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Motivations

Multiple solutions in MFGs?

[Bardi-Fischer (2019)] presented a class of MFGs with multiple solutions

[Cecchin-Dai Pra-Fischer-Pelino (2019)] convergence problem in a two state model without
uniqueness

[Delarue-Tchuendom (2019)] selection of equilibria in a linear quadratic MFG

Strong solutions to MFGs with COMMON NOISE under lack of uniqueness?

[Carmona-Delarue-Lacker 16] probabilistic formulation of MFGs with common noise: weak
solutions via topological fixed point theorem, strong solutions via UNIQUENESS

Learning procedures in MFGs?

[Cardaliaguet-Hadikhanloo (2017)] convergence of the fictitious play in potential MFGs

[Dumitrescu-Leutscher-Tankov (2022)] fictitious play for MFGs of stopping and MFGs with
absorption

[Perrin-Perolat-Laurière-Geist-Elie-Pietquin (2020), Xie-Yang-Wang-Minca (2020), etc.]
Fictitious play combined with machine learning techniques

Submodularity
in games: economic literature: [Topkis (1979)], [Milgrom-Roberts (1990)], [Vives (1990)]
in MFGs: - [Adlakha -Johari (2013)] discrete time MFG with infinite horizon discounted costs
- [Carmona-Delarue-Lacker (2017)] for MFGs of timing to study a model of bank runs in a
continuous time setting

J. Dianetti Submodular MFGs 3 / 15



Motivations

Multiple solutions in MFGs?

[Bardi-Fischer (2019)] presented a class of MFGs with multiple solutions

[Cecchin-Dai Pra-Fischer-Pelino (2019)] convergence problem in a two state model without
uniqueness

[Delarue-Tchuendom (2019)] selection of equilibria in a linear quadratic MFG

Strong solutions to MFGs with COMMON NOISE under lack of uniqueness?

[Carmona-Delarue-Lacker 16] probabilistic formulation of MFGs with common noise: weak
solutions via topological fixed point theorem, strong solutions via UNIQUENESS

Learning procedures in MFGs?

[Cardaliaguet-Hadikhanloo (2017)] convergence of the fictitious play in potential MFGs

[Dumitrescu-Leutscher-Tankov (2022)] fictitious play for MFGs of stopping and MFGs with
absorption

[Perrin-Perolat-Laurière-Geist-Elie-Pietquin (2020), Xie-Yang-Wang-Minca (2020), etc.]
Fictitious play combined with machine learning techniques

Submodularity
in games: economic literature: [Topkis (1979)], [Milgrom-Roberts (1990)], [Vives (1990)]
in MFGs: - [Adlakha -Johari (2013)] discrete time MFG with infinite horizon discounted costs
- [Carmona-Delarue-Lacker (2017)] for MFGs of timing to study a model of bank runs in a
continuous time setting

J. Dianetti Submodular MFGs 3 / 15



Motivations

Multiple solutions in MFGs?

[Bardi-Fischer (2019)] presented a class of MFGs with multiple solutions

[Cecchin-Dai Pra-Fischer-Pelino (2019)] convergence problem in a two state model without
uniqueness

[Delarue-Tchuendom (2019)] selection of equilibria in a linear quadratic MFG

Strong solutions to MFGs with COMMON NOISE under lack of uniqueness?

[Carmona-Delarue-Lacker 16] probabilistic formulation of MFGs with common noise: weak
solutions via topological fixed point theorem, strong solutions via UNIQUENESS

Learning procedures in MFGs?

[Cardaliaguet-Hadikhanloo (2017)] convergence of the fictitious play in potential MFGs

[Dumitrescu-Leutscher-Tankov (2022)] fictitious play for MFGs of stopping and MFGs with
absorption

[Perrin-Perolat-Laurière-Geist-Elie-Pietquin (2020), Xie-Yang-Wang-Minca (2020), etc.]
Fictitious play combined with machine learning techniques

Submodularity
in games: economic literature: [Topkis (1979)], [Milgrom-Roberts (1990)], [Vives (1990)]
in MFGs: - [Adlakha -Johari (2013)] discrete time MFG with infinite horizon discounted costs
- [Carmona-Delarue-Lacker (2017)] for MFGs of timing to study a model of bank runs in a
continuous time setting

J. Dianetti Submodular MFGs 3 / 15



Motivations

Multiple solutions in MFGs?

