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Structural conditions on MFG models?

Lasry-Lions
Monotonicity

J. Dianetti Submodular MFGs 2/15



Motivations
Multiple solutions in MFGs?
@ [Bardi-Fischer (2019)] presented a class of MFGs with multiple solutions

@ [Cecchin-Dai Pra-Fischer-Pelino (2019)] convergence problem in a two state model without
uniqueness

@ [Delarue-Tchuendom (2019)] selection of equilibria in a linear quadratic MFG
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absorption

@ [Perrin-Perolat-Lauriére-Geist-Elie-Pietquin (2020), Xie-Yang-Wang-Minca (2020), etc.]
Fictitious play combined with machine learning techniques

Submodularity

in games: economic literature: [Topkis (1979)], [Milgrom-Roberts (1990)], [Vives (1990)]

in MFGs: - [Adlakha -Johari (2013)] discrete time MFG with infinite horizon discounted costs
- [Carmona-Delarue-Lacker (2017)] for MFGs of timing to study a model of bank runs in a
continuous time setting
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Submodular MFGs: 1t type dynamics, regular controls, common noise

J
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@ Let T > 0 be a fixed time horizon, (Q, F, (J:t)te[O,Tb]P}) complete filtered probability space
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@ Let T > 0 be a fixed time horizon, (Q, F, (J'-t)te[o,T],P) complete filtered probability space
@ Let W and B be independent Brownian motions, B is the COMMON NOISE
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@ Let T > 0 be a fixed time horizon, (Q,]-'7 (.7-':),_,6[0)7—],]?) complete filtered probability space
@ Let W and B be independent Brownian motions, B is the COMMON NOISE
® FB = (]:F)tE[O,T] the (extended) filtration generated by B
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T
Sy i= B [ [7(eX0 00) + 0, XE ) e+ 063 )]
0

where X< denotes the unique solution to the dynamics

dX: = b(t,Xt,at)dt + ordW; + O'OdBt, te [0, T], Xo =¢&.

Assumption: existence & uniqueness of optimal controls (EU). For any F-progr.meas. p,
there exists a unique optimal pair (X*, a*) with —oco < J(a*, p) < oo and

J(a*, p) = ig&J(a,/.L) and  XH = X"

STRONG SOLUTION: fix ;1 — optimize against . — search for o = P[X# € | FE]
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Assumption: a priori estimate (APE). There exists p > 1 and a constant M > 0 such that

E[|Xf|P] <M for all measurable flows of probabilities 11 and t € [0, T].
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Assumption: a priori estimate (APE). There exists p > 1 and a constant M > 0 such that
E[|Xf|P] <M for all measurable flows of probabilities 11 and t € [0, T].

First order stochastic dominance. For v, 7 € P(R), we say that
v < 7 if and only if v((—o0,x]) > 7((—o0,x]) ¥V x € R.

By (APE), there exist P(R)-valued, F2-adapted r.v.'s pMin, yMax with

pMin <t pIxE e | FB] <5t uMax for all measurable flow p and t € [0, T], P-a.s.
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Lattice structure. Defining on [0, T] the measure 7 := &y + dt + d7, define the lattice of
feasible flows (L, <'!) as
L= { equivalence classes (w.rt. P® ) FB-progr.meas. flows (kt)tefo,1) St }
pe € M) uM2x] for r-almost all t € (0, T] and pp =P o (&)~ 1, P-ass.
endowed with the order relation given by
w <" vif and only if ur <5 vy for P® m-a.a. (w,t) € Q x [0, T]. )
Now, the best reply map R: L — L, R(u) := (P[X}' € '|-FtB])tE[O,T] is well defined and
u € Lis a MFG solution if and only if R(u) = p )
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Assumption: submodularity (Sub). For P ® dt a.a. (w,t) € Q x [0, T], the functions f(t, -, ")
and g have decreasing differences in (x, u); that is, for ¢ € {f(t,-,-), g},

(%, 1) — p(x, 7) < (%, 1) — p(x, 1),
for all X,x € R and fi,u € P(R) s.t. X > x and i >t p.
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Assumption: submodularity (Sub). For P ® dt a.a. (w, t) € Q X [0, T], the functions f(t,

and g have decreasing differences in (x, u); that is, for ¢ € {f(t,-,-), g},
(%, 1) — p(x, 7) < (%, 1) — p(x, 1),
for all X,x € R and fi,u € P(R) s.t. X > x and i > p.

)

‘)

If o satisfies (Sub), then it satisfies the Lasry-Lions anti-monotonicity condition; that is,

/R (0(x ) — 9(x m))d(A — W)(x) <0, Vi, p € P(R).

Examples:
- mean-field interaction of scalar type:

2

@(x, 1) = v(x, [ hdp) if his increasing and v € C?(R?) with o
Ox0y

- mean-field interactions of order-1:

. L 02
w(xvu)I/Rv(X’y)du(y) if v € C2(R?) with — g

X0y

- quadratic cost: o(x, 1) = (x—Mean(u))?
- multiplicative cost: ¢(x, ) = —x Mean(u)
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Theorem (Existence and Structure)

Under (EU), (APE) and (Sub), the set of MFG solutions (M, <") is a non-empty complete
lattice: in particular there exist a minimal and a maximal MFG solution

Remarks:

@ proof: Tarski's fixed point theorem to the best reply map R: L — L
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Under (EU), (APE) and (Sub), the set of MFG solutions (M, <") is a non-empty complete
lattice: in particular there exist a minimal and a maximal MFG solution

Remarks:

