Randomization method in optimal control and BSDEs with constrained jumps

Marco Fuhrman

(University of Milan)

9th Colloquium on BSDEs and Mean Field Systems
Annecy, June 27th, 2022

Plan

- 1. A classical optimal control problem.
- 2. The randomization method.
- 3. Equivalence of an auxiliary control problem and the original problem.
- 4. Constrained BSDE representation for the value function.
- 5. Application: non-Markovian control problems.
- 6. Application: control with partial observation.
- 7. Related results and final comments.

1. A classical optimal control problem.

Classical stochastic optimal control problem

Controlled SDE in \mathbb{R}^n :

$$\begin{cases} dX_s^{\alpha} = b(X_s^{\alpha}, \alpha_s) ds + \sigma(X_s^{\alpha}, \alpha_s) dW_s, & s \in [t, T] \subset [0, T], \\ X_t^{\alpha} = x \in \mathbb{R}^n. \end{cases}$$

Reward functional and value function:

$$J(\alpha, t, x) = \mathbb{E}\left[\int_t^T f(X_s^{\alpha}, \alpha_s) \, ds + g(X_T^{\alpha})\right], \quad v(t, x) = \sup_{\alpha \in \mathcal{A}_d} J(\alpha, t, x).$$

- W is a Wiener process in \mathbb{R}^d , defined in $(\Omega, \mathcal{F}, \mathbb{P})$;
- \bullet A, the space of control actions, is a complete separable metric space (or a Borel subset of it);
- $\mathcal{A}_d = \{\alpha : \Omega \times [0,T] \to A$, $\mathbb{F}^W = (\mathcal{F}_t^W)$ -progressive $\}$ is the space of admissible controls;
- $\sigma(x,a) \in \mathbb{R}^{n \times d}$, $b(x,a) \in \mathbb{R}^n$, $f(x,a) \in \mathbb{R}$, $g(x) \in \mathbb{R}$ are functions of $x \in \mathbb{R}^n$ and $a \in A$.

Assumptions (A) on the coefficients

On the data $b(x,a), \sigma(x,a), f(x,a), g(x)$ of the control problem we assume:

- b, σ, f, g are continuous.
- b, σ are Lipschitz in x uniformly in a: $\exists L \geq 0$ such that

$$|b(x,a) - b(y,a)| + |\sigma(x,a) - \sigma(y,a)| \le L|x-y|, \quad x,y \in \mathbb{R}^n, a \in A.$$

• $b(0,a), \sigma(0,a)$ are bounded in a: $\exists M \geq 0$ such that $|b(0,a)| + |\sigma(0,a)| \leq M, \quad a \in A.$

ullet f,g have polynomial growth in x uniformly in a: $\exists r\geq 0$ such that

$$|f(x,a)| + |g(x)| \le M(1 + |x|^r), \quad x \in \mathbb{R}^n, a \in A.$$

Under these assumptions X^{α} is well defined and v(t,x) is finite.

$$\begin{cases} dX_s^{\alpha} = b(X_s^{\alpha}, \alpha_s) ds + \sigma(X_s^{\alpha}, \alpha_s) dW_s, & s \in [t, T] \subset [0, T], \\ X_t^{\alpha} = x \in \mathbb{R}^n. \end{cases}$$

Basic issue: find characterizations of the value function v.

Possible approaches:

- ullet prove that v is the unique solution to the Hamilton-Jacobi-Bellman equation (HJB), in general a fully non linear PDE;
- in some cases (e.g. $\sigma(x,a) = \sigma(x)$ and σ^{-1} bounded) use the theory of classical backward stochastic differential equations (BSDEs); (E. Pardoux, S. Peng)
- use the theory of second order BSDEs; (M. Soner, N. Touzi)
- use the theory of G-expectations (S. Peng).

2. The randomization method.

The randomization method in optimal control

Introduced in

B. Bouchard. A stochastic target formulation for optimal switching problems in finite horizon. Stochastics 81, no. 2 (2009), 171-197.

$$\begin{cases} dX_s^{\alpha} = b(X_s^{\alpha}, \alpha_s) ds + \sigma(X_s^{\alpha}, \alpha_s) dW_s, & s \in [t, T], \\ X_t^{\alpha} = x \in \mathbb{R}^n. \end{cases}$$

$$v(t,x) = \sup_{\alpha \in \mathcal{A}_d} \mathbb{E} \left[g(X_T^{\alpha}) + \int_t^T f(X_s^{\alpha}, \alpha_s) \, ds \right].$$

Idea:

- 1) replace (α_s) by a random (uncontrolled) process (I_s) with values in A;
- 2) formulate an auxiliary ("randomized") control problem, where "the law of I is controlled", having value denoted $v^{\mathcal{R}}(t,x)$;
- 3) prove that $v(t,x) = v^{\mathcal{R}}(t,x)$;
- 4) represent $v^{\mathcal{R}}(t,x)$ by a BSDE.

