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1. Reminders on classical stochastic optimal control problems.
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Classical stochastic optimal control

Controlled SDE in Rn:{
dXs = b(Xs, αs) ds+ σ(Xs, αs) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xt = x ∈ Rn,

• W is a Wiener process in Rd, defined in (Ω,F ,P).

We will use the Brownian filtration FW = (FWt )t≥0, namely we
assume F to be P-complete and we set

FWt := σ(Ws, s ∈ [0, t]) ∨N

where N are P-null sets of F.
The coefficients of an SDE are controlled:

b(x, a) ∈ Rn, σ(x, a) ∈ Rn×d,

i.e. they depend on a parameter a ∈ A:
• A, the space of control actions, is a complete separable metric
space (or a Borel subset of it).
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{
dXs = b(Xs, αs) ds+ σ(Xs, αs) dWs, s ∈ [t, T ],
Xt = x ∈ Rn.

A controller dynamically selects her actions by choosing a control

process

αs(ω) ∈ A.

• Ad = {α : Ω × [0, T ] → A, FW -progressive} is the space of

admissible controls.

The corresponding solution Xs = Xα
s = X

α,t,x
s is called the tra-

jectory corresponding to the control α.
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Controlled equation:{
dXα

s = b(Xα
s , αs) ds+ σ(Xα

s , αs) dWs, s ∈ [t, T ],
Xα
t = x ∈ Rn.

The controller tries to maximize the reward functional

J(α, t, x) = E
[
g(Xα,t,x

T ) +
∫ T
t
f(Xα,t,x

s , αs) ds

]
.

Here

g(x) ∈ R, f(x, a) ∈ R

are: i) the reward corresponding to the final position x ∈ Rn of
the state;
ii) the running reward rate when the current state is x ∈ Rn and
the control action is a ∈ A.

Value function:

v(t, x) = sup
α∈Ad

J(α, t, x).
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Assumptions (A) on the coefficients

On the data of the control problem b(x, a), σ(x, a), f(x, a), g(x)
we assume:
• b : Rn × A→ Rn, σ : Rn × A→ Rn×d, f : Rn × A→ R, g : Rn → R
are continuous.
• b, σ are Lipschitz in x uniformly in a: ∃L ≥ 0 such that

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ L|x− y|, x, y ∈ Rn, a ∈ A.

• b(0, a), σ(0, a) are bounded in a: ∃M ≥ 0 such that

|b(0, a)|+ |σ(0, a)| ≤M, a ∈ A.

• f, g have polynomial growth in x uniformly in a: ∃r ≥ 0 such
that

|f(x, a)|+ |g(x)| ≤M (1 + |x|r), x ∈ Rn, a ∈ A.

Under these assumptions Xα is well defined and v(t, x) is finite.
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2. The value function and its characterizations: Hamilton-Jacobi-

Bellman equations (HJB), BSDEs.
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Hamilton-Jacobi-Bellman equation (HJB)


−∂v(t, x) = sup

a∈A
[Lav(t, x) + f(x, a)], t ∈ [0, T ], x ∈ Rn,

v(T, x) = g(x),

Controlled Kolmogorov operator:

Laφ(x) =
1

2
tr
[
σ(x, a)σT (x, a)D2φ(x)

]
+Dφ(x) b(x, a)

Available results are two-fold:
• Any classical solution to HJB coincides with the value function:

v(t, x) = sup
α∈Ad

E
[
g(Xα

T ) +
∫ T
t
f(Xα

s , αs) ds

]
.

Results of this kind are called verification theorems and often
an optimal control is also found.

• The value function, defined by the formula above, is a solution
to HJB, possibly in viscosity sense. Often, uniqueness of the
viscosity solution is also proved.
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The search for an associated BSDE

Aim: find a BSDE giving a representation of the value function:

v(t, x) = sup
α∈Ad

E
[
g(Xα

T ) +
∫ T
t
f(Xα

s , αs) ds

]
.

Motivations:
• Efficient numerical methods are often available for BSDEs.
• Immediate extensions to non-Markovian systems (e.g. with
memory).
• Associated BSDEs are known in special cases.

