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Part 1. Introduction



Weakly interacting particle system

e Throughout, we consider an N-particle system of the type

dX! = b(X!, @V)dt + dW!
1 &
for i anindex in {1,--- , N} whereﬁﬁv = N Z(SX{
j=1

o (th)IZO, e (W;N )i>0 are independent Brownian motions
o i.i.d. initial conditions X, - - -, X{/
o model is said to be mean-field

e Main question: long time and large N behavior of the model
(absolutely not a new question)

dX[ = b(X[,.L(Xt))dt + th
e X! may take values with in dimension d

b:T¢ x P(T - R?



Large N, large ¢

¢ Long time behaviour of McKean-Vlasov equations

o convergence toward ! invariant mesure: €.g. Benachour et al. (98),
Carrillo (03), Cattiaux et al. (08).... , for gradient flows with convex potentials

o uniqueness may be lost: see e.g. Bertini et al. (09), Giacomin (12)... for
periodic Kuramoto model



Large N, large ¢

e Uniform propagation of chaos: convergence as N ' oo unif. in ¢
o may fail even if unique attractive invariant measure, see e.g.

Malrieu (03) in RY
o hierarchy sup W; (L(X e XD, L(Xt)®k)

>0

Durmus et al., (18), Salem (18), R¢ : confinement + small or convex potential
~ N2 fork =1

Lacker and LeFlem (22) : similar conditions, but k/N

E[D(u))] - ()

o empirical measure sup
>0

Chassagneux et al. (19): finite horizon ~> N~ (+ error expansion),
Mischler et al., (15), Arnaudon et al., 20): D(u) = <f, ,Ll> ~ N7

~» week error with suitable choice of ®



Part II. Semi-group of the MKV SDE



Semi-group

o Introduce the semi-group of a standard McKean-Vlasov equation
dX; = b(X;, L(X,))dt + dW,
o (m; = L(X})),s( solves Fokker-Planck equation
dmy — S Amy + div(m,b(-,m;)) =0,  mo = L(Xo)

oif A = L(X;) only depends on L(Xp)

e define the semi-group
(PO)L(X) = O(LXY), 120, ©:P(T)—R
o master equation
POYw) - fR bV ) - (PO, V()

1
) fRd Trace[avﬁu(qu))(u, v)]du(v) =0, (Po®)(w) = ¢(u)



Overview of differentiation on P(T9)
e We say that V : P(T%) — Ris C! if

d
4 - = f Y o )

de le=0+

for a continuous map % : P(Td) xT? > R

o unique up to an additive constant ~» impose zero mean under m
e Wasserstein derivative 9, V(u)(v) = 6,,%(#)@)
o Finite-dimensional projection

ax,,[(v(]ivg%.)] Y N

J=1

e Vis CEif P(TY) 3 pu - fs;v(u)(v) is C!. Second order derivatives
m
52
read (v,V') — —(V(y)(v, V).
om?



Revisiting propagation of chaos

e Back to the particle system
. : , 1
_ N N _
dX; = b(X;, p, )dt + dW,, ' = N ]E Oy

e How to test proximity with the limiting semi-group?
o notice that
(Ps®)( LX) = ©( LX) = o L0xtY)
o expansion of (P—s D)) y<s<
H®W%]4M£Qﬁ)=Ekﬂ®mﬂﬂ—UMMW)

ZTracef 621’, S(I)(Hiv)(Xé,Xé)]ds

o as for the initial condition

c 52P,
< —su P
N

E[(P®)(@)] - (P®)(u) —(m)(-,)
| .



Choice of O

e In short, we want to get integrable bounds on the various derivatives
and then get uniform propagation of chaos at rate 1/N.