The randomized control problem

We replace the control $\alpha \in \mathcal{A}_d$ by an A-valued process I

- \bullet independent of W;
- with piecewise constant trajectories.

We consider the "randomized" state equation:

$$dX_s = b(X_s, I_s) ds + \sigma(X_s, I_s) dW_s, s \in [t, T]; \quad X_t = x.$$

Then we construct, via a Girsanov theorem, a suitable family of probability measures \mathbb{P}^{ν} , depending on $\nu \in \mathcal{V}$, such that

- $\mathbb{P}^{\nu} \sim \mathbb{P}$ (dominated model)
- ullet W remains a Wiener process under \mathbb{P}^{ν} .

Then we optimize among \mathbb{P}^{ν} : we formulate an auxiliary ("randomized") control problem with value function:

$$v^{\mathcal{R}}(t,x) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\nu} \left[\int_{t}^{T} f(X_{s},I_{s}) ds + g(X_{T}) \right].$$

The piecewise constant process I

$$I_t = a_0 \, 1(0 \le t < T_1) + A_1 \, 1(T_1 \le t < T_2) + A_2 \, 1(T_2 \le t < T_3) + \dots,$$

 T_n : random times, $0 < T_n < T_{n+1} \uparrow \infty$

 A_n : A-valued random variables $(a_0 \in A)$.

We identify $I \equiv (T_n, A_n)_{n>1} \equiv \mu$, a random measure on $(0, \infty) \times A$:

$$\mu(dt \, da) = \sum_{n \ge 1} \delta_{(T_n, A_n)}(dt \, da) \, 1_{\{T_n < \infty\}}.$$

We will use the filtration $\mathbb{F}^{W,\mu} = (\mathcal{F}_t^{W,\mu})$ generated by W and μ : $\mathcal{F}_t^{W,\mu} = \sigma\{W_s, \, \mu((0,s]\times C) : s\in[0,t], \, C\in\mathcal{B}(A)\}.$

We take for $I \equiv \mu$ a Poisson process, independent of W, with arbitrary fixed intensity λ , a finite measure on A. If we set

$$\nu(dt \, da) = \lambda(da)dt$$

then $\mu - \nu$ is a martingale measure.

Then we perform a Girsanov change of measure. Choose

$$\nu_t(\omega,a) > 0$$

a bounded $\mathcal{P}(\mathbb{F}^{W,\mu}) \otimes \mathcal{B}(A)$ -measurable random field. Set

$$\kappa_t^{\nu} = \exp\left(\int_0^t \int_A (1 - \nu_s(a)) \lambda(da) ds\right) \prod_{T_n \le t} \nu_{T_n}(A_n), \quad d\mathbb{P}^{\nu} = \kappa_T^{\nu} d\mathbb{P}$$

 $\kappa^{\nu} > 0$ is a Doléans exponential martingale and under \mathbb{P}^{ν} the compensator (= dual predictable projection) of μ is

$$\nu(dt da) = \nu_t(\omega, a) \lambda(da) dt.$$

Formally, for $C \in \mathcal{B}(A)$ and $n \geq 1$ the processes

$$\mu((0, t \wedge T_n] \times C) - \nu((0, t \wedge T_n] \times C), \qquad t \geq 0,$$

are \mathbb{P}^{ν} -martingales with respect to $\mathbb{F}^{W,\mu}$.

The randomized control problem

Let b, σ, f, g satisfy Assumption (A). Consider $(\Omega, \mathcal{F}, \mathbb{P}, W, \mu)$ where:

- $\mu \equiv (T_n, A_n)_{n \geq 1} \equiv I$ is a Poisson random measure with finite intensity $\lambda(da)$ with full topological support;
- ullet W is an \mathbb{R}^d -valued Brownian motion, independent of μ .

Consider the "randomized" state equation:

$$dX_s = b(X_s, I_s) ds + \sigma(X_s, I_s) dW_s, \ s \in [t, T]; \quad X_t = x.$$

The admissible controls are now random fields

$$\mathcal{V} = \{ \nu_t(\omega, a) : \mathcal{P}(\mathbb{F}^{W,\mu}) \otimes \mathcal{B}(A) - \text{measurable}, 0 < \nu \leq \sup \nu < \infty \}$$

Given $\nu \in \mathcal{V}$, we construct \mathbb{P}^{ν} such that, on [t,T],

- \bullet μ has compensator $\nu_t(a)\lambda(da)dt$ under \mathbb{P}^{ν} ;
- ullet W remains a Wiener process under $\mathbb{P}^{
 u}$.

