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1. A classical optimal control problem.
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Classical stochastic optimal control problem

Controlled SDE in Rn:{
dXα

s = b(Xα
s , αs) ds+ σ(Xα

s , αs) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xα
t = x ∈ Rn.

Reward functional and value function:

J(α, t, x) = E
[∫ T
t
f(Xα

s , αs) ds+ g(Xα
T )

]
, v(t, x) = sup

α∈Ad
J(α, t, x).

• W is a Wiener process in Rd, defined in (Ω,F ,P);

• A, the space of control actions, is a complete separable metric

space (or a Borel subset of it);

• Ad = {α : Ω× [0, T ]→ A, FW = (FWt )-progressive} is the space

of admissible controls;

• σ(x, a) ∈ Rn×d, b(x, a) ∈ Rn, f(x, a) ∈ R, g(x) ∈ R are functions

of x ∈ Rn and a ∈ A.
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Assumptions (A) on the coefficients

On the data b(x, a), σ(x, a), f(x, a), g(x) of the control problem

we assume:

• b, σ, f, g are continuous.

• b, σ are Lipschitz in x uniformly in a: ∃L ≥ 0 such that

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ L|x− y|, x, y ∈ Rn, a ∈ A.

• b(0, a), σ(0, a) are bounded in a: ∃M ≥ 0 such that

|b(0, a)|+ |σ(0, a)| ≤M, a ∈ A.

• f, g have polynomial growth in x uniformly in a: ∃r ≥ 0 such

that

|f(x, a)|+ |g(x)| ≤M (1 + |x|r), x ∈ Rn, a ∈ A.

Under these assumptions Xα is well defined and v(t, x) is finite.
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{
dXα

s = b(Xα
s , αs) ds+ σ(Xα

s , αs) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xα
t = x ∈ Rn.

Basic issue: find characterizations of the value function v.

Possible approaches:

• prove that v is the unique solution to the Hamilton-Jacobi-

Bellman equation (HJB), in general a fully non linear PDE;

• in some cases (e.g. σ(x, a) = σ(x) and σ−1 bounded) use

the theory of classical backward stochastic differential equations

(BSDEs); (E. Pardoux, S. Peng)

• use the theory of second order BSDEs; (M. Soner, N. Touzi)

• use the theory of G-expectations (S. Peng).
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2. The randomization method.

6



The randomization method in optimal control

Introduced in

B. Bouchard. A stochastic target formulation for optimal switching problems in finite hori-

zon. Stochastics 81, no. 2 (2009), 171-197.

{
dXα

s = b(Xα
s , αs) ds+ σ(Xα

s , αs) dWs, s ∈ [t, T ],
Xα
t = x ∈ Rn.

v(t, x) = sup
α∈Ad

E
[
g(Xα

T ) +
∫ T
t
f(Xα

s , αs) ds

]
.

Idea:

1) replace (αs) by a random (uncontrolled) process (Is) with

values in A;

2) formulate an auxiliary (“randomized”) control problem, where

“the law of I is controlled”, having value denoted vR(t, x);

3) prove that v(t, x) = vR(t, x);

4) represent vR(t, x) by a BSDE.
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The randomized control problem

We replace the control α ∈ Ad by an A-valued process I

• independent of W ;

• with piecewise constant trajectories.

We consider the “randomized” state equation:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, s ∈ [t, T ]; Xt = x.

Then we construct, via a Girsanov theorem, a suitable family of

probability measures Pν, depending on ν ∈ V, such that

• Pν ∼ P (dominated model)

• W remains a Wiener process under Pν.

Then we optimize among Pν: we formulate an auxiliary (“ran-

domized”) control problem with value function:

vR(t, x) = sup
ν∈V

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

]
.
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The piecewise constant process I

It = a0 1(0 ≤ t < T1)+A1 1(T1 ≤ t < T2)+A2 1(T2 ≤ t < T3)+. . . ,

Tn: random times, 0 < Tn < Tn+1 ↑ ∞
An: A-valued random variables (a0 ∈ A).

We identify I ≡ (Tn, An)n≥1 ≡ µ, a random measure on (0,∞)×A:

µ(dt da) =
∑
n≥1

δ(Tn,An)(dt da) 1{Tn<∞}.

