbb{R} \longrightarrow \mathbb{R}$ is ε-Hölder continuous ($0<\varepsilon \leq 1$), then $\forall x \in \mathbb{R}$ and $0 \leq t \leq s \leq T$,

$$
\left|\mathbb{E}\left[g\left(B_{s}^{n, t, x}\right)\right]-\mathbb{E}\left[g\left(B_{s}^{t, x}\right)\right]\right| \leq C\|g\|_{\varepsilon} n^{-\varepsilon / 2},
$$

for some $C=C(T)$.

$$
Y_{t}=g\left(B_{T}\right)+\int_{t}^{T} f\left(s, B_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}
$$

Assumption 1

$\exists \varepsilon, \alpha \in(0,1]:$
(1) $g: \mathbb{R} \longrightarrow \mathbb{R}$ is ε-Hölder continuous: $\forall x, x^{\prime} \in \mathbb{R}$

$$
\left|g(x)-g\left(x^{\prime}\right)\right| \leq\|g\|_{\varepsilon}\left|x-x^{\prime}\right|^{\varepsilon} .
$$

(2) $f:[0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \forall(t, x, y, z)$ and $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$

$$
\begin{aligned}
& \left|f(t, x, y, z)-f\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)\right| \\
& \leq\left\|f_{t}\right\|_{\alpha}\left|t-t^{\prime}\right|^{\alpha}+\left\|f_{x}\right\|_{\varepsilon}\left|x-x^{\prime}\right|^{\varepsilon}+\|f\|_{\text {Lip }}\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) .
\end{aligned}
$$

Theorem 3 (Briand, C.G., S.Geiss, Labart (2021))

Assume that Assumption 1 holds. Then there exists a constant $C_{\varepsilon}>0$, depending at most on $(T, \alpha, \varepsilon, f, g)$ such that for all $x \in \mathbb{R}$,
(1) $W_{\psi_{1 / \varepsilon}}\left(Y_{s}^{n, t, x}, Y_{s}^{t, x}\right) \leq C_{\varepsilon}(1+|x|)^{\varepsilon} n^{-\left(\alpha \wedge \frac{\varepsilon}{2}\right)} \quad$ for all $0 \leq t \leq s \leq T$,
(11) $W_{\psi_{1 / \varepsilon}}\left(Z_{s}^{n, t, x}, Z_{s}^{t, x}\right) \leq C_{\varepsilon} \frac{(1+|x|)^{\varepsilon}}{\sqrt{T-s}} n^{-\left(\alpha \wedge \frac{\varepsilon}{2}\right)} \quad$ for all $s \in[t, T[$.

In particular, for any $p \in\left[1, \infty\left[\right.\right.$, there exists a constant $C_{p}>0$, depending at most on ($T, \alpha, \varepsilon, f, g, p$) such that for all $x \in \mathbb{R}$,
(1) $W_{p}\left(Y_{s}^{n, t, x}, Y_{s}^{t, x}\right) \leq C_{p}(1+|x|)^{\varepsilon} n^{-\left(\alpha \wedge \frac{\varepsilon}{2}\right)} \quad$ for all $0 \leq t \leq s \leq T$,
(11) $W_{p}\left(Z_{s}^{n, t, x}, Z_{s}^{t, x}\right) \leq C_{p} \frac{(1+|x|)^{\varepsilon}}{\sqrt{T-s}} n^{-\left(\alpha \wedge \frac{\varepsilon}{2}\right)} \quad$ for all $s \in[t, T[$.

The rate is optimal: If $g(x)=x$ and $f=0$ we have $Y_{T}^{n, 0,0}=B_{T}^{n}$ and $Y_{T}^{0,0}=B_{T}$, and it holds

$$
\lim _{n \rightarrow \infty} n^{\frac{1}{2}} W_{1}\left(Y_{T}^{n, 0,0}, Y_{T}^{0,0}\right) \geq \frac{1}{2} T^{\frac{1}{2}}
$$

Wasserstein convergence rates for $\left(Y^{n}, Z^{n}\right) \rightarrow(Y, Z)$

Idea of the proof: using the connection
FBSDE \Longleftrightarrow semilinear heat equation
$\mathrm{FBS} \Delta \mathrm{E} \quad \Longleftrightarrow \quad$ finite difference equation

Wasserstein convergence rates for $\left(Y^{n}, Z^{n}\right) \rightarrow(Y, Z)$

Idea of the proof: using the connection
FBSDE \Longleftrightarrow semilinear heat equation convergence \Uparrow 介
$\mathrm{FBS} \Delta \mathrm{E} \quad \Longleftrightarrow \quad$ finite difference equation