We define an auxiliary ("randomized") value function:

$$v^{\mathcal{R}}(t,x) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\nu} \left[\int_{t}^{T} f(X_{s},I_{s}) ds + g(X_{T}) \right].$$

$$dX_s = b(X_s, I_s) ds + \sigma(X_s, I_s) dW_s, \ s \in [t, T]; \quad X_t = x.$$
$$v^{\mathcal{R}}(t, x) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\nu} \left[\int_t^T f(X_s, I_s) ds + g(X_T) \right].$$

It is known that the compensator $\nu_t(a)\lambda(da)dt$ determines the law of $\mu \equiv I$: choosing $\nu \in \mathcal{V}$ is way to "control" the process I.

We take $\lambda(da)$ with full topological support: the process I visits every open set in A.

It can be proved that $v^{\mathcal{R}}$ only depends on b, σ, f, g (not on $\Omega, \mathcal{F}, \mathbb{P}$, W, μ, λ, a_0).

Under these conditions we expect $v(t,x) \ge v^{\mathcal{R}}(t,x)$ but even $v(t,x) = v^{\mathcal{R}}(t,x)$.

3. Equivalence of an auxiliary control problem and the original problem.

Equivalence with the randomized problem

Original problem: for $s \in [t,T] \subset [0,T]$, $x \in \mathbb{R}^n$, $dX_s^{\alpha} = b(X_s^{\alpha},\alpha_s)\,ds + \sigma(X_s^{\alpha},\alpha_s)\,dW_s, \\ X_t^{\alpha} = x, \\ v(t,x) = \sup_{\alpha \in \mathcal{A}_d} \mathbb{E}\left[\int_t^T f(X_s^{\alpha},\alpha_s)\,ds + g(X_T^{\alpha})\right], \\ \mathcal{A}_d = \{\alpha_t(\omega) : \mathbb{F}^W - \text{progressive}\}$

Randomized problem:

$$dX_{s} = b(X_{s}, I_{s}) ds + \sigma(X_{s}, I_{s}) dW_{s},$$

$$X_{t} = x,$$

$$v^{\mathcal{R}}(t, x) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\nu} \left[\int_{t}^{T} f(X_{s}, I_{s}) ds + g(X_{T}) \right],$$

$$\mathcal{V} = \{ \nu_{t}(\omega, a) : \mathbb{F}^{W, \mu} - \text{predictable}, 0 < \nu \leq \sup \nu < \infty \}$$

Theorem. Assume (A). Then $v(t,x) = v^{\mathcal{R}}(t,x)$.

Kharroubi-Pham AOP 2015, F.-Pham AAP 2015, E. Bandini, A. Cosso, M. F., H. Pham. AAP 2018,

Method of proof: control-theoretic arguments and point process constructions.

Proof of the inequality $v(t,x) \leq v^{\mathcal{R}}(t,x)$

Define

$$J(\alpha) = \mathbb{E}\left[\int_t^T f(X_s^{\alpha}, \alpha_s) ds + g(X_T^{\alpha})\right],$$

$$J(\nu) = \mathbb{E}^{\nu}\left[\int_t^T f(X_s, I_s) ds + g(X_T)\right].$$

For $\epsilon > 0$ let $\alpha \in \mathcal{A}_d$ be such that $J(\alpha) \geq v(t,x) - \epsilon$. Find a piecewise-constant process $I' \in \mathcal{A}_d$ such that $J(I') \geq v(t,x) - 2\epsilon$. Identify $I' \equiv \mu' \equiv (T'_n, A'_n)$.

Take independent random elements $(T^{\epsilon}, A^{\epsilon})$ in $(\Omega', \mathcal{F}', \mathbb{P}')$ and construct the product probability $\mathbb{Q} := \mathbb{P} \times \mathbb{P}'$ on $\Omega \times \Omega'$. Perturb μ' using random elements

$$T_n = T'_n + T^{\epsilon}, \quad A_n = A'_n + A^{\epsilon},$$

and construct $I \equiv \mu \equiv (T_n, A_n)$ in such a way that:

- $J(I) \ge v(t,x) 3\epsilon$
- the compensator of under $\mathbb Q$ is of the form $\nu_t(a)\lambda(da)dt$ with

$$0 < c \le \nu_t(a) \le C.$$

By Girsanov define $\mathbb{P} := \mathbb{Q}^{\nu^{-1}}$ and verify:

- $\bullet \mathbb{Q} = \mathbb{P}^{\nu}$.
- under \mathbb{P} , μ has compensator $\lambda(da)dt$, so it is a Poisson process;
- ullet under \mathbb{P} , μ is independent of W.

