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Mean-field control

The joint law of (Xα
t , αt) appears in the cost and dynamics

min
α

J(α) := E
[ ∫ T

0

f(s,Xα
s ,P(Xα

s ,αs), αs) ds+ g(Xα
T ,PXα

T
)
]

with McKean-Vlasov dynamics (in Rd)

dXα
t = b(t,Xα

t ,P(Xα
t ,αt), αt) dt+ σ(t,Xα

t ,P(Xα
t ,αt), αt) dWt.

Example: Markowitz mean-variance problem in continuous time

min
α

λVar(Xα
T )− E[Xα

T ]

dXα
t = αtb dt+ αtσ dWt.
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Constraints

What about adding state constraints on Xα
t ? Examples: bounded state,

positive state...

In the stochastic control case (no mean-field interaction), this problem is
treated by Bokanowski, Picarelli, and Zidani 2015; Bokanowski, Picarelli, and
Zidani 2016 with constraints

Xα
t ∈ K ∀t ∈ [0, T ], a.s.,

for a non empty closed set K.

It turns out that we can go further and enforce
probabilistic constraints:

Ψ(t,PXα
t
) ≤ 0 ∀t ∈ [0, T ].
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Related literature

For MFG: state constrained to stay in a compact → Cannarsa, Capuani,
and Cardaliaguet 2018; Graber and Mayorga 2021...
Deterministic MFC by control of Fokker-Planck equations → Bonnet 2019
MFC with smooth terminal expectation constraint → Chen and
Wang 2019
MFC cost with probabilistic constraints for a standard diffusion →
Daudin 2021
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Examples of possible constraints in the form

Ψ(t,PXα
t
) ≤ 0 ∀t ∈ [0, T ]

P(Xα
t ∈ Kt) ≥ pt

W2(PXα
t
, ηt) ≤ δt

φ(PXα
T
) ≤ 0

ϕ(ti,PXα
ti
) ≤ 0 for t1 < · · · < tk

Primal Markowitz mean-variance problem

min
α

− E[Xα
T ]

dXα
t = αtb dt+ αtσ dWt

Var(XT ) ≤ ϑ.
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Markowitz mean-variance problem with conditional expectation
constraint

inf
α

λVar(Xα
T )− E[Xα

T ]

dXα
t = αtb dt+ αtσ dWt

E[Xα
t | Xα

t ≤ θ] ≥ δ.
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An auxiliary problem with exact penalization

J(α) = E
[ ∫ T

0

f(s,Xα
s , αs,P(Xα

s ,αs)) ds+ g(Xα
T ,PXα

T
)
]

V Ψ := inf
α∈A

{
J(α) : Ψ(t,PXα

t
) ≤ 0, ∀ t ∈ [0, T ]

}
.

Define a new state variable

Zα
z (·) := z − E

[ ∫ ·

0

f
(
s,Xα

s , αs,P(Xα
s ,αs)

)
ds

]
= z −

∫ ·

0

f̂
(
s,P(Xα

s ,αs)

)
ds,

with f̂(t, ν) =
∫
Rd×A

f
(
t, x, a, ν

)
ν(dx, da) and ĝ(µ) =

∫
Rd g(x, µ)µ(dx). Thus

J(α) = z − Zα
z (T ) + ĝ(PXα

T
)
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An auxiliary problem with exact penalization

Then

J(α) ≤ z, Ψ(s,PXα
s
) ≤ 0, ∀ s ∈ [0, T ]

⇐⇒ ĝ(PXα
T
) ≤ Zα

z (T ), Ψ(s,PXα
s
) ≤ 0, ∀ s ∈ [0, T ]

⇐⇒ {ĝ(PXα
T
)− Zα

z (T )}+ + {Ψ(s,PXα
s
)}+ = 0, ∀ s ∈ [0, T ],

where x+ = max(x, 0) is the positive part.

Hence, rewriting the value of the
control problem we obtain

V Ψ

= inf{z ∈ R | ∃ α ∈ A s.t. J(α) ≤ z, Ψ(s,PXα
s
) ≤ 0, ∀ s ∈ [0, T ]}

= inf{z ∈ R | ∃ α ∈ A s.t. {ĝ(PXα
T
)− Zα

z (T )}+ + {Ψ(s,PXα
s
)}+ = 0,∀ s ∈ [0, T ]}.
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An auxiliary problem with exact penalization

Unconstrained mean-field control problem

YΨ : z ∈ R 7→ inf
α∈A

[
{ĝ(PXα

T
)− Zα

z (T )}+ + sup
s∈[0,T ]

{Ψ(s,PXα
s
)}+

]
,

with the notation {x}+ = max(x, 0). We see that YΨ(z) ≥ 0.

