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A classical problem in stochastic singular control theory:
(see, e.g., Baldursson-Karatzas (1996), El Karoui-Karatzas (1988,1991))

A firm produces a single good which is sold on the market at a price (Xt )t≥0 that
evolves as

dXt = a(Xt )dt + ã(Xt )dWt , X0 = x .

Revenues from sales are measured via a running profit f (Xt ,Yt ), where Y is a
controlled process

Yà
t = y + àt , à non-decreasing, right-cont., à0− = 0, s.t. Yà ∈ [0,1].

(Yt )t≥0 measures the cumulative investment in, e.g., advertising, productive
capacity, etc., and the firm’s manager chooses (àt )t≥0 to maximise

E

[∫ T

0
e−rt f (Xt ,y + àt )dt −

∫
[0,T ]

e−rt c0dàt

]
where c0 > 0 cost of investment and r ≥ 0 subjective discount rate of the
manager, T > 0 time horizon of the investment.
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Methods of solution: (Finding an optimal control à∗)

Solving a (parabolic degenerate) free boundary problem with gradient
constraint;

First order conditions and Bank-El Karoui’s representation theorem (2004);

Connections with optimal stopping;

...

Extensions to multi-agent settings (including impulse controls):
Steg (2012), De Angelis-Ferrari (2018), Guo-Tang-Xu (2022), Basei-Cao-Guo (2022),
Aïd-Campi-Ludkovski (2021), Aïd-Basei-Campi-Callegaro-Vargiolu (2020).

N-player games are not very tractable! =⇒ we adopt a MFG approach

MFG with singular controls

Zhang (2012), Hu-Øksendal-Sulem (2014), Fu-Horst (2017), Guo-Xu (2019),
Cao-Guo-Lee (2017), Guo-Lee (2018), Fu (2019)

Impulse controls: Basei-Cao-Guo (2022), Zhou-Huang (2017)
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The N-player game:

N firms produce the same good. The i-th firm’s sale price is (X N ,i
t )t≥0 and the

level of investment is (Y N ,i
t )t≥0, with (X N ,i

0 ,Y N ,i
0− ) ∼ ß.

The dynamics of the prices are coupled via the average investment across the
sector, i.e.,

mN
t :=

1
N

N¼
i=1

Y N ,i
t

and
dX N ,i

t = a(X N ,i
t ,mN

t )dt + ã(X N ,i
t )dW i

t ,

with (W 1, . . . ,W N ) a vector of 1D indep. standard Brownian motions, also indep.

of (X N ,i
0 ,Y N ,i

0− ).

The i-th firm’s manager chooses (àN ,i
t )t≥0 to maximise

J N ,i (àN ) = E

[∫ T

0
e−rt f (X N ,i

t ,y + àN ,i
t )dt −

∫
[0,T ]

e−rt c0dà
N ,i
t

]
under the finite-fuel constraint Y N ,i ∈ [0,1].
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The Mean-Field Game:
Letting N →∞ we expect mN

t →m(t) where m is a measurable function
m : [0,T ]→ [0,1].

The dynamics in our MFG read

Xt = X0 +
∫ t

0
a(Xs ,m(s))ds +

∫ t

0
ã(Xs )dWs , Yà

t = Y0− + àt , t ∈ [0,T ].

where (Wt )t≥0 is a 1D Brownian motion, (X0,Y0−) ∼ ß are indep. of W ,
and (àt )t≥0 is non-decr., right-cont., with à0− = 0 and s.t. Yà ∈ [0,1].

The goal of the “representative player” is to choose à that maximises

J (à) = E

[∫ T

0
e−rt f (Xt ,Y

à
t )dt −

∫
[0,T ]

e−rt c0dàt

]
,

and at the same time m(t) = E[Yà
t ].

Remark: The MF feature is via the control process and it feeds into the drift of X .
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Definition(Solution of the MFG of capacity expansion)
A solution of the MFG of capacity expansion with initial condition ß is a pair (m∗,à∗)
with m∗ : [0,T ]→ [0,1] measurable and à∗ (admissible) s.t.