[Bardi-Fischer (2019)] presented a class of MFGs with multiple solutions

[Cecchin-Dai Pra-Fischer-Pelino (2019)] convergence problem in a two state model without
uniqueness

[Delarue-Tchuendom (2019)] selection of equilibria in a linear quadratic MFG

Strong solutions to MFGs with COMMON NOISE under lack of uniqueness?

[Carmona-Delarue-Lacker 16] probabilistic formulation of MFGs with common noise: weak
solutions via topological fixed point theorem, strong solutions via UNIQUENESS

Learning procedures in MFGs?

[Cardaliaguet-Hadikhanloo (2017)] convergence of the fictitious play in potential MFGs

[Dumitrescu-Leutscher-Tankov (2022)] fictitious play for MFGs of stopping and MFGs with
absorption

[Perrin-Perolat-Laurière-Geist-Elie-Pietquin (2020), Xie-Yang-Wang-Minca (2020), etc.]
Fictitious play combined with machine learning techniques

Submodularity
in games: economic literature: [Topkis (1979)], [Milgrom-Roberts (1990)], [Vives (1990)]

in MFGs: - [Adlakha -Johari (2013)] discrete time MFG with infinite horizon discounted costs
- [Carmona-Delarue-Lacker (2017)] for MFGs of timing to study a model of bank runs in a
continuous time setting

J. Dianetti Submodular MFGs 3 / 15



Motivations

Multiple solutions in MFGs?

[Bardi-Fischer (2019)] presented a class of MFGs with multiple solutions

[Cecchin-Dai Pra-Fischer-Pelino (2019)] convergence problem in a two state model without
uniqueness

[Delarue-Tchuendom (2019)] selection of equilibria in a linear quadratic MFG

Strong solutions to MFGs with COMMON NOISE under lack of uniqueness?

[Carmona-Delarue-Lacker 16] probabilistic formulation of MFGs with common noise: weak
solutions via topological fixed point theorem, strong solutions via UNIQUENESS

Learning procedures in MFGs?

[Cardaliaguet-Hadikhanloo (2017)] convergence of the fictitious play in potential MFGs

[Dumitrescu-Leutscher-Tankov (2022)] fictitious play for MFGs of stopping and MFGs with
absorption

[Perrin-Perolat-Laurière-Geist-Elie-Pietquin (2020), Xie-Yang-Wang-Minca (2020), etc.]
Fictitious play combined with machine learning techniques

Submodularity
in games: economic literature: [Topkis (1979)], [Milgrom-Roberts (1990)], [Vives (1990)]
in MFGs: - [Adlakha -Johari (2013)] discrete time MFG with infinite horizon discounted costs
- [Carmona-Delarue-Lacker (2017)] for MFGs of timing to study a model of bank runs in a
continuous time setting

J. Dianetti Submodular MFGs 3 / 15



Submodular MFGs: Itô type dynamics, regular controls, common noise

J. Dianetti Submodular MFGs 4 / 15



Let T > 0 be a fixed time horizon,
(
Ω,F , (Ft)t∈[0,T ],P

)
complete filtered probability space

Let W and B be independent Brownian motions, B is the COMMON NOISE

FB = (FB
t )t∈[0,T ] the (extended) filtration generated by B

for a closed control set U ⊂ R, consider the set of admissible controls

A := {α : Ω× [0,T ] → U |α is progr. meas. with E[
∫ T
0 αsds] < ∞}

For any given a P1(R)-valued FB -progressively measurable flow µ = (µt)t∈[0,T ], consider the

control problem infα∈A J(α, µ) where

J(α, µ) := E
[∫ T

0

[
f (t,Xα

t , µt) + l(t,Xα
t , αt)

]
dt + g(Xα

T , µT )

]
,

where Xα denotes the unique solution to the dynamics

dXt = b(t,Xt , αt)dt + σtdWt + σodBt , t ∈ [0,T ], X0 = ξ.