It follows that
$$J(\nu)=J(I)\geq v(t,x)-3\epsilon$$
, so that $v^{\mathcal{R}}(t,x)\geq v(t,x)-3\epsilon$.

4. Constrained BSDE representation for the value function.

A class of constrained BSDEs to represent the value

Solve $dX_s = b(X_s, I_s) ds + \sigma(X_s, I_s) dW_s$, $X_t = x$ and consider the BSDE on [t, T]: \mathbb{P} -a.s.

$$Y_{s} + \int_{s}^{T} Z_{r} dW_{r} + \int_{s}^{T} \int_{A} U_{r}(a) \mu(dr da)$$

$$= g(X_{T}) + \int_{s}^{T} f(X_{r}, I_{r}) dr + K_{T} - K_{s},$$

 $U_s(a) \leq 0$, a constraint to hold $d\mathbb{P}\lambda(da)ds$ -a.s.

A solution is a quadruple $(Y_s(\omega), Z_s(\omega), U_s(\omega, a), K_s(\omega))$ where $s \in [t, T]$, $a \in A$, such that

Y is adapted; Z, U, K are predictable (w.r.t. $\mathbb{F}^{W,\mu}$);

Y is càdlàg, K càdlàg increasing, $K_t=0$;

$$\mathbb{E}\left[\sup_{s\in[t,T]}|Y_s|^2 + \int_t^T \|Z_s\|^2 ds + \int_t^T \int_A |U_s(a)|^2 \lambda(da) ds + K_T^2\right] < \infty.$$

Theorem Under assumptions (A) there exists a unique solution $(Y, Z, U, K) = (Y^{t,x}, Z^{t,x}, U^{t,x}, K^{t,x})$ to the constrained BSDE which is minimal, i.e. for any other solution (Y', Z', U', K') as above we have \mathbb{P} -a.s.

$$Y_t \leq Y_t', \quad t \geq 0.$$

Moreover we have

$$Y_t^{t,x} = v^{\mathcal{R}}(t,x) = v(t,x)$$

and more generally

$$Y_s = \operatorname{ess sup}_{\nu \in \mathcal{V}} \mathbb{E}^{\nu} \left[\int_s^T f(X_r, I_r) dr + g(X_T) \Big| \mathcal{F}_s^{W,\mu} \right].$$

Kharroubi-Pham AOP 2015, Kharroubi, Ma, Pham, Zhang AOP 2010.

In these papers it is proved that $(t, x) \mapsto Y_t^{t, x}$ is a solution to HJB or to a QVI in optimal impulse problems.

Proof by penalization and monotonic limit

Set t = 0. Solve $dX_t = b(X_t, I_t) dt + \sigma(X_t, I_t) dW_t$, $X_0 = x$. Solve the penalized equations, for unknown $(Y_t^n, Z_t^n, U_t^n(a))$:

$$Y_t^n + \int_t^T Z_s^n dW_s + \int_t^T \int_A U_s^n(a) \,\mu(ds \, da) = g(X_T) + \int_t^T f(X_s, I_s) \, ds + K_T^n - K_t^n,$$

where $K_t^n := n \int_0^t \int_A [U_s^n(a)]^+ \lambda(da) ds$. One proves

$$Y_t^n = \underset{\nu \in \mathcal{V}, \, \nu \leq n}{\operatorname{ess \, sup}} \, \mathbb{E}^{\nu} \left[\int_t^T f(X_s, I_s) \, ds + g(X_T) \Big| \mathcal{F}_t^{W, \mu} \right]$$

and so $Y_t^n \leq Y_t^{n+1}$ and then $(Y^n, Z^n, U^n, K^n) \to (Y, Z, U, K)$, the solution. In the limit, $[U_t(a)]^+ = 0$. For t = 0,

$$Y_0 = \uparrow \lim_n Y_0^n = \sup_{\nu \in \mathcal{V}, \, \nu \leq n} \mathbb{E}^{\nu} \left[\int_0^T f(X_s, I_s) \, ds + g(X_T) \right] = v^{\mathcal{R}}(0, x).$$

5. Application: non-Markovian control problems.

Non-Markovian optimal control

$$\begin{cases} dX_s^{\alpha} = b_s(X^{\alpha}, \alpha_s) ds + \sigma_s(X^{\alpha}, \alpha_s) dW_s, & s \in [t, T] \subset [0, T], \\ X_s^{\alpha} = x(s), s \in [0, t]. \end{cases}$$

Here $b_t(x,a) \in \mathbb{R}^n$, $\sigma_t(x,a) \in \mathbb{R}^{n \times d}$ depend on $a \in A$ and

$$x = x(\cdot) : [0, T] \to \mathbb{R}^n$$
 continuous,

but they are non-anticipative functionals:

$$x(s) = x'(s), s \in [0, t]$$
 \Rightarrow
$$\begin{cases} b_t(x, a) = b_t(x', a) \\ \sigma_t(x, a) = \sigma_t(x', a) \end{cases}$$

More precisely, we require $b_t(x, a)$ etc. to be a progressive process with respect to the canonical coordinate filtration on the space of continuous paths $x(\cdot)$.