(i) (Optimality) à∗ is optimal, i.e.,

J (à∗) = Vß = sup
à

E

[∫ T

0
e−rt f (X ∗t ,Y

à
t )dt −

∫
[0,T ]

e−rt c0dàt

]
,

where (X ∗,Yà) is the dynamics associated to (m∗,à).

(ii) (Consistency) Let (X ∗,Y ∗) be the dynamics associated to (m∗,à∗), then

m∗(t) = E[Y ∗t ], t ∈ [0,T ].

We will say that a MFG solution à∗ is in feedback form if à∗t = Ù(t ,X ,Y0−), t ∈ [0,T ], for
some non-anticipative mapping Ù.
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Assumptions:
There is a set of mild technical assumptions on (x ,m) 7→ a(x ,m), x 7→ ã(x) and
(x ,y) 7→ f (x ,y). For simplicity in this talk let us consider

a(x ,m) = (Þ+ m)x , ã(x) = ã x with Þ ∈�, ã > 0,

and
f (x ,y) = x · yÓ, Ó ∈ (0,1).

The structural conditions are m 7→ a(x ,m) non-decreasing and y 7→ f (x ,y) concave.
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Solution to the MFG
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Theorem (Existence of solutions)
There exists an upper-semi continuous (u.s.c.) function c : [0,T ]×�+→ [0,1], with
t 7→ c(t ,x) and x 7→ c(t ,x) both non-decreasing, s.t. (m∗,à∗) given by

à∗t := sup
0≤s≤t

(c(s ,X ∗s )−Y0−)+, m∗(t) := E [Y0− + à∗t ] , t ∈ [0,T ],

is a solution of the MFG.

Remark. Here we are able not only to prove existence of a solution but also to
construct the optimal control in terms of an u.s.c., monotone surface in the state
space [0,T ]×�+ × [0,1].
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Iterative construction of the solution

Initialisation: m[−1](t) ≡ 1, for t ∈ [0,T ].

n-th step, n ≥ 0: fix a non-decreasing, right-cont. function m[n−1] : [0,T ]→ [0,1].

For (t ,x ,y) ∈ [0,T ]×�+ × [0,1], consider the dynamics

X [n]
t+s = x +

∫ s

0
a(X [n]

t+u ,m
[n−1](t + u))du +

∫ s

0
ã(X [n]

t+u )dWt+u .

We define the singular control problem SC
[n]
t ,x ,y as:

vn (t ,x ,y) := sup
à

Et ,x

[∫ T−t

0
e−rs f (X [n]

t+s ,y + às )ds −
∫

[0,T−t]
e−rs c0dàs

]
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(n + 1)-th step: assume there exists an opt. control à[n]∗ for SC[n]
0,x ,y for each

(x ,y) ∈�+ × [0,1] (with (x ,y) 7→ à[n]∗(x ,y) measurable). Then, define

m[n](t) := E

[
Y0− + à

[n]∗
t

]
.

The map t 7→m[n](t) is non-decreasing and right-continuous (by dom.
convergence) with values in [0,1], so we can use it to define

X [n+1] and vn+1

by iterating the above construction.
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Solution of SC[n] via optimal stopping

One can prove that �y vn (t ,x ,y) = un (t ,x ,y), where

un (t ,x ,y) := inf
0≤ä≤T−t

Et ,x

[∫ ä

0
e−rs�y f (X [n]

t+s ,y)ds + c0e−rä
]
,

which is an easier problem to solve.

There exists a unique u.s.c. function cn : [0,T ]×�+→ [0,1], with t 7→ cn (t ,x) and
x 7→ cn (t ,x) non-decreasing, s.t. the minimal OS time is

ä
[n]
∗ (t ,x ,y) = inf{s ∈ [0,T − t] : cn (t + s ,X [n]

t+s ) ≥ y}.

We prove that the (unique) optimal control in SC[n] reads

à
[n]∗
t+s := sup

0≤u≤s

(
cn (t + u ,X [n]

t+u )− y
)+

, à
[n]∗
t− = 0.
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Proposition (Monotonicity of the scheme)

For n ≥ 0 we have

un ≥ un+1 =⇒ cn ≥ cn+1 =⇒ à[n]∗ ≥ à[n+1]∗

=⇒ m[n] ≥m[n+1] =⇒ X [n] ≥ X [n+1].