Assumption: existence & uniqueness of optimal controls (EU). For any FB -progr.meas. µ,
there exists a unique optimal pair (Xµ, αµ) with −∞ < J(αµ, µ) < ∞ and

J(αµ, µ) = inf
α∈A

J(α, µ) and Xµ = Xαµ
.

STRONG SOLUTION: fix µ −→ optimize against µ −→ search for µ = P[Xµ ∈ ·|FB
T ]
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Assumption: a priori estimate (APE). There exists p > 1 and a constant M > 0 such that

E
[
|Xµ

t |p
]
≤ M for all measurable flows of probabilities µ and t ∈ [0,T ].

First order stochastic dominance. For ν, ν̄ ∈ P(R), we say that

ν ≤st ν̄ if and only if ν((−∞, x]) ≥ ν̄((−∞, x]) ∀ x ∈ R.

By (APE), there exist P(R)-valued, FB
T -adapted r.v.’s µMin, µMax with

µMin ≤st P[Xµ
t ∈ ·|FB

T ] ≤st µMax for all measurable flow µ and t ∈ [0,T ], P-a.s.

Lattice structure. Defining on [0,T ] the measure π := δ0 + dt + δT , define the lattice of
feasible flows (L,≤L) as

L :=

{
equivalence classes (w.r.t. P⊗ π) FB -progr.meas. flows (µt)t∈[0,T ] s.t.

µt ∈ [µMin, µMax] for π-almost all t ∈ (0,T ] and µ0 = P ◦ (ξ)−1, P-a.s.

}
endowed with the order relation given by

µ ≤L ν if and only if µt ≤st νt for P⊗ π-a.a. (ω, t) ∈ Ω× [0,T ].

Now, the best reply map R : L → L, R(µ) := (P[Xµ
t ∈ ·|FB

t ])t∈[0,T ] is well defined and

µ ∈ L is a MFG solution if and only if R(µ) = µ

J. Dianetti Submodular MFGs 6 / 15



Assumption: a priori estimate (APE). There exists p > 1 and a constant M > 0 such that

E
[
|Xµ

t |p
]
≤ M for all measurable flows of probabilities µ and t ∈ [0,T ].

First order stochastic dominance. For ν, ν̄ ∈ P(R), we say that

ν ≤st ν̄ if and only if ν((−∞, x]) ≥ ν̄((−∞, x]) ∀ x ∈ R.

By (APE), there exist P(R)-valued, FB
T -adapted r.v.’s µMin, µMax with

µMin ≤st P[Xµ
t ∈ ·|FB

T ] ≤st µMax for all measurable flow µ and t ∈ [0,T ], P-a.s.

Lattice structure. Defining on [0,T ] the measure π := δ0 + dt + δT , define the lattice of
feasible flows (L,≤L) as

L :=

{
equivalence classes (w.r.t. P⊗ π) FB -progr.meas. flows (µt)t∈[0,T ] s.t.

µt ∈ [µMin, µMax] for π-almost all t ∈ (0,T ] and µ0 = P ◦ (ξ)−1, P-a.s.

}
endowed with the order relation given by

µ ≤L ν if and only if µt ≤st νt for P⊗ π-a.a. (ω, t) ∈ Ω× [0,T ].

Now, the best reply map R : L → L, R(µ) := (P[Xµ
t ∈ ·|FB

t ])t∈[0,T ] is well defined and

µ ∈ L is a MFG solution if and only if R(µ) = µ

J. Dianetti Submodular MFGs 6 / 15



Assumption: a priori estimate (APE). There exists p > 1 and a constant M > 0 such that

E
[
|Xµ

t |p
]
≤ M for all measurable flows of probabilities µ and t ∈ [0,T ].