Available approaches:
• The theory of G-expectation (Peng). It is based on a different
foundation of stochastic calculus and even probability theory.
It replaces the expectation operator by a (non-linear) analogue
satisfying appropriate axioms.
• The theory of second order BSDEs (2BSDEs, Soner-Touzi).
One formulates a BSDE that can be solved under a family of
(mutually singular) probability measures. It often requires non-
degenerate diffusion (i.e. invertible σ(x, a)).
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3. Control randomization method: introduction.
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The randomization method in optimal control

Introduced in

B. Bouchard. A stochastic target formulation for optimal switching problems in finite hori-

zon. Stochastics 81, no. 2 (2009), 171-197.

{
dXα

s = b(Xα
s , αs) ds+ σ(Xα

s , αs) dWs, s ∈ [t, T ],
Xα
t = x ∈ Rn.

v(t, x) = sup
α∈Ad

E
[
g(Xα

T ) +
∫ T
t
f(Xα

s , αs) ds

]
,

Idea:

1) replace (αs) by a random (uncontrolled) process (Is) with

piecewise constant trajectories and values in A;

2) formulate an auxiliary (“randomized”) control problem, where

“the law of I is controlled”, having value denoted vR(t, x);

3) prove that v = vR;

4) represent vR(t, x) by a BSDE.
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The randomized control problem

We replace the control α ∈ Ad by an A-valued process I, inde-

pendent of W . We consider the “randomized” state equation:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, s ∈ [t, T ]; Xt = x.

Then we construct a suitable family of probability measures Pν,

depending on a parameter ν ∈ V, such that

• Pν ∼ P (dominated model)

• W remains a Wiener process under Pν.

Then we optimize among Pν: we formulate an auxiliary (“ran-

domized”) control problem with value function:

vR(t, x) = sup
ν∈V

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

]
.
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We wish to prove equivalence with the randomized problem

namely that

v(t, x) = vR(t, x).

Original problem: for s ∈ [t, T ] ⊂ [0, T ], x ∈ Rn,

dXα
s = b(Xα

s , αs) ds+ σ(Xα
s , αs) dWs,

Xt
α = x,

v(t, x) = supα∈Ad E
[∫ T
t f(Xα

s , αs) ds+ g(Xα
T )
]
,

Randomized problem:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs,
Xt = x,

vR(t, x) = supν∈V Eν
[∫ T
t f(Xs, Is) ds+ g(XT )

]
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The choice of the process I

When A = Rk one can choose (Is) as another Brownian motion,

independent of W . The probabilities Pν are then defined by a

classical Girsanov theorem. See for instance

S. Choukroun, A. Cosso. Backward SDE representation for stochastic control problems with

nondominated controlled intensity. The Annals of Applied Probability 26, no. 2 (2016),

1208-1259.

For the general case we first note that

v(t, x) = sup
α∈Ad

E
[∫ T
t
f(Xα

s , αs) ds+ g(Xα
T )

]
remains unchanged if we restrict to (αs) being a piecewise con-

stant process: see for instance Lemma 3.2.6 in

N.V. Krylov. Controlled diffusion processes. Springer, 2009.

We will choose (Is) to be a (pure jump) Poisson process in A.
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4. Digression on marked point processes and associated control

problems.
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Reminders on pure jump and marked point processes

We use notions from

J. Jacod. Multivariate point processes: predictable projection, Radon-Nikodym derivatives,

representation of martingales. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Ge-

biete 31, no. 3 (1975), 235-253.

See also

P. Brémaud. Point processes and queues: martingale dynamics. Springer, 1981.

G. Last, A. Brandt. Marked Point Processes on the real line: the dynamical approach.

Springer, 1995.

On a probability space (Ω,F ,P) with a right-continuous filtration

F = (Ft)t≥0 we define a marked point process (Tn, An)n≥1 where

Tn: a (non-explosive) point process, i.e. Tn are F-stopping times,

0 < Tn ≤ Tn+1 ↑ ∞, Tn < Tn+1 if Tn <∞;

An: A-valued random variables, An is FTn-measurable.
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To (Tn, An)n≥1 we associate:

• a pure jump A-valued process

It = a0 1{0≤t<T1}+A1 1{T1≤t<T2}+A2 1{T2≤t<T3}+ . . . ,

where a0 ∈ A is deterministic and fixed (in fact, Is = I
a0
s ).

