Weak error for the uniform propagation of chaos on the torus

François Delarue (Nice - J.-A. Dieudonné)
(Joint work with Alvin Tse - ENPC (Paris) \& Hong-Kong

June 27, 2022

Part I. Introduction

Weakly interacting particle system

- Throughout, we consider an N-particle system of the type

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d t+d W_{t}^{i}
$$

for i an index in $\{1, \cdots, N\}$ where $\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$
$\circ\left(W_{t}^{1}\right)_{t \geq 0}, \cdots,\left(W_{t}^{N}\right)_{t \geq 0}$ are independent Brownian motions

- i.i.d. initial conditions $X_{0}^{1}, \cdots, X_{0}^{N}$
- model is said to be mean-field
- Main question: long time and large N behavior of the model (absolutely not a new question)

$$
d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+d W_{t}
$$

- X_{t}^{i} may take values with in dimension d

$$
b: \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}^{d}
$$

Large N, large t

- Long time behaviour of McKean-Vlasov equations
- convergence toward! invariant mesure: e.g. Benachour et al. (98), Carrillo (03), Cattiaux et al. (08),... , for gradient flows with convex potentials
- uniqueness may be lost: see e.g. Bertini et al. (09), Giacomin (12)... for periodic Kuramoto model

Large N, large t

- Uniform propagation of chaos: convergence as $N \nearrow \infty$ unif. in t
- may fail even if unique attractive invariant measure, see e.g. Malrieu (03) in \mathbb{R}^{d}
- hierarchy $\sup _{t \geq 0} W_{1}\left(\mathcal{L}\left(X_{1}^{1}, \cdots, X_{t}^{k}\right), \mathcal{L}\left(X_{t}\right)^{\otimes k}\right)$

Durmus et al., (18), Salem (18), \mathbb{R}^{d} : confinement + small or convex potential $\leadsto N^{-1 / 2}$ for $k=1$

Lacker and LeFlem (22) : similar conditions, but k / N

- empirical measure $\sup _{t \geq 0}\left|\mathbb{E}\left[\Phi\left(\mu_{t}^{N}\right)\right]-\Phi\left(m_{t}^{\mu}\right)\right|$

Chassagneux et al. (19): finite horizon $\leadsto N^{-1}$ (+ error expansion),
Mischler et al., (15), Arnaudon et al., (20): $\Phi(\mu)=\langle f, \mu\rangle \leadsto N^{-1}$
\sim week error with suitable choice of Φ

Part II. Semi-group of the MKV SDE

Semi-group

- Introduce the semi-group of a standard McKean-Vlasov equation

$$
d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+d W_{t}
$$

- $\left(m_{t}=\mathcal{L}\left(X_{t}\right)\right)_{t \geq 0}$ solves Fokker-Planck equation

$$
\partial_{t} m_{t}-\frac{1}{2} \Delta m_{t}+\operatorname{div}\left(m_{t} b\left(\cdot, m_{t}\right)\right)=0, \quad m_{0}=\mathcal{L}\left(X_{0}\right)
$$

- if $\exists!\Rightarrow \mathcal{L}\left(X_{t}\right)$ only depends on $\mathcal{L}\left(X_{0}\right)$
- define the semi-group

$$
\left(P_{t} \Phi\right)\left(\mathcal{L}\left(X_{0}\right)\right)=\Phi\left(\mathcal{L}\left(X_{t}\right)\right), \quad t \geq 0, \quad \Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}
$$

- master equation

$$
\begin{aligned}
& \partial_{t}\left(P_{t} \Phi\right)(\mu)-\int_{\mathbb{R}^{d}} b(v, \mu) \cdot \partial_{\mu}\left(P_{t} \Phi\right)(\mu, v) d \mu(v) \\
& \quad-\frac{1}{2} \int_{\mathbb{R}^{d}} \operatorname{Trace}\left[\partial_{v} \partial_{\mu}\left(P_{t} \Phi\right)(\mu, v)\right] d \mu(v)=0, \quad\left(P_{0} \Phi\right)(\mu)=\phi(\mu)
\end{aligned}
$$