First order stochastic dominance. For ν, ν̄ ∈ P(R), we say that

ν ≤st ν̄ if and only if ν((−∞, x]) ≥ ν̄((−∞, x]) ∀ x ∈ R.

By (APE), there exist P(R)-valued, FB
T -adapted r.v.’s µMin, µMax with

µMin ≤st P[Xµ
t ∈ ·|FB

T ] ≤st µMax for all measurable flow µ and t ∈ [0,T ], P-a.s.

Lattice structure. Defining on [0,T ] the measure π := δ0 + dt + δT , define the lattice of
feasible flows (L,≤L) as

L :=

{
equivalence classes (w.r.t. P⊗ π) FB -progr.meas. flows (µt)t∈[0,T ] s.t.

µt ∈ [µMin, µMax] for π-almost all t ∈ (0,T ] and µ0 = P ◦ (ξ)−1, P-a.s.

}
endowed with the order relation given by

µ ≤L ν if and only if µt ≤st νt for P⊗ π-a.a. (ω, t) ∈ Ω× [0,T ].

Now, the best reply map R : L → L, R(µ) := (P[Xµ
t ∈ ·|FB

t ])t∈[0,T ] is well defined and

µ ∈ L is a MFG solution if and only if R(µ) = µ

J. Dianetti Submodular MFGs 6 / 15



Assumption: a priori estimate (APE). There exists p > 1 and a constant M > 0 such that

E
[
|Xµ

t |p
]
≤ M for all measurable flows of probabilities µ and t ∈ [0,T ].

First order stochastic dominance. For ν, ν̄ ∈ P(R), we say that

ν ≤st ν̄ if and only if ν((−∞, x]) ≥ ν̄((−∞, x]) ∀ x ∈ R.

By (APE), there exist P(R)-valued, FB
T -adapted r.v.’s µMin, µMax with

µMin ≤st P[Xµ
t ∈ ·|FB

T ] ≤st µMax for all measurable flow µ and t ∈ [0,T ], P-a.s.

Lattice structure. Defining on [0,T ] the measure π := δ0 + dt + δT , define the lattice of
feasible flows (L,≤L) as

L :=

{
equivalence classes (w.r.t. P⊗ π) FB -progr.meas. flows (µt)t∈[0,T ] s.t.

µt ∈ [µMin, µMax] for π-almost all t ∈ (0,T ] and µ0 = P ◦ (ξ)−1, P-a.s.

}
endowed with the order relation given by

µ ≤L ν if and only if µt ≤st νt for P⊗ π-a.a. (ω, t) ∈ Ω× [0,T ].

Now, the best reply map R : L → L, R(µ) := (P[Xµ
t ∈ ·|FB

t ])t∈[0,T ] is well defined and

µ ∈ L is a MFG solution if and only if R(µ) = µ

J. Dianetti Submodular MFGs 6 / 15



Assumption: submodularity (Sub). For P⊗ dt a.a. (ω, t) ∈ Ω× [0,T ], the functions f (t, ·, ·)
and g have decreasing differences in (x , µ); that is, for φ ∈ {f (t, ·, ·), g},

φ(x̄ , µ̄)− φ(x , µ̄) ≤ φ(x̄ , µ)− φ(x , µ),

for all x̄ , x ∈ R and µ̄, µ ∈ P(R) s.t. x̄ ≥ x and µ̄ ≥st µ.

If φ satisfies (Sub), then it satisfies the Lasry-Lions anti-monotonicity condition; that is,∫
R
(φ(x , µ̄)− φ(x , µ))d(µ̄− µ)(x) ≤ 0, ∀ µ̄, µ ∈ P(R).