• A random measure on (0,∞)×A:

µ(dt da) =
∑
n≥1

δ(Tn,An)(dt da) 1{Tn<∞}.

In the sequel we identify I ≡ (Tn, An)n≥1 ≡ µ.

The natural filtration Fµ = (Fµt ) is defined as

Fµt = σ{µ((0, s]× C) : s ∈ [0, t], C ∈ B(A)} ∨ N .
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Reminders on compensators

The compensator, or dual predictable projection, of µ is a pre-

dictable random measure ν(dt da) such that µ− ν is a martingale

measure. Formally,

• for C ∈ B(A) the process ν((0, t]× C) is F-predictable;

• the following equivalent conditions are satisfied:

i) for C ∈ B(A) and n ≥ 1 the processes

µ((0, t ∧ Tn]× C)− ν((0, t ∧ Tn]× C), t ≥ 0,

are P-martingales with respect to F.

ii) denote P(F) the predictable σ-algebra of F; then for any

P(F)⊗ B(A)-measurable random field H(ω, t, a) ≥ 0,

E
∫

(0,t]
H(t, a)µ(dtda) = E

∫
(0,t]

H(t, a) ν(dtda).
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One proves that ν exists and is unique (up to null sets). Moreover

• ν depends on P.

• ν determines the law of I ≡ (Tn, An)n≥1 ≡ µ under P.

For instance, if the compensator is ν(dt da) = λ(da)dt, for some

(finite) measure λ on A, then µ is a (non-explosive) Poisson

process, i.e.

• (Tn) is a standard counting Poisson process with intensity λ(A);

• (An) is an i.i.d. sequence with law λ(da)
λ(A) (independent of (Tn)).

If λ has full topological support then I visits every open set of A

One way to “control” the process I is to fix a desired compen-

sator ν (corresponding to some desired law for I) and find a new

probability Pν under which ν is the compensator of µ.
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Instead of choosing an arbitrary compensator we may start from

a probability P under which µ a Poisson process with compensator

λ(da)dt.

We look for a probability under which I has a compensator of

the form

νt(ω, a)λ(da)dt

where νt(ω, a) ≥ 0 is a chosen F-predictable random field.

Theorem (of Girsanov type). Let νt(ω, a) be bounded. The re-

quired probability is given by dPν = κνT dP where κν is the Doléans

exponential martingale

κνt = exp
(∫ t

0

∫
A

(1− νs(a))λ(da)ds
) ∏
Tn≤t

νTn(An).
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5. Back to the control randomization method.
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Return to the original control problem

Let b, σ, f, g satisfy Assumption (A).

Given (Ω,F ,P,W ) consider{
dXα

s = b(Xα
s , αs) ds+ σ(Xα

s , αs) dWs, s ∈ [t, T ],
Xα
t = x ∈ Rn.

v(t, x) = sup
α∈Ad

E
[
g(Xα

T ) +
∫ T
t
f(Xα

s , αs) ds

]
,

Admissibile controls:

Ad = {α : Ω× [0, T ]→ A, FW−progressive}.
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The randomized control problem

Let b, σ, f, g satisfy Assumption (A).
Consider (Ω,F ,P,W, µ) where:
• µ ≡ (Tn, An)n≥1 ≡ I is a Poisson random measure with finite
intensity λ(da) with full topological support;
• W is an Rd-valued Brownian motion, independent of µ.

We will use the filtration FW,µ = (FW,µt ) generated by W and µ:
FW,µt = σ{Ws, µ((0, s]× C) : s ∈ [0, t], C ∈ B(A)} ∨ N .

We consider the “randomized” state equation:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, s ∈ [t, T ]; Xt = x.

The admissible controls are now random fields

V = {νt(ω, a) : Ω×[0,∞)×A→ (0,∞),FW,µ−predictable bounded}
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Given νt(ω, a) ∈ V, we define dPν = κνT dP ∼ dP where

κνt = exp
(∫ t

0

∫
A

(1− νs(a))λ(da)ds
) ∏
Tn≤t

νTn(An).