Examples:

$$X_t^{\alpha} = x + \ldots + \int_0^t k(t-s) X_s^{\alpha} ds + b(X_{t-\delta}^{\alpha}) + \ldots$$

for a memory kernel k and a delay $\delta > 0$, or more general path-dependent coefficients.

Path-dependence might be included in the control as well:

$$dX_s^{\alpha} = b_s(X^{\alpha}, \alpha) ds + \sigma_s(X^{\alpha}, \alpha) dW_s.$$

Maximize:
$$\sup_{\alpha \in \mathcal{A}_d} \mathbb{E} \left[\int_t^T f_{s}(X^{\alpha}, \alpha_s) \, ds + g(X^{\alpha}) \right].$$

Assumptions (A1)

- Continuity: $b_t(x,a)$, $\sigma_t(x,a)$, $f_t(x,a)$, g(x,a) are continuous functions of $t \in [0,T]$, $a \in A$, $x \in C([0,T]; \mathbb{R}^n)$. [A is given its metric, $C([0,T]; \mathbb{R}^n)$ the supremum norm.]
- ullet b,σ are Lipschitz continuous in x uniformly in a: $\exists L\geq 0$ such that

$$|b_t(x,a) - b_t(x',a)| + |\sigma_t(x,a) - \sigma_t(x',a)| \le L \sup_{s \in [0,t]} |x(s) - x'(s)|.$$

• $b_t(0,a), \sigma_t(0,a)$ are bounded: $\exists M \geq 0$ such that

$$|b_t(0,a)| + |\sigma_t(0,a)| \le M.$$

ullet f,g have polynomial growth in x uniformly in a: $\exists r\geq 0$ such that

$$|f_t(x,a)| + |g(x,a)| + |c_t(x,a,a')| \le M(1 + \sup_{s \in [0,t]} |x(s)|^r).$$

$$\begin{cases} dX_s^{\alpha} = b_s(X^{\alpha}, \alpha_s) ds + \sigma_s(X^{\alpha}, \alpha_s) dW_s, & s \in [t, T] \subset [0, T], \\ X_s^{\alpha} = x(s), s \in [0, t]. \end{cases}$$

The value

$$v(t, \mathbf{x}(\cdot)) = \sup_{\alpha \in \mathcal{A}_d} \mathbb{E}\left[\int_t^T f_{\mathbf{s}}(X^{\alpha}, \alpha_s) ds + g(X^{\alpha})\right]$$

is a function of $(t, (x(s))_{s \in [0,t]})$.

Possible characterizations for v:

- \bullet prove that v is the unique solution to the path-dependent HJB equation, a PPDE.
- constrained BSDEs and the randomization method.

We take $I \equiv \mu$ Poisson, independent of W, with intensity λ (finite measure with full support in A). Randomized state equation:

$$\begin{cases} dX_s = b_s(X, I_s) ds + \sigma_s(X, I_s) dW_s, & s \in [t, T] \subset [0, T], \\ X_s = x(s), s \in [0, t]. \end{cases}$$

We construct probabilities \mathbb{P}^{ν} as before and define

$$v^{\mathcal{R}}(t, \mathbf{x}(\cdot)) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\nu} \left[\int_{t}^{T} f_{s}(X, I_{s}) ds + g(X) \right].$$

Theorem. Assume (A1). Then

$$v(t, x(\cdot)) = v^{\mathcal{R}}(t, x(\cdot)) = Y_t$$

where (Y, Z, U, K) is the unique minimal solution to the constrained BSDE on [t, T]:

$$\begin{cases} Y_s + \int_s^T Z_r \, dW_r + \int_s^T \int_A U_r(a) \, \mu(dr \, da) \\ = g(X) + \int_s^T f_r(X, I_r) \, dr + K_T - K_s, \\ U_s(a) \le 0. \end{cases}$$

6. Application: control with partial observation.

Randomization method for partially observed optimal control problems

We start from some reminders on the filtering problem. Equation for the state X in \mathbb{R}^n : on [0,T],

$$dX_t = b(X_t) dt + \sigma^1(X_t) dV_t^1 + \sigma^2(X_t) dV_t^2, \qquad X_0 = x_0$$

 (V^1,V^2) standard Wiener process in \mathbb{R}^{m+d} defined in $(\Omega,\mathcal{F},\overline{\mathbb{P}})$ $\overline{\mathbb{P}}=$ the "physical" probability.