Overview of differentiation on $\mathcal{P}\left(\mathbb{T}^{d}\right)$

- We say that $\mathcal{V}: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ is C^{1} if

$$
\frac{d}{d \varepsilon} \left\lvert\, \varepsilon=0+1 \mathcal{V}\left((1-\varepsilon) \mu+\varepsilon \mu^{\prime}\right)=\int_{\mathbb{T}^{d}} \frac{\delta \mathcal{V}}{\delta m}(\mu)(v) d\left(\mu^{\prime}-\mu\right)(v)\right.
$$

for a continuous map $\frac{\delta \mathcal{V}}{\delta m}: \mathcal{P}\left(\mathbb{T}^{d}\right) \times \mathbb{T}^{d} \rightarrow \mathbb{R}$

- unique up to an additive constant \leadsto impose zero mean under m
- Wasserstein derivative $\partial_{\mu} \mathcal{V}(\mu)(v)=\partial_{v} \frac{\delta \mathcal{V}}{\delta m}(\mu)(v)$
- Finite-dimensional projection

$$
\partial_{x_{i}}\left[\mathcal{V}\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\right]=\frac{1}{N} \partial_{\mu} \mathcal{V}\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\left(x_{i}\right), \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}
$$

- \mathcal{V} is C^{2} if $\mathcal{P}\left(\mathbb{T}^{d}\right) \ni \mu \mapsto \frac{\delta \mathcal{V}}{\delta m}(\mu)(v)$ is C^{1}. Second order derivatives $\operatorname{read}\left(v, v^{\prime}\right) \mapsto \frac{\delta^{2} \mathcal{V}}{\delta m^{2}}(\mu)\left(v, v^{\prime}\right)$.

Revisiting propagation of chaos

- Back to the particle system

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \mu_{t}^{N}\right) d t+d W_{t}^{i}, \quad \mu_{t}^{N}=\frac{1}{N} \sum_{j} \delta_{X_{t}^{j}}
$$

- How to test proximity with the limiting semi-group?
- notice that

$$
\left(P_{t-s} \Phi\right)\left(\mathcal{L}\left(X_{s}^{\mu}\right)\right)=\Phi\left(\mathcal{L}\left(X_{t-s}^{\mathcal{L}\left(X_{s}^{\mu}\right)}\right)\right)=\Phi\left(\mathcal{L}\left(X_{t}^{\mu}\right)\right)
$$

- expansion of $\left(P_{t-s} \Phi\left(\mu_{s}^{N}\right)\right)_{0 \leq s \leq t}$

$$
\begin{aligned}
& \mathbb{E}\left[\Phi\left(\mu_{t}^{N}\right)\right]-\Phi\left(\mathcal{L}\left(X_{t}^{\mu}\right)\right)=\mathbb{E}\left[\left(P_{t} \Phi\right)\left(\mu_{0}^{N}\right)\right]-\left(P_{t} \Phi\right)(\mu) \\
& \quad+\frac{1}{2 N^{2}} \sum_{i=1}^{N} \text { Trace } \int_{0}^{t} \mathbb{E}\left[\partial_{\mu}^{2} P_{t-s} \Phi\left(\mu_{s}^{N}\right)\left(X_{s}^{i}, X_{s}^{i}\right)\right] d s
\end{aligned}
$$

- as for the initial condition

$$
\left|\mathbb{E}\left[\left(P_{t} \Phi\right)\left(\bar{\mu}_{0}^{N}\right)\right]-\left(P_{t} \Phi\right)(\mu)\right| \leq \frac{C}{N} \sup _{m \sim \mu}\left\|\frac{\delta^{2} P_{t} \Phi}{\delta m^{2}}(m)(\cdot, \cdot)\right\|_{\infty}
$$