Then, on [0, T ],

• µ has compensator νt(ω, a)λ(da)dt under Pν;

• W remains a Wiener process under Pν.

We define an auxiliary (“randomized”) value function:

vR(t, x) = sup
ν∈V

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

]
.

It can be proved that vR only depends on b, σ, f, g (not on

Ω,F ,P,W, µ, λ, a0). ν changes the intensity of the Poisson com-

ponent I and therefore has an influence on X as well.
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Equivalence with the randomized problem

Original problem: for s ∈ [t, T ] ⊂ [0, T ], x ∈ Rn,

dXα
s = b(Xα

s , αs) ds+ σ(Xα
s , αs) dWs,

Xt
α = x,

v(t, x) = supα∈Ad E
[∫ T
t f(Xα

s , αs) ds+ g(Xα
T )
]
,

Ad = {αt(ω) : FW−progressive}

Randomized problem:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs,
Xt = x,

vR(t, x) = supν∈V Eν
[∫ T
t f(Xs, Is) ds+ g(XT )

]
,

V = {νt(ω, a) : FW,µ−predictable, 0 < ν ≤ sup ν <∞}

Theorem. Assume (A). Then v(t, x) = vR(t, x).

E. Bandini, A. Cosso, M. F., H. Pham. Backward SDEs for optimal control of partially

observed path-dependent stochastic systems: a control randomization approach. The Annals

of Applied Probability 28, no. 3 (2018), 1634-1678.
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6. The search for an associated BSDE.

26



A BSDE for the randomized control problem

Let b, σ, f, g satisfy Assumption (A).
Consider (Ω,F ,P,W, µ) where:
• µ ≡ (Tn, An)n≥1 ≡ I is a Poisson random measure with finite
intensity λ(da) with full topological support;
• W is an Rd-valued Brownian motion, independent of µ.

We consider the randomized problem starting at t = 0:

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs,
X0 = x fixed,

vR = supν∈V Eν
[∫ T

0 f(Xs, Is) ds+ g(XT )
]
,

V = {νt(ω, a) : FW,µ−predictable, 0 < ν ≤ sup ν <∞}

We approximate vR by

vRn = sup
ν∈Vn

Eν
[∫ T

0
f(Xs, Is) ds+ g(XT )

]
,

where Vn := {ν ∈ V, ν ≤ n}. We look for a BSDE representation
for the penalized value vRn and then for vR.
Clearly vRn ≤ vRn+1 ≤ v

R and even vRn ↑ vR.
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BSDEs with respect to Wiener + Poisson

Consider again (Ω,F ,P,W, µ) and FW,µ = (FW,µt ).

If M is an FW,µ-martingale in L2 then

Mt = M0 +
∫ t

0
Zs ds+

∫ t
0

∫
A
Us(a) [µ(ds da)− λ(da) ds], t ∈ [0, T ],

where Z and U are in the spaces

L2
W := {Zs(ω) ∈ Rd : FW,µ−predictable,E

∫ T
0
|Zs|2ds <∞},

L2
µ := {Us(ω, a) ∈ R : P(FW,µ)⊗ B(A)−measurable,

E
∫ T
0
∫
A |Us(a)|2λ(da) ds <∞}.

It follows that M belongs to

S2 := {Ys(ω) ∈ R : FW,µ -adapted and càdlàg,E sup
s∈[0,T ]

|Ys|2 <∞}

Note that
∫ T
0
∫
AUs(a)µ(ds da) =

∑
n≥1UTn(An) 1{Tn≤T}.
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Now consider the BSDE: for s ∈ [0, T ],

Ys +
∫ T
s
Zr dWr +

∫ T
s

∫
A
Ur(a) [µ(dr da)− λ(da) dr]

= g(XT ) +
∫ T
s
f(Xr, Ir) dr

for the unknown (Y, Z, U) ∈ S2 × L2
W × L

2
µ. Define

Ys = E
[
g(XT ) +

∫ T
s
f(Xr, Ir) dr

∣∣∣FW,µs

]
= Ms +

∫ s
0
f(Xr, Ir) dr

where

Ms = E
[
g(XT ) +

∫ T
0
f(Xr, Ir) dr

∣∣∣FW,µs

]
Represent M and before by Z,U and check that (Y, Z, U) is the

unique required solution.