Equation for the observation W in \mathbb{R}^d :

$$dW_t = h(X_t) dt + dV_t^2, W_0 = 0.$$

 b, σ^1, σ^2, h "nice" (e.g. Lipschitz bounded).

 $\mathbb{F}^W = (\mathcal{F}_t^W)_{t>0} =$ the filtration generated by W.

Filtering problem: characterize the filter process (π_t) with values in $\mathbb{P}(\mathbb{R}^n)$ such that

$$\pi_t(\phi) = \overline{\mathbb{E}} \left[\phi(X_t) \mid \mathcal{F}_t^W \right],$$

(optional projection) for every ϕ test (e.g. bounded smooth).

The reference probability method

"Reference" probability $d\mathbb{P}=Z_T^{-1}\,d\overline{\mathbb{P}}$ where

$$Z_t^{-1} = \exp\left(-\int_0^t h(X_s) dV_s^2 - \frac{1}{2} \int_0^t |h(X_s)|^2 ds\right)$$

 (V^1, W) standard Wiener in $(\Omega, \mathcal{F}, \mathbb{P})$ on [0, T].

Define the unnormalized filter process (ρ_t) : for every ϕ test,

$$\rho_t(\phi) = \mathbb{E}\left[\phi(X_t) \mathbf{Z}_t \mid \mathcal{F}_t^W\right].$$

Then

$$\pi_t(\phi) = \rho_t(\phi)/\rho_t(1)$$

and (ρ_t) solves the Zakai equation

$$d\rho_t(\phi) = \rho_t(\mathcal{L}\phi) dt + \rho_t(h\phi + \mathcal{M}\phi) dW_t$$

where
$$\mathcal{L}\phi = \frac{1}{2}Tr(\sigma\sigma^T\nabla^2\phi) + \nabla\phi b$$
, $\mathcal{M}\phi = \sigma^2\nabla\phi$, $\sigma = (\sigma^1, \sigma^2)$.

In $(\Omega, \mathcal{F}, \mathbb{P})$ the process (V^1, W) is Wiener,

$$dX_t = (b - \sigma^2 h)(X_t) dt + \sigma^1(X_t) dV_t^1 + \sigma^2(X_t) dW_t, \quad X_0 = x_0,$$

$$dZ_t = Z_t h(X_t) dW_t, Z_0 = 1.$$

Given a functional

$$J = \overline{\mathbb{E}} \left[\int_0^T f(X_t) dt + g(X_T) \right]$$

we have

$$J = \mathbb{E}\left[\int_0^T Z_t f(X_t) dt + Z_T g(X_T)\right].$$

Weak formulation of the partially observed problem

See e.g. Bensoussan (1993). In the reference probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we take a Wiener process (V^1, W) and call W the observation.

A control is a process (α_t) progressive for \mathbb{F}^W with values in A.

Controlled state equation and equation for the density process:

$$dX_t = (b - \sigma^2 h)(X_t, \alpha_t) dt + \sigma^1(X_t, \alpha_t) dV_t^1 + \sigma^2(X_t, \alpha_t) dW_t,$$

$$dZ_t = Z_t h(X_t, \alpha_t) dW_t.$$

Maximize $J(\alpha) = \mathbb{E}\left[\int_0^T Z_t f(X_t, \alpha_t) dt + Z_T g(X_T)\right].$

Let V^2 be defined by $dV_t^2 = dW_t - h(X_t, \alpha_t) dt$. Then, under the "physical" probability $d\overline{\mathbb{P}} = Z_T d\mathbb{P}$, (V^1, V^2) is Wiener and

$$dX_{t} = b(X_{t}, \alpha_{t}) dt + \sigma^{1}(X_{t}, \alpha_{t}) dV_{t}^{1} + \sigma^{2}(X_{t}, \alpha_{t}) dV_{t}^{2}, X_{0} = x_{0},$$

$$J(\alpha) = \mathbb{E}\left[\int_{0}^{T} f(X_{t}, \alpha_{t}) dt + g(X_{T})\right].$$

Note: $X, Z, V^2, \overline{\mathbb{P}}$ depend on α .