Choice of Φ

- In short, we want to get integrable bounds on the various derivatives and then get uniform propagation of chaos at rate $1 / N$.
- Using smoothing effect of the diffusion, we just need bounds and Hölder regularity on

$$
\begin{gathered}
\Phi(m), \quad \frac{\delta \Phi}{\delta m}(m)(x), \quad \frac{\delta^{2} \Phi}{\delta m^{2}}(m)\left(x, x^{\prime}\right) \\
\circ \Phi(m)=\langle f, m\rangle \Rightarrow \frac{\delta \Phi}{\delta m}(m)(x)=f(x)
\end{gathered}
$$

- Example
- for given $\varepsilon \in(0,1]$ and $\mu_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$, choose

$$
\Phi(\mu)=\left\|\mu-\mu_{0}\right\|_{-(d+\varepsilon) / 2}^{2}
$$

where

$$
\|m\|_{-(d+\varepsilon) / 2}^{2}=\sum_{n \in \mathbb{Z}^{d}} \frac{1}{\left(1+|n|^{2}\right)^{(d+\varepsilon) / 2}}\left|\int_{\mathbb{T}^{d}} \exp (i 2 \pi n \cdot \theta) d m(\theta)\right|^{2}
$$

Part III. Long time derivatives of the semi-group

Road map to the regularity of the semi-group

- Goal is to address $\frac{\delta P_{t} \Phi}{\delta m}(\mu)(x)$
- Make use of a flow/characteristics method

$$
\begin{aligned}
\frac{d}{d \epsilon} P_{t} \Phi\left((1-\epsilon) \mu+\epsilon \mu^{\prime}\right)_{\mid \epsilon=0+} & =\frac{d}{d \epsilon}\left[\Phi\left(m_{t}^{(1-\epsilon) \mu+\epsilon \mu^{\prime}}\right)\right]_{\mid \epsilon=0+} \\
& =\int_{\mathbb{T}^{d}} \frac{\delta \Phi}{\delta m}\left(m_{t}^{\mu}\right)(x) \frac{d}{d \epsilon} m_{t}^{(1-\epsilon) \mu+\epsilon \mu^{\prime}}(d x)
\end{aligned}
$$

- Fomally, $\frac{d}{d \epsilon} m_{t}^{(1-\epsilon) \mu+\epsilon \mu^{\prime}}(d x)$ solves linearized equation

$$
\partial_{t} m_{t}^{(1)}-\frac{1}{2} \Delta m_{t}^{(1)}+\operatorname{div}\left(m_{t}^{(1)} b\left(\cdot, m_{t}^{\mu}\right)\right)+\operatorname{div}\left(m_{t}\left\langle\frac{\delta b}{\delta m}\left(\cdot, m_{t}^{\mu}\right), m_{t}^{(1)}\right\rangle\right)=0
$$

with $m_{0}^{(1)}=\mu^{\prime}-\mu$

- Replace $m_{0}^{(1)}$ by $\delta_{z}: \frac{\delta P_{t} \Phi}{\delta m}(\mu)(z)=\int_{\mathbb{T}^{d}} \frac{\delta \Phi}{\delta m}\left(m_{t}^{\mu}\right)(x) m_{t}^{(1)}\left(\delta_{z}\right)(d x)$
- similarly for the derivative w.r..t z, focus on $m_{t}^{(1)}\left(\frac{d}{d z_{i}} \delta_{z}\right)$

Second order derivatives

- Call

$$
L_{m}(q)=\frac{1}{2} \Delta q+\operatorname{div}(q b(\cdot, m))+\operatorname{div}\left(m\left\langle\frac{\delta b}{\delta m}(\cdot, m), q\right\rangle\right)
$$