FBSDE \Longleftrightarrow semilinear heat equation

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+\frac{1}{2} \Delta u(t, x)+f(t, x, u(t, x), \nabla u(t, x))=0, \\
u(T, \cdot)=g
\end{array} \quad(t, x) \in[0, T) \times \mathbb{R}\right.
$$

is associated to the FBSDE

$$
\begin{gathered}
Y_{t}=g\left(B_{T}\right)+\int_{t}^{T} f\left(B_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T \\
\Leftarrow: \quad Y_{s}=u\left(s, B_{s}\right) \text { and } Z_{s}=\nabla u\left(s, B_{s}\right) \\
\Rightarrow: \\
u(t, x)=\mathbb{E}\left[g\left(B_{T}^{t, x}\right)+\int_{t}^{T} f\left(r, B_{r}^{t, x}, Y_{r}^{t, x}, Z_{r}^{t, x}\right) d r\right] \\
\nabla u(t, x)=\mathbb{E}\left[g\left(B_{T}^{t, x}\right) \frac{B_{T}-B_{t}}{T-t}+\int_{t}^{T} f\left(r, B_{r}^{t, x}, Y_{r}^{t, x}, Z_{r}^{t, x}\right) \frac{B_{r}-B_{t}}{r-t} d r\right] \\
\quad(t, x) \in[0, T) \times \mathbb{R}
\end{gathered}
$$

For the semilinear heat equation

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+\frac{1}{2} \Delta u(t, x)+f(t, x, u(t, x), \nabla u(t, x))=0, \quad(t, x) \in[0, T) \times \mathbb{R} \\
u(T, \cdot)=g,
\end{array}\right.
$$

we define the finite difference scheme letting

$$
\begin{aligned}
L^{h} u(x) & :=\frac{1}{2 h}(u(x+\sqrt{h})+u(x-\sqrt{h})-2 u(x)) \\
\nabla^{h} u(x) & :=\frac{1}{2 \sqrt{h}}(u(x+\sqrt{h})-u(x-\sqrt{h})) \\
\partial_{t}^{h} u(t) & :=\frac{1}{h}(u(t+h)-u(t))
\end{aligned}
$$

and $t_{k}=k h$. Then

$$
\left\{\begin{array}{lc}
\partial_{t}^{h} U^{n}\left(t_{k}, x\right)+L^{h} U^{n}\left(t_{k+1}, x\right)+f\left(t_{k+1}, x, U^{n}\left(t_{k}, x\right), \nabla^{h} U^{n}\left(t_{k+1}, x\right)\right)=0, \\
U^{n}\left(t_{n}, x\right)=g(x) . & k=0, \ldots, n-1
\end{array}\right.
$$

$\mathrm{FBS} \Delta \mathrm{E} \Longleftrightarrow$ finite difference equation

finite difference equation

$$
\begin{cases}\partial_{t}^{h} U^{n}\left(t_{k}, x\right)+L^{h} U^{n}\left(t_{k+1}, x\right)+f\left(t_{k+1}, x, U^{n}\left(t_{k}, x\right), \nabla^{h} U^{n}\left(t_{k+1}, x\right)\right)=0, \\ U^{n}\left(t_{n}, x\right)=g(x) . & k=0, \ldots, n-1\end{cases}
$$

FBS $\Delta \mathrm{E}$

$$
\begin{gathered}
\left\{\begin{array}{l}
Y_{t_{k}}^{n}=Y_{t_{k+1}}^{n}+h f\left(t_{k+1}, B_{t_{k}}^{n}, Y_{t_{k}}^{n}, Z_{t_{k+1}}^{n}\right)-\sqrt{h} Z_{t_{k+1}}^{n} \varepsilon_{k+1} \\
Y_{T}^{n}=g\left(B_{T}^{n}\right), \quad k=0, \ldots, n-1
\end{array}\right. \\
\Leftarrow: \quad Y_{t_{k}}^{n}=U^{n}\left(t_{k}, B_{t_{k}}^{n}\right), \quad Z_{t_{k}}^{n}=\nabla^{h} U^{n}\left(t_{k}, B_{t_{k-1}}^{n}\right), \\
\Rightarrow: \\
U^{n}(t, x)=\mathbb{E} g\left(B_{T}^{n, t, x}\right)+\mathbb{E} \int_{(t, T]} f\left(s, B_{s-}^{n, t, x}, Y_{s-}^{n, t, x}, Z_{s}^{n, t, x}\right) d\left[B^{n}\right]_{s} \quad 0 \leq t \leq T . \\
\nabla^{h} U^{n}(\underline{t}+h, x)=\mathbb{E}\left[g\left(B_{T}^{n, t, x}\right) \frac{B_{T}^{n, t, x}-x}{T-\underline{t}}+\int_{(t, T]} f(\ldots) \frac{B_{s}^{n, t, x}-x}{\underline{s}-\underline{t}} d\left[B^{n}\right]_{s}\right]
\end{gathered}
$$