Then, defining

c := lim
n→∞

cn , m∗ := lim
n→∞

m[n], X ∗ := lim
n→∞

X [n], à∗ := lim
n→∞

à[n]

we have m∗(t) = E[Y0− + à∗t ] (consistency),

X ∗t+s = x +
∫ s

0
a(X ∗t+u ,m

∗(t + u))du +
∫ s

0
ã(X ∗t+u )dWt+u ,

à∗t+s = à∗t+s (t ,x ,y) = sup
0≤u≤s

(c(t + u ,X ∗t+u )− y)+.
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For (t ,x ,y) ∈ [0,T ]×�+ × [0,1] the process à∗ is the unique maximiser of

à 7→ Et ,x

[∫ T−t

0
e−rs f (X ∗t+s ,y + às )ds −

∫
[0,T−t]

e−rs c0dàs

]
.

Integrating the payoff over the distribution ß of (X0,Y0−) the pair (m∗,à∗) translates
into the solution of MFG.
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Approximate NE for N -player game
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Definition (ê-Nash equilibrium)
Let ê ≥ 0, a strategy vector àê is a ê-NE for the N -player game if for every i = 1, . . . ,N ,
and for every strategy vector ài ,

J N ,i (àê) ≥ J N ,i ([àê,−i ,ài ])− ê.

Theorem

Assume x 7→ c(t ,x) is Lipschitz unif. for t ∈ [0,T ]. Let (m∗,à∗) be the feedback MFG
solution above, i.e., à∗t = Ù∗(t ,X ∗,Y0−), where

Ù∗(t ,ï,y) := sup
0≤s≤t

(
c(s ,ï(s))− y

)+
.

Set
à̂N ,i

t := Ù∗(t ,X N ,i ,Y i
0−),

then à̂N is a êN -Nash eq for the N -player game of capacity expansion with êN → 0 as
N →∞.
(In the example the rate of convergence is of order 1/

√
N )
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Sketch of the proof: three main steps

(i) We prove that J N ,1(à̂N )→ J (à∗) as N →∞.

(ii) Recalling the notation [à̂N ,−1,à] = (à, à̂N ,2, . . . , à̂N ,N ), we prove

limsup
N→∞

sup
à

J N ,1([à̂N ,−1,à]) ≤ J (à∗) = Vß. (1)

(iii) Combining (i) and (ii), for any ê > 0 there exists Nê ∈�such that

J N ,1(à̂N ) ≥ sup
à

J N ,1([à̂N ,−1,à])− ê

Remark. Lipschitz c(t , · ) is used to show that X N ,1→ X ∗ as N →∞ with Gronwall’s
type estimates.
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We give sufficient conditions for Lipschitz continuity of x 7→ c(t ,x). For example

dXt = (Þ+ m(t))Xtdt + ãXtdWt and f (x ,y) = x · yÓ, Ó ∈ (0,1).
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Economic interpretation for the N -player game

A game version of the goodwill problem (Buratto-Viscolani (2002), Marinelli (2007),
Jack et al. (2008)):

Players are firms producing the same good (e.g. mobile phones), which they want
to advertise;

X N ,i is market price of i-th firm’s product; Y N ,i is i-th firm’s cumulative marketing
investment (finite-fuel→maximum budget for advertising);

c0dà is the (proportional) cost of advertising;

investing ÉàN ,i > 0 has a cost c0Éà
N ,i with two effects:

- increases firm’s popularity⇒ increases firm’s profit (due to
y 7→ f (x ,y) increasing);

- increases visibility of the type of product⇒ demand and price
increase for all players (m 7→ a(x ,m) nondecreasing ).
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Our contribution

We formulate and solve a MFG of finite-fuel capacity expansion with singular
controls associated to a N -player game

Under mild assumptions, we construct a feedback solution of the MFG of
capacity expansion

Our constructive approach allows us to determine the MFG optimal control in
terms of an optimal boundary (t ,x) 7→ c(t ,x) splitting the state space into action
and inaction regions

The MFG solution induces a sequence of approximate êN -Nash for the N -player
games with vanishing error at rate O (1/

√
N ) as N →∞.

Finally, we provide sufficient conditions ensuring the boundary’s Lipschitz
continuity and give examples.
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Thank you
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