- first order derivatives of $P_{t} \Phi$ obey the long run behavior of zeros of $L_{m_{t}(\mu)}$
- But, most of all, we need second order derivatives

$$
\begin{aligned}
\partial_{z_{i}} \partial_{z_{j}} \frac{\delta^{2} P_{t} \Phi}{\delta m^{2}}(\mu)\left(z, z^{\prime}\right)= & \int_{\mathbb{T}^{d}} \int_{\mathbb{T}^{d}} \frac{\delta^{2} \Phi}{\delta m^{2}}\left(m_{t}^{\mu}\right)(x, y) d_{t}^{(1), i}(z)(d x) d_{t}^{(1), j}(z)(d y) \\
& +\int_{\mathbb{T}^{d}} \frac{\delta \Phi}{\delta m}\left(m_{t}^{\mu}\right)(x) d_{t}^{(2), i, j}\left(z, z^{\prime}\right)(d x)
\end{aligned}
$$

- $d^{(2), i, j}$ solves same equation but with perturbation

$$
\partial_{t} d_{t}^{(2), i, j}-L_{m_{t}(\mu)} d_{t}^{(2), i, j}+R\left(t, d_{t}^{(1), i}(z), d_{t}^{(1), j}\left(z^{\prime}\right)\right)=0
$$

and 0 initial condition

Bounds that look needed

- Uniform exponential decay (within suitable distribution space) of solutions of

$$
\partial_{t} d_{t}^{(1), i}-L_{m(t, \mu)} d_{t}^{(1), i}=0
$$

- should be enough to imply bounded of $\partial_{x} \frac{\delta \Phi}{\delta m}$
- Uniform exponential decay (within suitable distribution space) of solutions of

$$
\partial_{t} d_{t}^{(2), i, j}-L_{m(t, \mu)} d_{t}^{(1), i, j}+r_{t}=0
$$

- given a perturbation that itself tends to 0 exponentially fast
- should be enough to imply bounded of $\partial_{x, x^{\prime}}^{2} \frac{\delta \Phi^{2}}{\delta m^{2}}$
- Roadmap is clear
- address the long time behavior of the linearized operator
- question: locally or uniformly with respect to initial μ ?
$\circ+$ smoothing in small time

Part IV. Examples

Small enough McKean-Vlasov interaction

- Isolate the mean field dependence in linearized operator

$$
L_{m_{t}(\mu)}(q)=\frac{1}{2} \Delta q+\operatorname{div}\left(q b\left(\cdot, m_{t}(\mu)\right)\right)+\operatorname{div}\left(m_{t}(\mu)\left\langle\frac{\delta b}{\delta m}\left(\cdot, m_{t}(\mu)\right), q\right\rangle\right)
$$

- perturbation of

$$
L_{m_{t}(\mu)}^{0}(q)=\frac{1}{2} \Delta q+\operatorname{div}\left(q b\left(\cdot, m_{t}(\mu)\right)\right)
$$

- $L_{m_{t}(\mu)}^{0}$ adjoint of

$$
\left(L_{m_{t}(\mu)}^{0}\right)^{\dagger} \psi=\frac{1}{2} \Delta \psi-\nabla \psi \cdot b\left(\cdot, m_{t}(\mu)\right)
$$

o spectral gap \Rightarrow exponential convergence towards a constant

- if $\int_{\mathbb{T}^{d}} q_{0}=0 \Rightarrow$ exponential decay
- If $\delta b / \delta m$ small enough with respect to the rate at which exponential decay occurs \Rightarrow method works! (Recover Arnaudon, Guillin...)

