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Motivations

» MFG corresponds to the limit of large population differential games
with mean-field interaction

» Nash equilibria for n-player games when n is large
» Introduced by Lasry & Lions '06
» Two broad lines of research

» PDE approach
> Probabilistic approach

» Applications in economy (economic growth), finance (price impact),
crowd dynamics, ...
» However n might not be constant

» Impact of demography in socio-economic games
» Population dynamics
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Toy Model
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Branching Diffusion

» Consider a population where each agent k € K=J,,~; N"
> enters the game at time Sy
> follows a diffusion

ot
Xf:XékJr/ abds+v2 (B - BS,), B"BM

J sy,

> |eaves the game at rate v, i.e., at time
Ty = (Sk-f—Tk)/\T, Tkwg(’y)

» is replaced by ¢ € N agents with probability p;(Xﬂ‘L) ie., if
-1 ¢
D opi(XE) SU< > pi(XE), Ue ~UO,1)
i=0 i=0

» (B* 74, Up)rex are independent
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Toy Model
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Finite-Player Problem

» Start with n agents at position (X§)g=1, ., i.i.d.
» Each agent k € K enters at time S, leaves at time T}, and follows

t
XF=xk +/ afds+ 2 (Bf — BS)
Sk

while choosing a* in order to minimize

E

1 [T )

é/s ‘at‘ dt+g (XT ,uT) 1p= ] = Jk(aka(a])jsék)
J Ok

where

Z 5xk with KT the set of agents at time T'
" kexrn

» Find a Nash equilibrium, i.e., (&*)ex such that

Ti(@¥, (67) 1) = Tk (6%, (67) ) VE, o”
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Toy Model
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Mean Field Games with Branching

> Asn — oo
> a single player has no influence on 7
» by symmetry and independence

{7, @) =% > w(Xh) HE{ > so(Xé‘l)}

L KT el
keKT keK,

» MFG with branching

1.
2.

Fix ur € M(R?) X
Find an optimal branching diffusion (X,,k)keK} where each agent k

plays the strategy &* to minimize
. 1T e k
inf E {f ’a, ‘ dt+g (XT., ,uT) 1T;,»:T}
ak 2 . Slv

where
dX{ = ol ds++2dBf, Tp=(Sp+m)AT

The problem is then to find pr such that
<uT,s0>:1E{ > sﬁ(f(é‘?)}
keK,
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Toy Model
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PDE Formulation

> A solution to the MFG with branching is a couple (u,m) satisfying
1

O+ Au — 5 Dul” —yu=0  in[0,T) x R?

Om — Am — div (mDu) —“,/Z (L—1)pim =0 in (0,7] x RY
¢eN

- md
up = g (my), mo = po in R

» Existence of a solution as extension of Cardaliaguet '11
1. Fix pur € M(R?)
2. Find u* (smooth) solution to

1
hut + Aut — 5 |Dut? —yut =0, b= g(pr)
Then m# = L(Zkekl 55(&) (weak) solution to
om* — Am* — div (m" Du") wz L—1)pem" =0, ml = puo

£eN

3. Find a fixed point to ¢ : pr — m4. by Schauder Theorem
> Continuity of 1 on a convex compact subset of M(R?) into itself
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Toy Model
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e-Nash Equilibrium

> Let (u,m) be a solution to the MFG with branching

» Consider the family of controls

where . .
dX} = —Du(t, XF) dt + v2dB}

» For all € > 0, there exists N € N such that for all n > N
Je(0® (&) 1) + € = Ju(6F,(87);20) Yk, "

where

; I 2 n
Je(@®, (a?) ;1) :=E 5/5 }Oéﬂ dt +g (Xécw 1) 1o, =1
k
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Toy Model
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Numerical Example

» Consider the simple linear-quadratic model

1 ;
O+ Au — 5 |Dul* —yu =0 in [0,7) xR
dym — Am — div (mDu) —\x*m =0 in (0, 7] xR
ur = g(mr), mo = o in R

where A > 0 and

g9(z, p) 1:%(1‘—5)2—&-7(%—

» In particular
A
N tpe(r) =1+ Za?
(N !