We consider the
infimum of the zero level-set

ZΨ := inf{z ∈ R | YΨ(z) = 0}.

YΨ being convex, positive and non-increasing, if ZΨ < ∞ then YΨ is
decreasing on (−∞,ZΨ] then YΨ(z) = 0 on [ZΨ,∞).
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Representation results

Theorem 1 (make the constraint function vary)
If V Ψ < +∞, it verifies the bounds

ZΨ ≤ V Ψ ≤ inf
ε>0

ZΨ+ε.

Theorem 2
If V Ψ < +∞ then ε 7→ ZΨ+ε is continuous at zero. Hence

ZΨ = V Ψ.
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Summary

Solving

YΨ : z ∈ R 7→ inf
α∈A

[
{ĝ(PXα

T
)− Zα

z (T )}+ + sup
s∈[0,T ]

{Ψ(s,PXα
s
)}+

]
,

and computing the infimum of the zero level set

ZΨ := inf{z ∈ R | YΨ(z) = 0},

gives us the value of the control problem V Ψ = ZΨ.

Moreover it can be seen that ε-optimal controls αε for the auxiliary problem
YΨ(V Ψ) are ε-admissible ε-optimal controls for the original problem in the
sense that

J(αε) ≤ V + ε, sup
0≤s≤T

Ψ(s,PXαε
s
) ≤ ε.
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An alternative standard auxiliary problem

Solving

ȲΨ : z ∈ R 7→ inf
α∈A

[
{ĝ(PXα

T
)− Zα

z (T )}+ +

∫ T

0

{Ψ(s,PXα
s
)}+ds

]
,

instead of

YΨ : z ∈ R 7→ inf
α∈A

[
{ĝ(PXα

T
)− Zα

z (T )}+ + sup
s∈[0,T ]

{Ψ(s,PXα
s
)}+

]
,

and computing the infimum of the zero level set

Z̄Ψ := inf{z ∈ R | ȲΨ(z) = 0},

also allows us to obtain the value and optimal control of the problem, if we
assume existence of optimal controls for the auxiliary problem.

Maximilien Germain State-constrained MKV equations
BSDE 2022, Annecy, June 30th

14 / 28



On open loop and closed loop controls

We focus here on the problem with integral penalization. In general (see
Cosso, Gozzi, Kharroubi, Pham, and Rosestolato 2020) the infimum over
open-loop controls α in A can be taken equivalently over randomized feedback
policies, i.e. controls α in the form

αt = α(t,Xα
t ,PXα

t
, Zz,α

t , U),

for some deterministic function α : [0, T ]× Rd × P(Rd)× R× [0, 1] 7→ A,
where U is an F0-measurable uniform random variable on [0, 1].

When can we
consider (deterministic) feedback policies

αt = α(t,Xα
t ,PXα

t
, Zz,α

t ) ?

We assume that f , b, σ do not depend on the law of the control process. We
also assume that the running cost f = f(t, x, µ) does not depend on the
control argument.
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On open loop and closed loop controls

The Bellman equation for the auxiliary problem (in dynamic form) is:
∂tw(t, µ, z) +

∫
Rd{infa∈A{b

(
t, x, a, µ)∂µw(t, µ, z)(x)− f̄(t, µ)∂zw(t, µ, z)

+ 1
2Tr(σσ

⊤(t, x, a, µ)∂x∂µw(t, µ, z)(x))}}µ(dx) + {Ψ(t, µ)}+ = 0 for (t, µ, z) ∈ [0, T ]× P2(Rd)× R
w(T, µ, z) = {ĝ(µ)− z}+ for (µ, z) ∈ P2(Rd)× R.