¢ Using smoothing effect of the diffusion, we just need bounds and
Holder regularity on
5D

oD ,
D(m), %(m)(X), w(m)(x,X)

o0
° @(m) = (f.m) = — (m)(x) = f(x)
m
e Example

o for given € € (0, 1] and o € P(T4), choose

D) = ||,U _:“OHi(dJrg)/z

where
2

1
2 _ , .
”m”—(d+8)/2 = Z —(1 N |n|2)(d+8)/2 \[T; exp(l27rn 9)dm(9)

nezd



Part III. Long time derivatives of the semi-group



Road map to the regularity of the semi-group

L @

oP
e Goal is to address
om

e Make use of a flow/characteristics method

d ’ _ d (1—e)u+eu
—PO((1 = O + e e, = £[q>(m, )L N

o0 we
=de5—(m,)<x>— M )

d / .
e Fomally, = ot (dx) solves linearized equation
y d t q

am" = Lam" + div(m{b(-,m ))+d1v(m,<§—( m'),m")) =0

with m(()]) =y —u

6P
e Replace m(l) by 6.: —

od
—()(2) = f ~—(m} )mi(8,)(dx)

d
o similarly for the derivative w.r..t z, focus on m(l) (d—5 )
<i



Second order derivatives
e Call

L.(q) = %Aq + div(qb(-, m)) + diV(m(%(-, m), q>)

o first order derivatives of P,® obey the long run behavior of
zeros of Ly,

e But, most of all, we need second order derivatives

P i (1) (1)
0:,05 (W)= ) = f f — (m) . y)d, M )y, (2)(dy)
+ f () @)d Mz, 2 )(d)
Td(s

o d?" solves same equation but with perturbation
0 = Linod, ™™ + R(1.d ™ (2),d"(2)) = 0

and O initial condition



Bounds that look needed

e Uniform exponential decay (within suitable distribution space) of
solutions of

1),i 1),i
iy = Loy ™ = 0

oD
o should be enough to imply bounded of Bxé—
m

e Uniform exponential decay (within suitable distribution space) of
solutions of N N
0d”" = Lyuod, " 41, = 0

o given a perturbation that itself tends to 0 exponentially fast

50>
o should be enough to imply bounded of 6)% )
7 m

e Roadmap is clear
o address the long time behavior of the linearized operator
o question: locally or uniformly with respect to initial y?

o + smoothing in small time



Part I'V. Examples



Small enough McKean-Vlasov interaction

o Isolate the mean field dependence in linearized operator

Lun,u(9) = 3Aq + div(gb(, mtw»)+dw(m,<u>< (i), )

o perturbation of

L9, (@) = 3 + div(gb (-, m(1)))

. L?nt(#) adjoint of

(L9, ) ¥ = 380 = Vi b, my())

o spectral gap = exponential convergence towards a constant
o if f]I‘d go = 0 = exponential decay

o If 6b/6m small enough with respect to the rate at which exponential
decay occurs = method works! (Recover Arnaudon, Guillin...)



Potential case

e Consider the case
b(x,m) = —Kf VW(x — y)dm(y), «>0
Td
o Key observation
b(x, Lede) =0

o Lebesgue measure is always invariant!
e Positive definiteness condition (Ruelle, Carrillo...)
Vkezd, WE>0
o Lebesgue measure is the only invariant measure and

exponentially stable

o the linearized operator, at the Lebesgue measure, has spectral
gap!

= by combining boths, we get the required results for the
linearized operator, for any initial condition



Kuramoto model I

e Same as before but d = 1 and W(x) = + cos(2mx)
~» if + cos = same as above (interaction has repulsive effect)
~» if — cos = interaction becomes attractive

¢ From now on, we focus on the attractive case

o known fact: there exists a threshold «. such that many invariant
measures for « > k.

= no uniform propagation of chaos! for the simple reason that

( ZX’) = Z sin(X! - X)dt + — Z dB!

1,11

0

o two types of invariant measures: Lebr and (peo(- — ¢))per

o counter-example obtained by initializing form po,



Kuramoto model 11

o Best result (Coppini) says that, if the initial distribution is close
enough to (peo(- — @)y

= iV stays, with large probability, close to

(poo(' - 90))90

up until time exp(N i)

e Prompts us to assume that @ is invariant by translation
®(mo (x - x+0)") = dm)

o same question as before but for an initial condition u different
from Lebr

1 <> Lebr

f cos(2nO)du(@)| = n >0
T



Sktech of proof

e Exponential convergence of n?,' to some p(- — ¢) for u <> Lebr
o Study of the linearized operator works well when u = p(- — ¢)

e Combining the two
,u
dMi(z) - < Cexp(=1)
dx

when p is away from Lebt (and similarly for d®(z)

(,u)(x y) for u <> Lebry

o for [ ,uo <> LebT

~170P(P)

o remains for ¢ large because fi¥ cannot stay close to Lebr