We will use the filtration FW,µ = (FW,µt ) generated by W and µ:

FW,µt = σ{Ws, µ((0, s]× C) : s ∈ [0, t], C ∈ B(A)}.

We take for I ≡ µ a Poisson process, independent of W , with

arbitrary fixed intensity λ, a finite measure on A. If we set

ν(dt da) = λ(da)dt

then µ− ν is a martingale measure.
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Then we perform a Girsanov change of measure. Choose

νt(ω, a) > 0

a bounded P(FW,µ)⊗ B(A)-measurable random field. Set

κνt = exp
(∫ t

0

∫
A

(1− νs(a))λ(da)ds
) ∏
Tn≤t

νTn(An), dPν = κνT dP

κν > 0 is a Doléans exponential martingale and under Pν the

compensator (= dual predictable projection) of µ is

ν(dt da) = νt(ω, a)λ(da)dt.

Formally, for C ∈ B(A) and n ≥ 1 the processes

µ((0, t ∧ Tn]× C)− ν((0, t ∧ Tn]× C), t ≥ 0,

are Pν-martingales with respect to FW,µ.
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The randomized control problem

Let b, σ, f, g satisfy Assumption (A). Consider (Ω,F ,P,W, µ) where:
• µ ≡ (Tn, An)n≥1 ≡ I is a Poisson random measure with finite
intensity λ(da) with full topological support;
• W is an Rd-valued Brownian motion, independent of µ.

Consider the “randomized” state equation:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, s ∈ [t, T ]; Xt = x.

The admissible controls are now random fields
V = {νt(ω, a) : P(FW,µ)⊗ B(A)−measurable, 0 < ν ≤ sup ν <∞}

Given ν ∈ V, we construct Pν such that, on [t, T ],
• µ has compensator νt(a)λ(da)dt under Pν;
• W remains a Wiener process under Pν.

We define an auxiliary (“randomized”) value function:

vR(t, x) = sup
ν∈V

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

]
.
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dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, s ∈ [t, T ]; Xt = x.

vR(t, x) = sup
ν∈V

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

]
.

It is known that the compensator νt(a)λ(da)dt determines the
law of µ ≡ I: choosing ν ∈ V is way to “control” the process I.

We take λ(da) with full topological support: the process I visits
every open set in A.

It can be proved that vR only depends on b, σ, f, g (not on Ω,F ,P,
W , µ, λ, a0).

Under these conditions we expect v(t, x) ≥ vR(t, x) but even

v(t, x) = vR(t, x).
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3. Equivalence of an auxiliary control problem and the original

problem.
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Equivalence with the randomized problem

Original problem: for s ∈ [t, T ] ⊂ [0, T ], x ∈ Rn,

dXα
s = b(Xα

s , αs) ds+ σ(Xα
s , αs) dWs,

Xt
α = x,

v(t, x) = supα∈Ad E
[∫ T
t f(Xα

s , αs) ds+ g(Xα
T )
]
,

Ad = {αt(ω) : FW−progressive}

Randomized problem:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs,
Xt = x,

vR(t, x) = supν∈V Eν
[∫ T
t f(Xs, Is) ds+ g(XT )

]
,

V = {νt(ω, a) : FW,µ−predictable, 0 < ν ≤ sup ν <∞}

Theorem. Assume (A). Then v(t, x) = vR(t, x).

Kharroubi-Pham AOP 2015, F.-Pham AAP 2015, E. Bandini, A. Cosso, M. F., H. Pham.

AAP 2018,

Method of proof: control-theoretic arguments and point process
constructions.
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Proof of the inequality v(t, x) ≤ vR(t, x)

Define

J(α) = E
[∫ T
t f(Xα

s , αs) ds+ g(Xα
T )
]
,

J(ν) = Eν
[∫ T
t f(Xs, Is) ds+ g(XT )

]
.

For ε > 0 let α ∈ Ad be such that J(α) ≥ v(t, x)− ε.
Find a piecewise-constant process I ′ ∈ Ad such that

J(I ′) ≥ v(t, x)− 2ε. Identify I ′ ≡ µ′ ≡ (T ′n, A
′
n).

Take independent random elements (T ε, Aε) in (Ω′,F ′,P′) and

construct the product probability Q := P× P′ on Ω×Ω′.
Perturb µ′ using random elements

Tn = T ′n + T ε, An = A′n +Aε,

and construct I ≡ µ ≡ (Tn, An) in such a way that:
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• J(I) ≥ v(t, x)− 3ε.