Potential case

- Consider the case

$$
b(x, m)=-\kappa \int_{\mathbb{T}^{d}} \nabla W(x-y) d m(y), \quad \kappa>0
$$

- Key observation

$$
b\left(x, \operatorname{Leb}_{\mathbb{T}^{d}}\right)=0
$$

- Lebesgue measure is always invariant!
- Positive definiteness condition (Ruelle, Carrillo...)

$$
\forall k \in \mathbb{Z}^{d}, \quad \widehat{W}^{k} \geq 0
$$

- Lebesgue measure is the only invariant measure and exponentially stable
- the linearized operator, at the Lebesgue measure, has spectral gap!
\Rightarrow by combining boths, we get the required results for the linearized operator, for any initial condition

Kuramoto model I

- Same as before but $d=1$ and $W(x)= \pm \cos (2 \pi x)$
\leadsto if $+\cos \Rightarrow$ same as above (interaction has repulsive effect)
$n \rightarrow$ if $-\cos \Rightarrow$ interaction becomes attractive
- From now on, we focus on the attractive case
- known fact: there exists a threshold κ_{c} such that many invariant measures for $\kappa>\kappa_{c}$
\Rightarrow no uniform propagation of chaos! for the simple reason that

$$
d\left(\frac{1}{N} \sum_{i=1}^{N} X_{t}^{i}\right)=-\frac{\kappa}{N^{2}} \underbrace{\sum_{i, j=1}^{N} \sin \left(X_{t}^{i}-X_{t}^{j}\right)}_{0} d t+\frac{1}{N} \sum_{i=1}^{N} d B_{t}^{i}
$$

\circ two types of invariant measures: Leb_{T} and $\left(p_{\infty}(\cdot-\varphi)\right)_{\varphi \in \mathbb{R}}$

- counter-example obtained by initializing form p_{∞}

Kuramoto model II

- Best result (Coppini) says that, if the initial distribution is close enough to $\left(p_{\infty}(\cdot-\varphi)\right)_{\varphi}$
$\Rightarrow \bar{\mu}_{t}^{N}$ stays, with large probability, close to

$$
\left(p_{\infty}(\cdot-\varphi)\right)_{\varphi}
$$

up until time $\exp \left(N^{1-}\right)$

- Prompts us to assume that Φ is invariant by translation

$$
\Phi\left(m \circ(x \mapsto x+\theta)^{-1}\right)=\Phi(m)
$$

- same question as before but for an initial condition μ different from $\mathrm{Leb}_{\mathbb{T}}$

$$
\mu \ll>\operatorname{Leb}_{\mathbb{T}} \quad: \quad\left|\int_{\mathbb{T}} \cos (2 \pi \theta) d \mu(\theta)\right| \geq \eta>0
$$

Sktech of proof

- Exponential convergence of m_{t}^{μ} to some $p(\cdot-\varphi)$ for $\mu \ll>\operatorname{Leb}_{\mathbb{T}}$
- Study of the linearized operator works well when $\mu=p(\cdot-\varphi)$
- Combining the two

$$
\left|d_{t}^{(1), i}(z)-c \frac{d m_{t}^{\mu}}{d x}\right| \leq C \exp (-\lambda t)
$$

when μ is away from $\operatorname{Leb}_{\mathbb{T}}$ (and similarly for $d^{(2), i, j}(z)$

- Bounds for $\partial_{x} \frac{\delta P_{t} \Phi}{\delta m}(\mu)(x)$ and $\partial_{x} \partial_{y} \frac{\delta P_{t} \Phi}{\delta m^{2}}(\mu)(x, y)$ for $\mu \ll>\operatorname{Leb}_{\mathbb{T}}$ - for $\bar{\mu}_{0}^{N} \ll>\mathrm{Leb}_{\mathbb{T}}$

$$
\mathbb{E}[\Phi\left(\mu_{t}^{N}\right)-\underbrace{\Phi\left(m_{t}^{\bar{\mu}_{0}^{N}}\right.}_{\sim_{t>\infty} \Phi(p)})] \leq \frac{C}{N}, \quad t \leq \exp \left(N^{1-}\right)
$$

- remains for t large because $\bar{\mu}_{t}^{N}$ cannot stay close to $\operatorname{Leb}_{\mathbb{T}}$