Theorem 4

Under Assumption 1 there exists a constant $C>0$ depending at most on ($T, \alpha, \varepsilon, f, g$) such that for $k=0, \ldots, n-1$
(1) $\left|u(t, x)-U^{n}\left(t_{k}, x\right)\right| \leq C(1+|x|)^{\varepsilon} n^{-\left(\alpha \wedge \frac{\varepsilon}{2}\right)} \quad$ for all $(t, x) \in \mathbb{R} \times\left[t_{k}, t_{k+1}\right)$,
(11) $\left|\nabla u(t, x)-\nabla^{h} U^{n}\left(t_{k+1}, x\right)\right| \leq C \frac{(1+|x|)^{\varepsilon}}{\sqrt{T-t}} n^{-\left(\alpha \wedge \frac{\varepsilon}{2}\right)}$ for all $(t, x) \in \mathbb{R} \times\left[t_{k}, t_{k+1}\right)$.

Open question: the path dependent case (How to construct Malliavin weights?)
First answer: approximation of the Brownian motion by random walk without Skorohod embedding.

Theorem 5 (Briand, C.G., S.Geiss, Labart)
$\left(B_{t}\right)_{t \in[0, T]}$ on $(\Omega, \mathcal{F}, \mathbb{P})$. Then one can construct
(1) an extension $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$
(2) $\varepsilon_{1}, \ldots, \varepsilon_{n}$ independent Rademacher $r v$ such that for $p \in(0, \infty)$

$$
\left(\mathbb{E}_{\mathbb{P}^{\prime}} \sup _{t \in[0, T]}\left|B_{t}-B_{t}^{n}\right|^{p}\right)^{1 / p} \leq C \frac{\log n}{\sqrt{n}}
$$

P. Briand, B. Delyon, J. Memin, Donsker-Type theorem for BSDEs. Electron. Comm. Probab., 6 1-14 (2001).
宣
P. Briand, C. Geiss, S. Geiss, C. Labart, Donsker-Type Theorem for BSDEs: Rate of Convergence. Bernoulli, 27(2): 899-929 (2021).
図
B. Bouchard and N. Touzi. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Process. Appl.,111(2):175-206, 2004.

P. Cheridito and M. Stadje, BSAEs and BSDEs with non-Lipschitz drivers: Comparison, convergence and robustness Bernoulli 19(3) (2013) 1047-1085.C. Geiss, C. Labart and A. Luoto, Random walk approximation of BSDEs with Hölder continuous terminal condition Bernoulli 26 (1) pp. 159-190, 2020.
S. Geiss and J. Ylinen, Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs,

E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349-380 (2017)

R K．Jańczak，Discrete approximations of reflected backward stochastic differential equations with random terminal time，Probab．Math．Statistics 28 （2008）41－74．
國 K．Jańczak，Discrete approximations of generalized rbsde with random terminal time，Discussiones Mathematicae Probability and Statistics 32 （2012）69－85．

R A．Lionnet，G．dos Reis，L．Szpruch ，Convergence and qualitative properties of modified explicit schemes for BSDEs with polynomial growth Ann．Appl．Probab． 28（4）：2544－2591（2018）．
T．Nakayama，Approximation of BSDE＇s by Stochastic Difference Equation＇s J． Math．Sci．Univ．Tokyo 9 （2002），257－277．

圊 J．Ma，P．Protter，J．San Martín and S．Torres，Numerical method for backward stochastic differential equations．Ann．Appl．Probab． 12 （2002）302－316．

䍰 M．Martínez，J．San Martín and S．Torres，Numerical Method for Reflected Backward Stochastic Differential Equations，Stochastic Analysis and Applications Volume 29， 2011 －Issue 6.
D. Mémin, S. Peng and M. Xu, Convergence of solutions of discrete reflected backward SDE's and simulations. Acta Math. Appl. Sin. (English Series) 24 (2008) 1-18.
D. Peng and M. Xu, Numerical Algorithms for Backward Stochastic Differential Equations with 1-d Brownian motion: Convergence and simulations. Math. Model. Numer. Anal. 45 (2011) 335 - 360.
园
E. Rio, Upper bounds for minimal distances in the central limit theorem, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 3, 802-817.
R
D. Sun, G. Liang, and S. Tang, Quantitative stability and numerical analysis of Markovian quadratic BSDEs with reflection, PUQR, Vol. 7, No. 1, 2022, 13-30

S. Toldo. Stability of solutions of BSDEs with random terminal time. ESAIM: Probability and Statistics, 10:141-163, 2006.
R
S. Toldo. Corrigendum to 'Stability of solutions of BSDEs with random terminal time'. ESAIM: Probability and Statistics, 11:381-384, 2007.
. J. Zhang. A numerical scheme for BSDEs. Ann. Appl. Probab., 14(1):459-488, 2004.