» If mog = N(0,1), then there exists a solution on short time horizon
such that
my

my(R)

ZN(PmUt)
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Toy Model
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Numerical Result
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Figure: Change of equilibrium for different values of A
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© Relaxed Formulation
@ Strong MFG with branching
@ Relaxed Control of Diffusions
@ Relaxed Control of Branching Diffusions
@ Relaxed MFG with Branching
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Relaxed Formulation
[

Strong MFG with Branching

1. Fix (p¢)eefo, 1), e € M(RY)
2. Find an optimal branching diffusion (Xf)kef(} where each agent k plays

the strategy &* to minimize

inf E {

ak

T,
/ ]L(é,Xf,[LS,CM}:) d5+q(X'§C,HT)1T}V:T}
J Sk

subject to the constraint

dXY =b(s, XF pe, 0y ds + o(s, XF, pe, o) dBF

t
Ty :inf{t > Sk-; /

’Y(S,X;C”U,S)dSZTk}/\T, Tk’\‘g(].)

Sk
-1 ¢
Zpi(TkyX%M,Uka) <Ur < Zpi(Tk7X’§kaHTk)7 Ur ~U(0,1)
=0 =0

3. Find (u¢)¢efo,1) such that
(e, ) =1E[ > w()?f)} t€[0,T]
kEK}
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Relaxed Formulation
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Relaxed Control of Diffusions [El Karoui et al. '87]

Let Q :=C x V be the canonical space where

C:= {z:[0,7] — R* continuous}
Vi={q:[0,T] = P(A)} 5 s b4, (da)

Controlled Martingale Problem

An element P € R(u) is a probability on 2 such that the process

- /OS/A LEp(x,) gr(da) dr

is a P-martingale for all p € CZ(R%) where

1
Liop(@) = 3t (00" (5,2, 15, @) D2 (2)) + (5,7, 0,0) - Dip (2)
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Relaxed Formulation
oe

Relaxed Control of Diffusions [El Karoui et al. '87]

Consider the problem

Vv = inf J(P
() panf (P, 1)

where

T s
J (P, p) := EP[/ //167f<3 V(T’xr’“r)drf(s,xs,us,a) qs(da) ds
0

T

ey ot “g(wr, MT)}

Ifb, o, f,g are bounded continuous in (x,a), then there exists an optimal
relaxed control, i.e., P* € R(u) such that

Vip) =J(P*, p)

» P — J(P,pu) is (linear) continuous
» R(p) is compact
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Relaxed Formulation

Relaxed Control of Branching Diffusions

Let Q := D x V be the canonical space where
D:= {z 20,7 = E cédlég} where E := {e = ZkeK 6(k,7mk)}
Vi= {qf Fkex, ¢" : [0, T] H79(14)}

Controlled Martingale Problem

An element P € 7 (p) is a probability on Q such that the process

zs)f// HE a<I><p (zr) Gr(da) dr
AK

is a P-martingale for all € CZ(R), % € CZ(K x R4), where ®z(e) = ®({e, @)) and

WD (e) = By(e) Y L MR + 2 8(0) Y | Dt (eR)als, 2t s, )|

ke K keK
£
S IRICELS ( D (e Okry + D uiary)Pels 3t ps) - %(e))
keK £>0 i=1
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Relaxed Formulation
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Relaxed MFG with Branching

Proposition

If we assume that b, o Lipschitz in x and b, o, f, g,, pe bounded continuous
in (z, 1, a). Then an optimal relaxed control P* € T (), i.e., for all k € K

_ Ty
[ [, 70 ) bt s+ 0, )]
k

=EY [V (Sk, XE ,11)]

Under the same assumption, there exists a solution to the relaxed MFG
with branching, i.e., a probability 1 on D such that there exists an optimal
relaxed control P* € T (u) satisfying

p=P*cZ ' where Z(2,q) = 2

» Apply Kakutani Fixed Point Theorem to the set-valued map
1€ P(D)— {P*oZ ' P* € T(u) optimal} C P(D) 15/



Thank you for your attention!
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