• the compensator of under Q is of the form νt(a)λ(da)dt with

0 < c ≤ νt(a) ≤ C.

By Girsanov define P := Qν−1
and verify:

• Q = Pν.

• under P, µ has compensator λ(da)dt, so it is a Poisson process;

• under P, µ is independent of W .

It follows that J(ν) = J(I) ≥ v(t, x)− 3ε, so that

vR(t, x) ≥ v(t, x)− 3ε.
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4. Constrained BSDE representation for the value function.
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A class of constrained BSDEs to represent the value

Solve dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, Xt = x

and consider the BSDE on [t, T ]: P-a.s.

Ys +
∫ T
s
Zr dWr +

∫ T
s

∫
A
Ur(a)µ(dr da)

= g(XT ) +
∫ T
s
f(Xr, Ir) dr +KT −Ks,

Us(a) ≤ 0, a constraint to hold dPλ(da)ds-a.s.

A solution is a quadruple (Ys(ω), Zs(ω), Us(ω, a),Ks(ω))

where s ∈ [t, T ], a ∈ A, such that

Y is adapted; Z,U,K are predictable (w.r.t. FW,µ);

Y is càdlàg, K càdlàg increasing, Kt = 0;

E
[

sup
s∈[t,T ]

|Ys|2 +
∫ T
t
‖Zs‖2 ds+

∫ T
t

∫
A
|Us(a)|2 λ(da) ds+K2

T

]
<∞.
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Theorem Under assumptions (A) there exists a unique solu-

tion (Y, Z, U,K) = (Y t,x, Zt,x, U t,x,Kt,x) to the constrained BSDE

which is minimal, i.e. for any other solution (Y ′, Z′, U ′,K′) as

above we have P-a.s.

Yt ≤ Y ′t , t ≥ 0.

Moreover we have

Y
t,x
t = vR(t, x) = v(t, x)

and more generally

Ys = ess supν∈V Eν
[∫ T
s
f(Xr, Ir) dr + g(XT )

∣∣∣FW,µs

]
.

Kharroubi-Pham AOP 2015, Kharroubi, Ma, Pham, Zhang AOP 2010.

In these papers it is proved that (t, x) 7→ Y
t,x
t is a solution to HJB

or to a QVI in optimal impulse problems.
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Proof by penalization and monotonic limit

Set t = 0. Solve dXt = b(Xt, It) dt+ σ(Xt, It) dWt, X0 = x.

Solve the penalized equations, for unknown (Y nt , Z
n
t , U

n
t (a)):

Y nt +
∫ T
t
Zns dWs +

∫ T
t

∫
A
Uns (a)µ(ds da) =

g(XT ) +
∫ T
t
f(Xs, Is) ds+Kn

T −K
n
t ,

where Kn
t := n

∫ t
0

∫
A

[Uns (a)]+λ(da) ds. One proves

Y nt = ess sup
ν∈V, ν≤n

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

∣∣∣FW,µt

]

and so Y nt ≤ Y
n+1
t and then (Y n, Zn, Un,Kn)→ (Y, Z, U,K), the

solution. In the limit, [Ut(a)]+ = 0. For t = 0,

Y0 =↑ lim
n
Y n0 = sup

ν∈V, ν≤n
Eν
[∫ T

0
f(Xs, Is) ds+ g(XT )

]
= vR(0, x).
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5. Application: non-Markovian control problems.
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Non-Markovian optimal control

{
dXα

s = bs(Xα, αs) ds+ σs(Xα, αs) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xα
s = x(s), s ∈ [0, t].

Here bt(x, a) ∈ Rn, σt(x, a) ∈ Rn×d depend on a ∈ A and

x = x(·) : [0, T ]→ Rn continuous,

but they are non-anticipative functionals:

x(s) = x′(s), s ∈ [0, t] ⇒
{
bt(x, a) = bt(x′, a)
σt(x, a) = σt(x′, a)

More precisely, we require bt(x, a) etc. to be a progressive process

with respect to the canonical coordinate filtration on the space

of continuous paths x(·).

