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Part I. Introduction



Weakly interacting particle system
• Throughout, we consider an N-particle system of the type

dXi
t = b

(
Xi

t , µ̄
N
t
)
dt + dW i

t

for i an index in {1, · · · ,N} where µ̄N
t =

1
N

N∑
j=1

δXj
t

◦ (W1
t )t≥0, · · · , (WN

t )t≥0 are independent Brownian motions

◦ i.i.d. initial conditions X1
0 , · · · , XN

0

◦ model is said to be mean-field

•Main question: long time and large N behavior of the model
(absolutely not a new question)

dXt = b
(
Xt,L(Xt)

)
dt + dWt

• Xi
t may take values with in dimension d

b : Td × P(Td)→ Rd



Large N, large t
• Long time behaviour of McKean-Vlasov equations

◦ convergence toward ! invariant mesure: e.g. Benachour et al. (98),

Carrillo (03), Cattiaux et al. (08),... , for gradient flows with convex potentials

◦ uniqueness may be lost: see e.g. Bertini et al. (09), Giacomin (12)... for
periodic Kuramoto model

• Uniform propagation of chaos: convergence as N ↗ ∞ unif. in t

◦ may fail even if unique attractive invariant measure, see e.g.
Malrieu (03) in Rd

◦ hierarchy sup
t≥0

W1
(
L(X1

1 , · · · ,X
k
t ),L(Xt)⊗k

)
Durmus et al., (18), Salem (18), Rd : confinement + small or convex potential
{ N−1/2 for k = 1

Lacker and LeFlem (22) : similar conditions, but k/N

◦ empirical measure sup
t≥0

∣∣∣∣∣E[Φ(µN
t )

]
− Φ(mµ

t )
∣∣∣∣∣

Chassagneux et al. (19): finite horizon{ N−1 (+ error expansion),

Mischler et al., (15), Arnaudon et al., (20): Φ(µ) = 〈f , µ〉{ N−1

{ week error with suitable choice of Φ
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Part II. Semi-group of the MKV SDE



Semi-group
• Introduce the semi-group of a standard McKean-Vlasov equation

dXt = b
(
Xt,L(Xt)

)
dt + dWt

◦
(
mt = L(Xt)

)
t≥0 solves Fokker-Planck equation

∂tmt −
1
2∆mt + div

(
mtb(·,mt)

)
= 0, m0 = L(X0)

◦ if ∃!⇒L(Xt) only depends on L(X0)

• define the semi-group(
PtΦ

)
(L(X0)) = Φ

(
L(Xt)

)
, t ≥ 0, Φ : P(Td)→ R

◦ master equation

∂t(PtΦ)(µ) −
∫
Rd

b(v, µ) · ∂µ(PtΦ)(µ, v)dµ(v)

−
1
2

∫
Rd

Trace
[
∂v∂µ(PtΦ)(µ, v)

]
dµ(v) = 0, (P0Φ)(µ) = φ(µ)



Overview of differentiation on P(Td)
•We say thatV : P(Td)→ R is C1 if

d
dε |ε=0+

V
(
(1 − ε)µ + εµ′

)
=

∫
Td

δV

δm
(µ)(v)d(µ′ − µ)(v)

for a continuous map
δV

δm
: P(Td) × Td → R

◦ unique up to an additive constant{ impose zero mean under m

•Wasserstein derivative ∂µV(µ)(v) = ∂v
δV

δm
(µ)(v)

• Finite-dimensional projection

∂xi

[
V

( 1
N

N∑
j=1

δxj

)]
=

1
N
∂µV

( 1
N

N∑
j=1

δxj

)
(xi), x1, . . . , xN ∈ R

d

• V is C2 if P(Td) 3 µ 7→
δV

δm
(µ)(v) is C1. Second order derivatives

read (v, v′) 7→
δ2V

δm2 (µ)(v, v′).



Revisiting propagation of chaos
• Back to the particle system

dXi
t = b

(
Xi

t , µ
N
t
)
dt + dW i

t , µN
t =

1
N

∑
j

δXj
t

• How to test proximity with the limiting semi-group?