As usual, similar results hold if we add a Lipschitz nonlinearity

to the BSDE.
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A BSDE for the penalized randomized control problem

Now recall

dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, X0 = x,

J(ν) = Eν
[∫ T

0 f(Xs, Is) ds+ g(XT )
]
,

vRn = supν∈Vn E
ν
[∫ T

0 f(Xs, Is) ds+ g(XT )
]
,

Vn = {νt(ω, a) : FW,µ−predictable, 0 < ν ≤ n <∞}
Consider the penalized equation

Ys +
∫ T
s
Zr dWr +

∫ T
s

∫
A
Ur(a)µ(dr da)

= g(XT ) +
∫ T
s
f(Xr, Ir) dr + n

∫ T
s

∫
A
Ur(a)+ λ(da) dr

and find a unique solution (Y n, Zn, Un) ∈ S2 × L2
W × L

2
µ.

We claim that vRn = Y n0 .
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Write (Y, Z, U) instead of (Y n, Zn, Un). Fix ν ∈ V and take Eν in

Y0 +
∫ T

0
Zr dWr +

∫ T
0

∫
A
Ur(a)µ(dr da)

= g(XT ) +
∫ T

0
f(Xr, Ir) dr + n

∫ T
0

∫
A
Ur(a)+ λ(da) dr.

Then

Y0 + Eν
∫ T

0

∫
A
Ur(a)µ(dr da) = J(ν) + nEν

∫ T
0

∫
A
Ur(a)+ λ(da) dr.

Since U is a predictable random field,

Eν
∫ T

0

∫
A
Ur(a)µ(dr da) = Eν

∫ T
0

∫
A
Ur(a) νr(a)λ(da) dr.

Substituting and rearranging,

Y0 = J(ν) + Eν
∫ T

0

∫
A

[nUr(a)+ − νr(a)Ur(a)]λ(da) dr.

Since nu+ − νu ≥ 0 for ν ∈ [0, n] with equality when ν = n1u≥0,

we have Y0 ≥ J(ν) with equality when νs(a) = n1Us≥0.
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Convergence of the penalized BSDE

The penalized equation

Y ns +
∫ T
s
Znr dWr +

∫ T
s

∫
A
Unr (a)µ(dr da)

= g(XT ) +
∫ T
s
f(Xr, Ir) dr + n

∫ T
s

∫
A
Unr (a)+ λ(da) dr

can be written

Y ns +
∫ T
s
Znr dWr +

∫ T
s

∫
A
Unr (a)µ(dr da)

= g(XT ) +
∫ T
s
f(Xr, Ir) dr +Kn

T −K
n
s

where

Kn
s = n

∫ s
0

∫
A
Unr (a)+ λ(da) dr

satisfy Kn
0 = 0, are increasing and adapted continuous (hence

predictable).

Since vRn ≤ vRn+1 ≤ v
R we have Y n0 ≤ Y

n+1
0 ≤ vR.
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Convergence of Y n.

We have proved

Y n0 = vRn = sup
ν∈Vn

Eν
[∫ T

0
f(Xs, Is) ds+ g(XT )

]
.

By similar arguments

Y nt = ess sup
ν∈Vn

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

∣∣∣FW,µt

]
so that

Y nt ≤ Y
n+1
t ↑ ess sup

ν∈V
Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

∣∣∣FW,µt

]
=: Yt.
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Convergence of Zn, Un,Kn.

By standard estimates on the BSDE

Y ns +
∫ T
s Z

n
r dWr +

∫ T
s
∫
AU

n
r (a)µ(dr da)

= g(XT ) +
∫ T
s f(Xr, Ir) dr +Kn

T −K
n
s

we have

• Zn bounded in L2
W ,

• Un bounded in L2
µ,

• Kn
T bounded in L2 (and 0 ≤ Kn

s ≤ Kn
T ).