 (V^1, W) Wiener in $(\Omega, \mathcal{F}, \mathbb{P})$, controls (α_t) progressive for \mathbb{F}^W .

$$\begin{cases} dX_t &= (b - \sigma^2 h)(X_t, \alpha_t) dt + \sigma^1(X_t, \alpha_t) dV_t^1 + \sigma^2(X_t, \alpha_t) dW_t, \\ X_0 &= x_0, \\ dZ_t &= Z_t h(X_t, \alpha_t) dW_t, \\ Z_0 &= 1 \end{cases}$$

Maximize $J(\alpha) = \mathbb{E}\left[\int_0^T Z_t f(X_t, \alpha_t) dt + Z_T g(X_T)\right].$

Classical approach: controlled Zakai equation for $\rho_t(\phi) = \mathbb{E}\left[\phi(X_t)Z_t \mid \mathcal{F}_t^W\right]$:

$$d\rho_t(\phi) = \rho_t(\mathcal{L}^{\alpha_t}\phi) dt + \rho_t(h(\cdot, \alpha_t)\phi + \mathcal{M}^{\alpha_t}\phi) dW_t$$

where $\mathcal{L}^a \phi = \frac{1}{2} Tr(\sigma \sigma^T(\cdot, a) D^2 \phi) + \nabla \phi b(\cdot, a)$, $\mathcal{M}^a \phi = \nabla \phi \sigma^2(\cdot, a)$ $\sigma = (\sigma^1, \sigma^2), \phi \text{ test.}$

Maximize $J(\alpha) = \mathbb{E} \left| \int_0^T \rho_t \left(f(\cdot, \alpha_t) \right) dt + \rho_T \left(g(\cdot) \right) \right|$.

A full observation infinite-dimensional optimal control problem. Its Hamilton-Jacobi-Bellman equation is fully nonlinear and very degenerate.

 (V^1, W) Wiener in $(\Omega, \mathcal{F}, \mathbb{P})$, controls (α_t) progressive for \mathbb{F}^W .

$$\begin{cases} dX_t = (b - \sigma^2 h)(X_t, \alpha_t) dt + \sigma^1(X_t, \alpha_t) dV_t^1 + \sigma^2(X_t, \alpha_t) dW_t, \\ X_0 = x_0, \\ dZ_t = Z_t h(X_t, \alpha_t) dW_t, \\ Z_0 = 1 \end{cases}$$

Maximize $J(\alpha) = \mathbb{E}\left[\int_0^T Z_t f(X_t, \alpha_t) dt + Z_T g(X_T)\right].$

Setting $X_t^{\alpha} = (X_t, Z_t)$ we write the above problem in the form

$$\begin{cases} dX_t^{\alpha} = \tilde{b}(X_t^{\alpha}, \mathbf{\alpha_t}) dt + \tilde{\sigma}^1(X_t^{\alpha}, \mathbf{\alpha_t}) dV_t^1 + \tilde{\sigma}^2(X_t^{\alpha}, \mathbf{\alpha_t}) dW_t, \\ X_0^{\alpha} = (x_0, 1) \end{cases}$$

Maximize

$$J(\boldsymbol{\alpha}) = \mathbb{E}\left[\int_0^T \tilde{f}(X_t^{\alpha}, \boldsymbol{\alpha_t}) dt + \tilde{g}(X_T^{\alpha})\right]$$

over all (α_t) progressive for \mathbb{F}^W .

Note: in this reformulation we have h=0 and so $\pi_t=\rho_t$.

The addressed control problem with partial observation

Let b, σ, f, g satisfy assumptions (A).

Given $(\Omega, \mathcal{F}, \mathbb{P})$ and a Wiener process (V, W) consider

$$dX_s^{\alpha} = b(X_s^{\alpha}, \alpha_s) ds + \sigma^1(X_s^{\alpha}, \alpha_s) dV_s + \sigma^2(X_s^{\alpha}, \alpha_s) dW_s, \quad s \in [t, T],$$

$$X_t^{\alpha} = x_0 \text{ with law } \xi,$$

Controls: (α_t) progressive for \mathbb{F}^W with values in A.

Define the reward (depending only on ξ)

$$J(t, \boldsymbol{\xi}, \alpha) = \mathbb{E}\left[\int_t^T f(X_s^{\alpha}, \alpha_s) \, ds + g(X_T^{\alpha})\right].$$

and the value function

$$v(t, \boldsymbol{\xi}) = \sup_{\alpha(\cdot)} J(t, \boldsymbol{\xi}, \alpha).$$

The equivalent randomized control problem

We take $I \equiv \mu$ Poisson, independent of (V, W), with intensity λ (finite with full support in A). Randomized state equation:

$$dX_s = b(X_s, I_s) ds + \sigma^1(X_s, I_s) dV_s + \sigma^2(X_s, I_s) dW_s, \quad X_t = x_0.$$

Let $\mathbb{F}^{W,\mu} = (\mathcal{F}^{W,\mu}_t)$ be generated by W,μ alone.

$$\mathcal{V} = \{ \nu_t(\omega, a) : \mathcal{P}(\mathbb{F}^{W,\mu}) \otimes \mathcal{B}(A) - \text{measurable}, 0 < \nu \leq \sup \nu < \infty \}$$

Under $d\mathbb{P}^{\nu} = \kappa_{T}^{\nu} d\mathbb{P}$, on [t, T]:

- (V, W) remains Wiener, and
- μ has compensator $\nu_t(a)\lambda(da)dt$.

$$v^{\mathcal{R}}(t, \boldsymbol{\xi}) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\nu} \left[\int_{t}^{T} f(X_{s}, I_{s}) ds + g(X_{T}) \right],$$

Theorem. We have $v(t,\xi) = v^{\mathcal{R}}(t,\xi)$. It only depends on b, σ, f, g (not on $\Omega, \mathcal{F}, \mathbb{P}, V, W, \mu, \lambda, x_0, a$).