@ proof: Tarski's fixed point theorem to the best reply map R: L — L

@ if J is nondecreasing with respect to u, the same lattice structure is inherited by the values
at the equilibria, giving a criterion for the minimal cost selection

@ the continuity of f,g in uis NOT NEEDED
@ STRONG SOLUTIONS to MFGs with COMMON NOISE (see [Carmona-Delarue-Lacker

(2016)])

@ using relaxed controls, the uniqueness of the optimal control in assumption (EU) can be
removed

@ geometric dynamics: dX; = b(t, X¢, a¢) Xedt + oe XedW, tel0, T], Xo=¢&,

@ for particular costs (as e.g. ©(x, 1) = —xMean(z) and /(a) = a?), we can treat mean-field

dependent dynamics as
dXe = Xe(ar + m(pe))dt + o XedWe, t€[0,T], Xo=€&2>0,
dXe = (KXt + ar + m(ue))dt + odWse, t€[0,T], Xo=¢ kK€R, >0,

for bounded monotone m: (P(R), <%t) —+ R
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Assumption: linear-convex case (LC).

@ The control set U C R is convex and compact. The volatility o is constant.
@ b(t,x,a) = ¢t + pex + g:a, where ¢, p and g are deterministic continuous functions of t.

@ The cost functions f, g and | are bounded and continuous, / is convex.
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J. Dianetti Submodular MFGs 9/15



Assumption: linear-convex case (LC).
@ The control set U C R is convex and compact. The volatility o is constant.
@ b(t,x,a) = ¢t + pex + g:a, where ¢, p and g are deterministic continuous functions of t.

@ The cost functions f, g and | are bounded and continuous, / is convex.

v
The learning algorithm
) n:O:ﬁ0 = infL;
@ n>1:pmtt = R(u").
v

Theorem (Approximation)

Under (EU), (APE), (Sub) and (LC), the sequence {1} nen is increasing in (L, <") and it
weakly converges to the minimal MFG solution at any time t € [0, T], P-a.s.

Remarks:
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Under (EU), (APE), (Sub) and (LC), the sequence {1} nen is increasing in (L, <") and it
weakly converges to the minimal MFG solution at any time t € [0, T], P-a.s.

Remarks:

- the maximal MFG solution can be reached by the same algorithm, starting from % := sup L
- using relaxed controls, the uniqueness of the optimal control in assumption (EU) and
assumption (LC) can be removed
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Submodular MFGs and related McKean-Vlasov FBSDEs (working progress)
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For any given a P;(R)-valued FB-progressively measurable flow pu = (H’t)te[O,T]’ consider the
FBSDE(u)

dXt = b(t,Xf,@(f,Xt, Yt))df+0'th+UodBt, X() :g,

dYt = —DXH(t, Xt, Mt Yt, d(t, Xt, Yt))dt + thWt + Z[?dBt, YT = ng(XT, NT)

where

H(t,x,v,y,a) = b(t, x,a)y + h(t,x,v)+ I(t,x,a), (t,x,v,y,a)€[0,T]xRxP(R)xRx U,

and
&(t,x,y) := argmin H(t,x,v,y,a) € U, (t,x,v,y) €[0,T] xR x P(R) x R.
acU
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where

H(t,x,v,y,a) = b(t, x,a)y + h(t,x,v)+ I(t,x,a), (t,x,v,y,a)€[0,T]xRxP(R)xRx U,

and
&(t,x,y) := argmin H(t,x,v,y,a) € U, (t,x,v,y) €[0,T] xR x P(R) x R.
acU

Denote by (X*, YH, ZF Z°F) its solution.

Solution to the MKV FBSDE: (X*, Y#, Z#, Z%#) such that p = (P[X* € -|FE])icio,7-

Lemma (Comparison principle)
Under (EU), (APE), (Sub) and (LC), if u < fi, then X* < XP.
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For any given a P;(R)-valued FB-progressively measurable flow pu = (iu‘t)te[O,T]’ consider the
FBSDE()

dXt = b(t,X[—,é\é(f,Xt, Yt))df+ 0'th + O'OdBt, X() = f,
dYt = —DXH(t,XtHU,t, Yt,d(t, X1:7 Yt))dt + thWt + Z[?dBt, YT = ng(XT,[LT)

where
H(t,x,v,y,a) = b(t, x,a)y + h(t,x,v)+ I(t,x,a), (t,x,v,y,a)€[0,T]xRxP(R)xRx U,

and
&(t,x,y) := argmin H(t,x,v,y,a) € U, (t,x,v,y) €[0,T] xR x P(R) x R.
acU

Denote by (X, YH, ZH Z°:*) its solution.

.
Solution to the MKV FBSDE: (X*, Y, Z, Z°#) such that p = (P[X!" € [FE])ecpo. 7- J
Lemma (Comparison principle)
Under (EU), (APE), (Sub) and (LC), if u < fi, then X* < XP.

.

Theorem (Solution to MKV FBSDEs)

Under (EU), (APE), (Sub) and (LC), the set of solution to the MKV FBSDE is a non-empty
complete lattice: in particular there exist a minimal and a maximal MFG solution .

™7 i = = et
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Concluding: structural conditions on MFG models
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Lasry-Lions Submodularity

Monotonicity

-existence from Tarski's fixed point theorem
-lattice structure: minimal and maximal solutions
-algorithm able to select minimal and maximal
solutions
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Thank you for your attention!
[D.-Ferrari-Fischer-Nendel (2021), AAP] and [D.-Ferrari-Fischer-Nendel (2022), arXiv preprint] J
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