So we can extract weakly convergent subsequences and pass to

the limit in the (linear) BSDE, obtaining:

Ys +
∫ T
s
Zr dWr +

∫ T
s

∫
A
Ur(a)µ(dr da)

= g(XT ) +
∫ T
s
f(Xr, Ir) dr +KT −Ks

It follows that Y ∈ S2.
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A sign constraint for U.

The functional U 7→ E
∫ T
0
∫
AU

n
r (a)+ λ(da) dr is convex in the space

L2
µ := {Us(ω, a) ∈ R : P(FW,µ)⊗ B(A)−measurable,

‖U‖2 := E
∫ T

0

∫
A
|Us(a)|2λ(da) ds <∞}.

So it is weakly l.s.c. so that

E
∫ T

0

∫
A
Ur(a)+ λ(da) dr ≤ lim inf

n
E
∫ T

0

∫
A
Unr (a)+ λ(da) dr

Since

n
∫ T

0

∫
A
Unr (a)+ λ(da) dr = Kn

T

is bounded in L2, we conclude that E
∫ T
0
∫
AUr(a)+ λ(da) dr = 0.

The limit BSDE satisfies the following jump constraint:

Ut(ω, a) ≤ 0, dt⊗ λ(da)⊗ P(dω)− a.s.
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7. BSDEs with constrained jumps.
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A class of constrained BSDEs

I. Kharroubi and H. Pham. Feynman–Kac representation for Hamilton–Jacobi–Bellman IPDE.

Ann. Probab. 43, no. 4 (2015) 1823–1865.

We have proved the first part of the following result.

Theorem i) There exists a solution (Y, Z, U,K) to the BSDE
with constrained jumps: P-a.s.

Yt +
∫ T
t
Zs dWs +

∫ T
t

∫
A
Us(a)µ(ds da)

= g(XT ) +
∫ T
t
f(Xs, Is) ds+KT −Kt, t ∈ [0, T ],

Ut(a) ≤ 0 dPdλdt− a.s.

A solution is a quadruple (Yt(ω), Zt(ω), Ut(ω, a),Kt(ω)) where t ∈
[0, T ], a ∈ A such that
Y is adapted; Z,U,K are predictable (w.r.t. FW,µ);
Y is càdlàg, K càdlàg increasing, K0 = 0,

E
[

sup
t∈[0,T ]

|Yt|2 +
∫ T

0
|Zt|2 dt+

∫ T
0

∫
A
|Ut(a)|2 λ(da) dt+K2

T

]
<∞.

37



ii) The solution (Y, Z, U,K) is minimal, namely for any other
solution (Y ′, Z′, U ′,K′) we have P-a.s.

Yt ≤ Y ′t , t ∈ [0, T ].

iii) The minimal solution is unique.

Proof of ii).

Y ′t +
∫ T
t Z

′
r dWr +

∫ T
t
∫
AU
′
r(a)µ(dr da)

= g(XT ) +
∫ T
t f(Xr, Ir) dr +K′T −K

′
t

since U ′ ≤ 0 and K′ ↑,

Y ′t +
∫ T
t
Z′r dWr ≥ g(XT ) +

∫ T
t
f(Xr, Ir) dr

Taking expectation under Pν,

Y ′t ≥ Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

∣∣∣FW,µt

]
.

Taking ess supν∈V we get Y ′t ≥ Yt.
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Proof of iii). If (Y, Z, U,K) and (Y ′, Z′, U ′,K′) are minimal then

Yt ≤ Y ′t , Y ′t ≤ Yt, t ∈ [0, T ],

and so Y = Y ′. Rearranging the BSDE,∫ t
0
Z′r dWr +

∫ t
0

∫
A
U ′r(a)µ(dr da) +K′t

=
∫ t

0
Zr dWr +

∫ t
0

∫
A
Ur(a)µ(dr da) +Kt

Taking joint variation with W we get∫ t
0
Z′r dr =

∫ t
0
Zr dr

and so Z′t = Zt, dt⊗ dP-a.s. Then∫ t
0

∫
A
U ′r(a)µ(dr da) +K′t =

∫ t
0

∫
A
Ur(a)µ(dr da) +Kt
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∫ t
0

∫
A
U ′r(a)µ(dr da) +K′t =

∫ t
0

∫
A
Ur(a)µ(dr da) +Kt

Next recall that
∫ t
0
∫
AUs(a)µ(ds da) =

∑
n≥1UTn(An) 1{Tn≤t},

Possible jump times for these stochastic integrals are Tn, which

are totally inaccessible, hence disjoint from jump times of K or

K′ which are predictable. Identifying jumps at Tn we obtain

U ′Tn(An) = UTn(An)