22



Examples:

Xα
t = x+ . . .+

∫ t
0
k(t− s)Xα

s ds+ b(Xα
t−δ) + . . .

for a memory kernel k and a delay δ > 0, or more general path-

dependent coefficients.

Path-dependence might be included in the control as well:

dXα
s = bs(X

α, α) ds+ σs(X
α, α) dWs.

Maximize: sup
α∈Ad

E
[∫ T
t
fs(X

α, αs) ds+ g(Xα)

]
.
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Assumptions (A1)

• Continuity: bt(x, a), σt(x, a), ft(x, a), g(x, a) are continuous

functions of t ∈ [0, T ], a ∈ A, x ∈ C([0, T ];Rn).

[A is given its metric, C([0, T ];Rn) the supremum norm.]

• b, σ are Lipschitz continuous in x uniformly in a: ∃L ≥ 0 such

that

|bt(x, a)− bt(x′, a)|+ |σt(x, a)− σt(x′, a)| ≤ L sup
s∈[0,t]

|x(s)− x′(s)|.

• bt(0, a), σt(0, a) are bounded: ∃M ≥ 0 such that

|bt(0, a)|+ |σt(0, a)| ≤M.

• f, g have polynomial growth in x uniformly in a: ∃r ≥ 0 such

that

|ft(x, a)|+ |g(x, a)|+ |ct(x, a, a′)| ≤M(1 + sup
s∈[0,t]

|x(s)|r).
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{
dXα

s = bs(Xα, αs) ds+ σs(Xα, αs) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xα
s = x(s), s ∈ [0, t].

The value

v(t, x(·)) = sup
α∈Ad

E
[∫ T
t
fs(X

α, αs) ds+ g(Xα)

]
is a function of (t, (x(s))s∈[0,t]).

Possible characterizations for v:

• prove that v is the unique solution to the path-dependent HJB

equation, a PPDE.

• constrained BSDEs and the randomization method.
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We take I ≡ µ Poisson, independent of W , with intensity λ (finite
measure with full support in A). Randomized state equation:{

dXs = bs(X, Is) ds+ σs(X, Is) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xs = x(s), s ∈ [0, t].

We construct probabilities Pν as before and define

vR(t, x(·)) = sup
ν∈V

Eν
[∫ T
t
fs(X, Is) ds+ g(X)

]
.

Theorem. Assume (A1). Then

v(t, x(·)) = vR(t, x(·)) = Yt,

where (Y, Z, U,K) is the unique minimal solution to the con-
strained BSDE on [t, T ]:

Ys +
∫ T
s
Zr dWr +

∫ T
s

∫
A
Ur(a)µ(dr da)

= g(X) +
∫ T
s
fr(X, Ir) dr +KT −Ks,

Us(a) ≤ 0.
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6. Application: control with partial observation.

27



Randomization method for partially observed
optimal control problems

We start from some reminders on the filtering problem.
Equation for the state X in Rn: on [0, T ],

dXt = b(Xt) dt+ σ1(Xt) dV
1
t + σ2(Xt) dV

2
t , X0 = x0

(V 1, V 2) standard Wiener process in Rm+d defined in (Ω,F , P̄)
P̄ = the “physical” probability.
Equation for the observation W in Rd:

dWt = h(Xt) dt+ dV 2
t , W0 = 0.

b, σ1, σ2, h “nice” (e.g. Lipschitz bounded).

FW = (FWt )t≥0 = the filtration generated by W .

Filtering problem: characterize the filter process (πt) with values
in P(Rn) such that

πt(φ) = Ē [φ(Xt) | FWt ],

(optional projection) for every φ test (e.g. bounded smooth).
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The reference probability method

“Reference” probability dP = Z−1
T dP̄ where

Z−1
t = exp

(
−
∫ t

0
h(Xs) dV

2
s −

1

2

∫ t
0
|h(Xs)|2 ds

)
(V 1,W ) standard Wiener in (Ω,F ,P) on [0, T ].

Define the unnormalized filter process (ρt): for every φ test,

ρt(φ) = E [φ(Xt)Zt | FWt ].