◦ notice that(
Pt−sΦ

)(
L
(
Xµ

s
))

= Φ
(
L
(
XL(Xµ

s )
t−s

))
= Φ

(
L(Xµ

t )
)

◦ expansion of
(
Pt−sΦ(µN

s )
)
0≤s≤t

E
[
Φ(µN

t )
]
− Φ

(
L(Xµ

t )
)

= E
[(

PtΦ
)
(µN

0 )
]
−

(
PtΦ

)
(µ)

+
1

2N2

N∑
i=1

Trace
∫ t

0
E
[
∂2
µPt−sΦ(µN

s )(Xi
s,X

i
s)
]
ds

◦ as for the initial condition∣∣∣∣∣E[(PtΦ
)
(µ̄N

0 )
]
−

(
PtΦ

)
(µ)

∣∣∣∣∣ ≤ C
N

sup
m∼µ

∥∥∥∥∥δ2PtΦ

δm2 (m)(·, ·)
∥∥∥∥∥
∞



Choice of Φ

• In short, we want to get integrable bounds on the various derivatives
and then get uniform propagation of chaos at rate 1/N.

• Using smoothing effect of the diffusion, we just need bounds and
Hölder regularity on

Φ(m),
δΦ

δm
(m)(x),

δ2Φ

δm2 (m)(x, x′)

◦ Φ(m) = 〈f ,m〉 ⇒
δΦ

δm
(m)(x) = f (x)

• Example

◦ for given ε ∈ (0, 1] and µ0 ∈ P(Td), choose

Φ(µ) =
∥∥∥µ − µ0

∥∥∥2
−(d+ε)/2

where

‖m‖2
−(d+ε)/2 =

∑
n∈Zd

1
(1 + |n|2)(d+ε)/2

∣∣∣∣∣∫
Td

exp(i2πn · θ)dm(θ)
∣∣∣∣∣2



Part III. Long time derivatives of the semi-group



Road map to the regularity of the semi-group

• Goal is to address
δPtΦ

δm
(
µ
)
(x)

•Make use of a flow/characteristics method
d
dε

PtΦ
(
(1 − ε)µ + εµ′

)
|ε=0+ =

d
dε

[
Φ
(
m(1−ε)µ+εµ′

t
)]
|ε=0+

=

∫
Td

δΦ

δm
(
mµ

t
)
(x)

d
dε

m(1−ε)µ+εµ′

t (dx)

• Fomally,
d
dε

m(1−ε)µ+εµ′

t (dx) solves linearized equation

∂tm
(1)
t −

1
2∆m(1)

t + div
(
m(1)

t b
(
·,mµ

t
))

+ div
(
mt

〈 δb
δm

(
·,mµ

t
)
,m(1)

t

〉)
= 0

with m(1)
0 = µ′ − µ

• Replace m(1)
0 by δz:

δPtΦ

δm
(
µ
)
(z) =

∫
Td

δΦ

δm
(
mµ

t
)
(x)m(1)

t (δz)(dx)

◦ similarly for the derivative w.r..t z, focus on m(1)
t

( d
dzi

δz
)



Second order derivatives
• Call

Lm(q) = 1
2∆q + div

(
qb

(
·,m

))
+ div

(
m
〈 δb
δm

(
·,m

)
, q

〉)
◦ first order derivatives of PtΦ obey the long run behavior of

zeros of Lmt(µ)

• But, most of all, we need second order derivatives

∂zi∂zj

δ2PtΦ

δm2

(
µ
)
(z, z′) =

∫
Td

∫
Td

δ2Φ

δm2

(
mµ

t
)
(x, y)d(1),i

t (z)(dx)d(1),j
t (z)(dy)

+

∫
Td

δΦ

δm
(
mµ

t
)
(x)d(2),i,j

t (z, z′)(dx)

◦ d(2),i,j solves same equation but with perturbation

∂td
(2),i,j
t − Lmt(µ)d

(2),i,j
t + R

(
t, d(1),i

t (z), d(1),j
t (z′)

)
= 0

and 0 initial condition



Bounds that look needed
• Uniform exponential decay (within suitable distribution space) of
solutions of

∂td
(1),i
t − Lm(t,µ)d

(1),i
t = 0

◦ should be enough to imply bounded of ∂x
δΦ

δm
• Uniform exponential decay (within suitable distribution space) of
solutions of

∂td
(2),i,j
t − Lm(t,µ)d

(1),i,j
t + rt = 0

◦ given a perturbation that itself tends to 0 exponentially fast

◦ should be enough to imply bounded of ∂2
x,x′
δΦ2

δm2

• Roadmap is clear

◦ address the long time behavior of the linearized operator

◦ question: locally or uniformly with respect to initial µ?