which implies

0 = E
∫ T

0

∫
A
|U ′t(a)−Ut(a)|µ(ds da) = E

∫ T
0

∫
A
|U ′t(a)−Ut(a)|λ(da) dt

and so

U ′t(a) = Ut(a), dPdλdt− a.s.

From the equality above we finally have K′ = K.
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The BSDE representing the value function

Let b, σ, f, g satisfy Assumption (A). Consider (Ω,F ,P,W, µ) and
the associated µ ≡ (Is) = (Ia0

s ) starting at a0 ∈ A. Solve
dXs = b(Xs, Is) ds+ σ(Xs, Is) dWs, Xt = x.
Denote Xs = X

t,x,a0
s its solution and define

vR(t, x) = sup
ν∈V

Eν
[∫ T
t
f(Xs, Is) ds+ g(XT )

]
.

Theorem. Let (Y, Z, U,K) = (Y t,x,a0, Zt,x,a0, U t,x,a0,Kt,x,a0) be
the unique minimal solution to the constrained BSDE on [t, T ]:

Ys +
∫ T
s
Zr dWr +

∫ T
s

∫
A
Ur(a)µ(dr da) =

g(XT ) +
∫ T
s
f(Xr, Ir) dr +KT −Ks,

Us(a) ≤ 0

Then vR(t, x) = Y
t,x,a0
t , and moreover Y

t,x,a0
s = v(s,Xt,x,a0

s ),
s ∈ [t, T ].
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Finally

v(t, x) = vR(t, x) = Y
t,x,a0
t ,

where

v(t, x) = sup
α∈Ad

E
[∫ T
t
f(Xα

s , αs) ds+ g(Xα
T )

]
,

and

dXα
s = b(Xα

s , αs) ds+ σ(Xα
s , αs) dWs,

Xt
α = x,

and Ad = {αt(ω) : FW−progressive}.
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Constrained BSDEs and fully non linear PDEs

Recall

v(t, x) = Y
t,x,a0
t ,

where Y t,x,a0 is the first component of the unique solution to

the constrained BSDE.

This suggests that the function

(t, x) 7→ Y
t,x,a0
t

is a solution to the HJB equation. Several authors have used

this fact to construct solutions to HJB or other PDEs.

I. Kharroubi, J. Ma, H. Pham, J. Zhang. Backward SDEs with constrained jumps and quasi-

variational inequalities. Ann. Probab. 38 (2010), no. 2, 794-840.

I. Kharroubi, H. Pham. Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE.

Ann. Probab. 43 (2015), no. 4, 1823-1865.
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The starting point is the following: denoting Ys = Y
t,x,a0
s we

have the following functional equality: for t ≤ s ≤ θ ≤ T ,

Ys = ess supν∈V Eν
[∫ θ
s
f(Xr, Ir) dr + Yθ

∣∣∣FW,µs

]
,

which can be seen as a “randomized dynamic programming

principle”.

It is much easier to prove than the usual DPP.
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Some comments

• σ may be degenerate (or even null: deterministic control prob-

lem).

• Existence of an optimal control is not proved.

• Numerical methods have been developed for constrained BS-

DEs of this form:

I. Kharroubi, N. Langrené, H. Pham. A numerical algorithm for fully nonlinear HJB equa-

tions: an approach by control randomization. Monte Carlo Methods Appl. 20, no. 2 (2014),

145–165.

I. Kharroubi, N. Langrené, H. Pham. Discrete time approximation of fully nonlinear HJB equa-

tions via BSDEs with nonpositive jumps. Ann. Appl. Probab. 25, no. 4 (2015),2301–2338.
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Thank you for your attention!
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