Examples:
- mean-field interaction of scalar type:

φ(x , µ) = γ
(
x ,

∫
h dµ

)
if h is increasing and γ ∈ C2(R2) with

∂2γ

∂x∂y
≤ 0

- mean-field interactions of order-1:

φ(x , µ) =

∫
R
γ(x , y)dµ(y) if γ ∈ C2(R2) with

∂2γ

∂x∂y
≤ 0

- quadratic cost: φ(x , µ) = (x−Mean(µ))2

- multiplicative cost: φ(x , µ) = −x Mean(µ)
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Theorem (Existence and Structure)

Under (EU), (APE) and (Sub), the set of MFG solutions (M,≤L) is a non-empty complete
lattice: in particular there exist a minimal and a maximal MFG solution

Remarks:

proof: Tarski’s fixed point theorem to the best reply map R : L → L

if J is nondecreasing with respect to µ, the same lattice structure is inherited by the values
at the equilibria, giving a criterion for the minimal cost selection

the continuity of f , g in µ is NOT NEEDED

STRONG SOLUTIONS to MFGs with COMMON NOISE (see [Carmona-Delarue-Lacker
(2016)])

using relaxed controls, the uniqueness of the optimal control in assumption (EU) can be
removed

geometric dynamics: dXt = b(t,Xt , αt)Xtdt + σtXtdWt , t ∈ [0,T ], X0 = ξ,

for particular costs (as e.g. φ(x , µ) = −xMean(µ) and l(a) = a2), we can treat mean-field
dependent dynamics as

dXt = Xt(αt +m(µt))dt + σXtdWt , t ∈ [0,T ], X0 = ξ ≥ 0,

dXt =
(
κXt + αt +m(µt)

)
dt + σdWt , t ∈ [0,T ], X0 = ξ, κ ∈ R, σ ≥ 0,

for bounded monotone m : (P(R),≤st) → R
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Assumption: linear-convex case (LC).

The control set U ⊂ R is convex and compact. The volatility σ is constant.

b(t, x , a) = ct + ptx + qta, where c, p and q are deterministic continuous functions of t.

The cost functions f , g and l are bounded and continuous, l is convex.

The learning algorithm

n = 0 : µ0 := inf L;

n ≥ 1 : µn+1 = R(µn).

Theorem (Approximation)

Under (EU), (APE), (Sub) and (LC), the sequence {µn}n∈N is increasing in (L,≤L) and it
weakly converges to the minimal MFG solution at any time t ∈ [0,T ], P-a.s.

Remarks:
- the maximal MFG solution can be reached by the same algorithm, starting from µ0 := sup L
- using relaxed controls, the uniqueness of the optimal control in assumption (EU) and
assumption (LC) can be removed
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Submodular MFGs and related McKean-Vlasov FBSDEs (working progress)
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For any given a P1(R)-valued FB -progressively measurable flow µ = (µt)t∈[0,T ], consider the

FBSDE(µ)

dXt = b(t,Xt , α̂(t,Xt ,Yt))dt + σdWt + σ◦dBt , X0 = ξ,

dYt = −DxH(t,Xt , µt ,Yt , α̂(t,Xt ,Yt))dt + ZtdWt + Z◦
t dBt , YT = Dxg(XT , µT )

where

H(t, x , ν, y , a) = b(t, x , a)y + h(t, x , ν) + l(t, x , a), (t, x , ν, y , a) ∈ [0,T ]× R×P(R)× R× U,

and
α̂(t, x , y) := argmin

a∈U
H(t, x , ν, y , a) ∈ U, (t, x , ν, y) ∈ [0,T ]× R× P(R)× R.

Denote by (Xµ,Y µ,Zµ,Z◦,µ) its solution.

Solution to the MKV FBSDE: (Xµ,Y µ,Zµ,Z◦,µ) such that µ = (P[Xµ
t ∈ ·|FB

t ])t∈[0,T ].

Lemma (Comparison principle)

Under (EU), (APE), (Sub) and (LC), if µ ≤ µ̄, then Xµ ≤ X µ̄.

Theorem (Solution to MKV FBSDEs)

Under (EU), (APE), (Sub) and (LC), the set of solution to the MKV FBSDE is a non-empty
complete lattice: in particular there exist a minimal and a maximal MFG solution .
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Thank you for your attention!
[D.-Ferrari-Fischer-Nendel (2021), AAP] and [D.-Ferrari-Fischer-Nendel (2022), arXiv preprint]
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