E. Bandini, A. Cosso, M. F., H. Pham. AAP 2018, where non Markovian case is also treated.

Filter processes in the randomized framework.

For ϕ test, set

$$\rho_s(\phi) = \mathbb{E}\left[\phi(X_s) \mid \mathcal{F}_s^{W,\mu}\right].$$

The pair (ρ, I) is Markovian in $\mathbb{P}(\mathbb{R}^n) \times A$ where

- $(I_s) = (I_s^{t,a_0})_{s \in [t,T]}$ is Poisson λ starting at $a_0 \in A$ at time t;
- $(\rho_s) = (\rho_s^{t,\xi,a_0})_{s \in [t,T]}$ satisfies the randomized Zakai equation: for $s \in [t,T]$,

$$d\rho_s(\phi) = \rho_s(\mathcal{L}^{I_s}\phi) \, ds + \rho_s(\mathcal{M}^{I_s}\phi) \, dW_s, \qquad \rho_t(\phi) = \xi(\phi).$$
 where $\mathcal{L}^a\phi = \frac{1}{2} Tr(\sigma\sigma^T(\cdot,a)\nabla^2\phi) + \nabla\phi b(\cdot,a), \ \mathcal{M}^a\phi = \nabla\phi\sigma^2(\cdot,a),$ $\sigma = (\sigma^1,\sigma^2).$

Compare with the controlled Zakai equation (for a different ρ_s)

$$d\rho_s(\phi) = \rho_s(\mathcal{L}^{\alpha_s}\phi) ds + \rho_s(h(\cdot,\alpha_s)\phi + \mathcal{M}^{\alpha_s}\phi) dW_s.$$

The constrained BSDE representing the value function

Theorem. We have

$$v(t,\xi) = v^{\mathcal{R}}(t,\xi) = Y_t^{t,\xi,a_0},$$

where $(Y, Z, U, K) = (Y^{t,\xi,a_0}, Z^{t,\xi,a_0}, U^{t,\xi,a_0}, K^{t,\xi,a_0})$ is the unique minimal solution to the constrained BSDE on [t,T]:

$$\begin{cases} Y_s + \int_s^T Z_r dW_r + \int_s^T \int_A U_r(a) \mu(dr da) \\ = \rho_T(g) + \int_s^T \rho_r(f(\cdot, I_r)) dr + K_T - K_s, \\ U_s(a) \le 0. \end{cases}$$

Moreover,

$$Y_s^{t,\xi,a_0} = v(s, \rho_s^{t,\xi,a_0}), \qquad s \in [t, T].$$

Based on this results one can prove that $v(t,\xi)$ is a viscosity solution to a HJB equation on $[0,T] \times \mathbb{P}(\mathbb{R})$.

Bandini, Cosso, F., Pham, SPA 2019.

7. Related results and final comments.

Some general comments

- No nondegeneracy condition on σ .
- Markovian and non-Markovian case treated similarly.
- No result on existence of an optimal control.
- Numerical methods have been developed for constrained BS-DEs of this form.

Other applications of the control randomization method

- Optimal switching
 (Bouchard 09, Elie-Kharroubi 10, 14, 14, F.-Morlais 19)
- Impulse control (Kharroubi-Pham-Ma-Zhang 10).
- Jump-diffusion (Kharroubi-Pham 14)
- Optimal stopping (F.-Pham-Zeni 15).
- Control of pure jump processes (Bandini-F. 17)
- Control of piecewise-deterministic Markov processes (Bandini 19, 21, Bandini-Thieullen 21)
- Infinite horizon (Confortola-Cosso-Fuhman 19)
- Ergodic control (Cosso-F.-Pham 16)
- Markovian jump-diffusion with controlled intensity (Choukroun-Cosso 16).
- Control of McKean-Vlasov systems (Bayraktar-Cosso-Pham 18)
- Control of infinite-dimensional jump-diffusions (Bandini-Confortola-Cosso 19)
- Numerical methods (Kharroubi-Langrené-Pham 14, 15)
- Weak formulation (F.-Pham 15)

Thank you for your attention!