By assuming that w is a smooth solution to this Bellman equation, and when
the infimum in

inf
a∈A

{b
(
t, x, a, µ)∂µw(t, µ, z)(x) +

1

2
Tr(σσ⊤(t, x, a, µ)∂x∂µw(t, µ, z)(x))}

is attained for some measurable function α̂(t, x, µ, z) on
[0, T ]× Rd × P(Rd)× R, we get an optimal control given in feedback form by
α∗
t = α̂(t,Xα∗

t ,PXα∗
t

, Zz,α∗

t ), 0 ≤ t ≤ T , which shows that one can restrict to
deterministic feedback policies.
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Numerical scheme

We discretize the problem in time with tk = k T
N and use the algorithm from

Carmona and Laurière 2019 by taking a sequence of neural network
(αθi

i )i=1,··· ,N : Rd × R 7→ Rd with parameters θi to approximate the
(Markovian feedback) control.

We solve the auxiliary problem in a segment K in which we assume ZΨ lies,
discretized as z1 < · · · < zM . For i = 0, · · · , NT − 1, j = 1, · · · , N

Xj
i+1 = Xj

i + b
(
ti, X

j
i , α

θi
i (Xj

i , z), µi

)
∆ti + σ

(
ti, X

j
i , α

θi
i (Xj

i , z), µi

)
∆W j

i

Zα
z = z − 1

N

NT−1∑
i=0

N∑
l=1

f
(
ti, X

l
i , α

θi
i (X l

i , z), µi

)
∆ti

µi =
1

N

N∑
j=1

δ
(Xj

i ,α
θi
i (Xj

i ,z))

Xj
0 ∼ µ0
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Numerical scheme

We solve by stochastic gradient descent infθ
∑M

m=1 wΛ(zm) with w defined by

wΛ(z)

:= E
[
{ 1

N

N∑
l=1

g
(
X l

NT
,
1

N

N∑
j=1

δXj
NT

)
− Zα

z }+ + Λ

NT∑
i=1

{Ψ
(
ti,

1

N

N∑
j=1

δXj
i

)
}+∆ti

]
.

and for i = 0, · · · , NT − 1, j = 1, · · · , N

Xj
i+1 = Xj

i + b
(
ti, X

j
i , α

θ
i (X

j
i , z), µi

)
∆ti + σ

(
ti, X

j
i , α

θ
i (X

j
i , z), µi

)
∆W j

i

Zα
z = z − 1

N

NT−1∑
i=0

N∑
l=1

f
(
ti, X

l
i , α

θ
i (X

l
i , z), µi

)
∆ti

µi =
1

N

N∑
j=1

δ(Xj
i ,α

θ
i (X

j
i ,z))

Xj
0 ∼ µ0
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Numerical scheme

Define α∗ = αθ∗
with θ∗ the solution to the previous minimization

problem.
Compute V0 = inf{zi, i ∈ J1,MK | wΛ(zi) ≤ ε} with α = α∗ in the
dynamics for some threshold ε.
Return the value V0 and the optimal controls α̂i : x 7→ α∗

i (x, V0) for
i = 0, · · · , NT − 1.
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Numerical results

Markowitz mean-variance problem with conditional expectation
constraint

min
α

λVar(Xα
T )− E[Xα

T ]

dXα
t = αtb dt+ αtσ dWt

E[Xα
t | Xα

t ≤ θ] ≥ δ.

Primal Markowitz mean-variance problem

min
α

− E[Xα
T ]

dXα
t = αtb dt+ αtσ dWt

Var(XT ) ≤ ϑ.
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Auxiliary value functions
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z

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
= 1.
= 10.
= 100.

Conditional expectation constraint

1.120 1.115 1.110 1.105 1.100 1.095 1.090 1.085 1.080
z

0.000

0.005
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0.015

0.020
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= 10.
= 100.

Terminal variance constraint

Auxiliary value function YΛ(z) for several values of Λ
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Trajectories

Conditional expectation constraint Terminal variance constraint

Sample path of the controlled process Xα
t , with the analytical optimal control (for

the unconstrained case) and the computed control. On the left figure we don’t have
the true control but plot the unconstrained one for comparison
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Histogram

Conditional expectation constraint Terminal variance constraint

Histogram of XT for 50000 samples
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Constraints

Conditional expectation constraint Terminal variance constraint

On the left: conditional expectation E[Xα
t | Xα

t ≤ 0.9] estimated with 50000
samples. On the right: variance Var(Xα

t ) estimated with 50000 samples.
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Conclusion

We have been able to:
Extend the level-set approach to the mean-field control problem.
Prove representation results of the constrained problem by an
unconstrained one.
Design a machine learning numerical scheme to compute the optimal
value and control.

Potential future research
- Carefully assess the optimality of the computed control.
- Solve more difficult cases with an explicit solution.
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