◦ + smoothing in small time



Part IV. Examples



Small enough McKean-Vlasov interaction
• Isolate the mean field dependence in linearized operator

Lmt(µ)(q) = 1
2∆q + div

(
qb

(
·,mt(µ)

))
+ div

(
mt(µ)

〈 δb
δm

(
·,mt(µ)

)
, q

〉)
◦ perturbation of

L0
mt(µ)(q) = 1

2∆q + div
(
qb

(
·,mt(µ)

))
• L0

mt(µ) adjoint of

(
L0

mt(µ)
)†ψ = 1

2∆ψ − ∇ψ · b
(
·,mt(µ)

)
◦ spectral gap⇒ exponential convergence towards a constant

◦ if
∫
Td q0 = 0⇒ exponential decay

• If δb/δm small enough with respect to the rate at which exponential
decay occurs⇒ method works! (Recover Arnaudon, Guillin...)



Potential case
• Consider the case

b(x,m) = −κ

∫
Td
∇W(x − y)dm(y), κ > 0

• Key observation
b
(
x,LebTd

)
= 0

◦ Lebesgue measure is always invariant!

• Positive definiteness condition (Ruelle, Carrillo...)

∀k ∈ Zd, Ŵk ≥ 0

◦ Lebesgue measure is the only invariant measure and
exponentially stable

◦ the linearized operator, at the Lebesgue measure, has spectral
gap!

⇒ by combining boths, we get the required results for the
linearized operator, for any initial condition



Kuramoto model I
• Same as before but d = 1 and W(x) = ± cos(2πx)

 if + cos⇒ same as above (interaction has repulsive effect)

 if − cos⇒ interaction becomes attractive

• From now on, we focus on the attractive case

◦ known fact: there exists a threshold κc such that many invariant
measures for κ > κc

⇒ no uniform propagation of chaos! for the simple reason that

d
( 1
N

N∑
i=1

Xi
t

)
= −

κ

N2

N∑
i,j=1

sin
(
Xi

t − Xj
t
)

︸              ︷︷              ︸
0

dt +
1
N

N∑
i=1

dBi
t

◦ two types of invariant measures: LebT and (p∞(· − ϕ))ϕ∈R

◦ counter-example obtained by initializing form p∞



Kuramoto model II
• Best result (Coppini) says that, if the initial distribution is close
enough to (p∞(· − ϕ))ϕ

⇒ µ̄N
t stays, with large probability, close to

(p∞(· − ϕ))ϕ

up until time exp(N1−)

• Prompts us to assume that Φ is invariant by translation

Φ
(
m ◦ (x 7→ x + θ)−1

)
= Φ(m)

◦ same question as before but for an initial condition µ different
from LebT

µ �� LebT :
∣∣∣∣∣∫
T

cos(2πθ)dµ(θ)
∣∣∣∣∣ ≥ η > 0



Sktech of proof
• Exponential convergence of mµ

t to some p(· − ϕ) for µ �� LebT

• Study of the linearized operator works well when µ = p(· − ϕ)

• Combining the two∣∣∣∣∣d(1),i
t (z) − c

dmµ
t

dx

∣∣∣∣∣ ≤ C exp(−λt)

when µ is away from LebT (and similarly for d(2),i,j(z)

• Bounds for ∂x
δPtΦ

δm
(µ)(x) and ∂x∂y

δPtΦ

δm2 (µ)(x, y) for µ �� LebT

◦ for µ̄N
0 �� LebT

E
[
Φ
(
µN

t

)
− Φ

(
m
µ̄N

0
t︸ ︷︷ ︸

∼t↗∞Φ(p)

)]
≤

C
N
, t ≤ exp(N1−)

◦ remains for t large because µ̄N
t cannot stay close to LebT