Then

πt(φ) = ρt(φ)/ρt(1)

and (ρt) solves the Zakai equation

dρt(φ) = ρt(Lφ) dt+ ρt(hφ+Mφ) dWt

where Lφ = 1
2 Tr(σσ

T∇2φ) +∇φ b, Mφ = σ2∇φ, σ = (σ1, σ2).
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In (Ω,F ,P) the process (V 1,W ) is Wiener,

dXt = (b− σ2h)(Xt) dt+ σ1(Xt) dV
1
t + σ2(Xt) dWt, X0 = x0,

dZt = Zt h(Xt) dWt, Z0 = 1.

Given a functional

J = Ē
[∫ T

0
f(Xt) dt+ g(XT )

]
we have

J = E
[∫ T

0
Zt f(Xt) dt+ ZT g(XT )

]
.
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Weak formulation of the partially observed problem

See e.g. Bensoussan (1993). In the reference probability space
(Ω,F ,P) we take a Wiener process (V 1,W ) and call W the ob-
servation.
A control is a process (αt) progressive for FW with values in A.

Controlled state equation and equation for the density process:

dXt = (b− σ2h)(Xt, αt) dt+ σ1(Xt, αt) dV 1
t + σ2(Xt, αt) dWt,

dZt = Zt h(Xt, αt) dWt.

Maximize J(α) = E
[∫ T

0 Zt f(Xt, αt) dt+ ZT g(XT )
]
.

Let V 2 be defined by dV 2
t = dWt − h(Xt, αt) dt. Then, under the

“physical” probability dP̄ = ZT dP, (V 1, V 2) is Wiener and

dXt = b(Xt, αt) dt+ σ1(Xt, αt) dV 1
t + σ2(Xt, αt) dV 2

t , X0 = x0,

J(α) = Ē
[∫ T

0 f(Xt, αt) dt+ g(XT )
]
.

Note: X,Z, V 2, P̄ depend on α.
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(V 1,W ) Wiener in (Ω,F ,P), controls (αt) progressive for FW .
dXt = (b− σ2h)(Xt, αt) dt+ σ1(Xt, αt) dV 1

t + σ2(Xt, αt) dWt,
X0 = x0,
dZt = Zt h(Xt, αt) dWt,
Z0 = 1

Maximize J(α) = E
[∫ T

0 Zt f(Xt, αt) dt+ ZT g(XT )
]
.

Classical approach: controlled Zakai equation for

ρt(φ) = E [φ(Xt)Zt | FWt ] :

dρt(φ) = ρt(Lαtφ) dt+ ρt(h(·, αt)φ+Mαtφ) dWt

where Laφ = 1
2 Tr(σσ

T (·, a)D2φ) + ∇φb(·, a), Maφ = ∇φσ2(·, a)

σ = (σ1, σ2), φ test.

Maximize J(α) = E
[∫ T

0 ρt (f(·, αt)) dt+ ρT (g(·))
]
.

A full observation infinite-dimensional optimal control problem.

Its Hamilton-Jacobi-Bellman equation is fully nonlinear and very

degenerate.
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(V 1,W ) Wiener in (Ω,F ,P), controls (αt) progressive for FW .
dXt = (b− σ2h)(Xt, αt) dt+ σ1(Xt, αt) dV 1

t + σ2(Xt, αt) dWt,
X0 = x0,
dZt = Zt h(Xt, αt) dWt,
Z0 = 1

Maximize J(α) = E
[∫ T

0 Zt f(Xt, αt) dt+ ZT g(XT )
]
.

Setting Xα
t = (Xt, Zt) we write the above problem in the form{

dXα
t = b̃(Xα

t , αt) dt+ σ̃1(Xα
t , αt) dV

1
t + σ̃2(Xα

t , αt) dWt,
Xα

0 = (x0,1)

Maximize

J(α) = E
[∫ T

0
f̃(Xα

t , αt) dt+ g̃(Xα
T )

]

over all (αt) progressive for FW .

Note: in this reformulation we have h = 0 and so πt = ρt.
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The addressed control problem with partial observation

Let b, σ, f, g satify assumptions (A).

Given (Ω,F ,P) and a Wiener process (V,W ) consider

dXα
s = b(Xα

s , αs) ds+ σ1(Xα
s , αs) dVs + σ2(Xα

s , αs) dWs, s ∈ [t, T ],
Xt

α = x0 with law ξ,

Controls: (αt) progressive for FW with values in A.

Define the reward (depending only on ξ)

J(t, ξ, α) = E
[∫ T
t
f(Xα

s , αs) ds+ g(Xα
T )

]
.

and the value function

v(t, ξ) = sup
α(·)

J(t, ξ, α).
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The equivalent randomized control problem

We take I ≡ µ Poisson, independent of (V,W ), with intensity λ
(finite with full support in A). Randomized state equation:

dXs = b(Xs, Is) ds+ σ1(Xs, Is) dVs + σ2(Xs, Is) dWs, Xt = x0.

Let FW,µ = (FW,µt ) be generated by W,µ alone.

V = {νt(ω, a) : P(FW,µ)⊗ B(A)−measurable, 0 < ν ≤ sup ν <∞}

Under dPν = κνT dP, on [t, T ]:
• (V,W ) remains Wiener, and
• µ has compensator νt(a)λ(da)dt.

vR(t, ξ) = sup
ν∈V

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

]
,

Theorem. We have v(t, ξ) = vR(t, ξ).
It only depends on b, σ, f, g (not on Ω,F ,P, V,W, µ, λ, x0, a).

E. Bandini, A. Cosso, M. F., H. Pham. AAP 2018, where non Markovian case is also treated.
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Filter processes in the randomized framework.

For φ test, set

ρs(φ) = E [φ(Xs) | FW,µs ].

The pair (ρ, I) is Markovian in P(Rn)×A where

• (Is) = (It,a0
s )s∈[t,T ] is Poisson λ starting at a0 ∈ A at time t;

• (ρs) = (ρt,ξ,a0
s )s∈[t,T ] satisfies the randomized Zakai equation:

for s ∈ [t, T ],

dρs(φ) = ρs(LIsφ) ds+ ρs(MIsφ) dWs, ρt(φ) = ξ(φ).

where Laφ = 1
2 Tr(σσ

T (·, a)∇2φ) +∇φb(·, a), Maφ = ∇φσ2(·, a),

σ = (σ1, σ2).

Compare with the controlled Zakai equation (for a different ρs)

dρs(φ) = ρs(Lαsφ) ds+ ρs(h(·, αs)φ+Mαsφ) dWs.
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The constrained BSDE representing the value function

Theorem. We have

v(t, ξ) = vR(t, ξ) = Y
t,ξ,a0
t ,

where (Y, Z, U,K) = (Y t,ξ,a0, Zt,ξ,a0, U t,ξ,a0,Kt,ξ,a0) is the unique
minimal solution to the constrained BSDE on [t, T ]:

Ys +
∫ T
s
Zr dWr +

∫ T
s

∫
A
Ur(a)µ(dr da)

= ρT (g) +
∫ T
s
ρr(f(·, Ir)) dr +KT −Ks,

Us(a) ≤ 0.

Moreover,

Y
t,ξ,a0
s = v(s, ρt,ξ,a0

s ), s ∈ [t, T ].

Based on this results one can prove that v(t, ξ) is a viscosity
solution to a HJB equation on [0, T ]× P(R).
Bandini, Cosso, F., Pham, SPA 2019.
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7. Related results and final comments.
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Some general comments

• No nondegeneracy condition on σ.

• Markovian and non-Markovian case treated similarly.

• No result on existence of an optimal control.

• Numerical methods have been developed for constrained BS-

DEs of this form.
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Other applications of the control randomization method

• Optimal switching
(Bouchard 09, Elie-Kharroubi 10, 14, 14, F.-Morlais 19)
• Impulse control (Kharroubi-Pham-Ma-Zhang 10).
• Jump-diffusion (Kharroubi-Pham 14)
• Optimal stopping (F.-Pham-Zeni 15).
• Control of pure jump processes (Bandini-F. 17)
• Control of piecewise-deterministic Markov processes
(Bandini 19, 21, Bandini-Thieullen 21)
• Infinite horizon (Confortola-Cosso-Fuhman 19)
• Ergodic control (Cosso-F.-Pham 16)
• Markovian jump-diffusion with controlled intensity
(Choukroun-Cosso 16).
• Control of McKean-Vlasov systems
(Bayraktar-Cosso-Pham 18)
• Control of infinite-dimensional jump-diffusions
(Bandini-Confortola-Cosso 19)
• Numerical methods (Kharroubi-Langrené-Pham 14, 15)
• Weak formulation (F.-Pham 15)
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Thank you for your attention!
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