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1. Objectives of the talk

We consider:
+ (Ω,F ,P) - complete probability space;
+ B - Brownian motion (for simplicity here: all in dimension 1);
+ F0 ⊂ F - sub-σ-field independent of B, “rich enough”:

P(Rd) = {Pξ, ξ ∈ L0(F0;Rd)}; d ≥ 1;
+ P(Rd) the space of all probability measures over (Rd,B(Rd));
+ F = FB ∨ F0 - our filtration;
+ U (⊂ Rd′ , for some integer d′ ≥ 1): some compact metric space.

+ Pp(Rd) the space of probability measures on (Rd,B(Rd)) with finite
p-th moment, p ≥ 1, endowed with the Wasserstein metric:

Wp(µ, ν) := inf
{(∫

Rd×Rd

∣∣z − z′|pρ(dzdz′)
) 1
p

∣∣∣ ρ ∈ Pp(Rd × Rd)

with ρ(· × Rd) = µ, ρ(Rd × ·) = ν
}
.

Note: (Pp(Rd),Wp(·, ·)) is a complete metric space.
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Brief state of the art

Viability problems:

1) Given a controlled stochastic flow, satisfy some state restrictions for a
suitably-chosen admissible control. This property is called (near-)viability;

2) Viability or near-viability goes back to the pioneering work by

Nagumo (1942);

3) Viability properties for stochastic differential equations:

Aubin, Da Prato (1990);
Buckdahn, Peng, Quincampoix, and Rainer (1998);

4) Viability properties for backward stochastic differential equations:

Buckdahn, Quincampoix, Răşcanu (2000, PTRF);

5) Viability of moving sets for a nonlinear Neumann problem

Maticiuc, Răşcanu (2007, Nonlinear Analysis);
..................
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Brief state of the art

6) The long-established methods to deal with the viability concept can be
categorised as follows:

• To characterize the distance function to the set of constraints in relation
with (viscosity) solutions of an associated HJB system: e.g.,

(forward) Buckdahn, Peng, Quincampoix, and Rainer (1998);

(bck) Buckdahn, Quincampoix, Răşcanu (2002);

(SPDE) Buckdahn, Quincampoix, Tessitore (2009);

(open sets) Buckdahn, Frankowska, Quincampoix (2019);

G. (2019);

• Tangency related concepts:

Aubin, Da Prato (1990);

Gautier, Thibault (1993);

Carja, Necula, Vrabie (2007)
..................
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1. Objectives of the talk

Characterize near-viability for (controlled) mean-field flows. Extends:
• Buckdahn, Li, Peng and Rainer (2017, AOP (2014, Arxiv))

The novelties in our work:

• We deal with law constraints by asking the law of the solution to belong
to some given closed subset K ⊂ P2(Rd).

• We study a more general state and law restriction, roughly speaking, by
simultaneously controlling the statistical law in a set of constraints K ⊂ P2(Rd)
and the evolution of a particular particle in a set of state constraints K ⊂ Rd.

• We give some structure considerations for mean-field controlled dynamics
whose importance exceeds their application to viability.

• We give a Nagumo-type characterization of invariance. In the case of
regular-bound domains, this characterization, together with Itô’s formula for
mean-field flows lead to explicit (necessary) conditions on the coefficient
functions.
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2. Preliminaries

2.1. The Control System

We consider the following split controlled SDE of mean-field type:
dXt,ξ,u

s = b(Xt,ξ,u
s ,PXt,ξ,us

, us)ds+ σ(Xt,ξ,u
s ,PXt,ξ,us

, us)dBs, t ≤ s ≤ T,

dXt,x,ξ,u
s = b(Xt,x,ξ,u

s ,PXt,ξ,us
, us)ds+ σ(Xt,x,ξ,u

s ,PXt,ξ,us
, us)dBs, t ≤ s ≤ T,

Xt,ξ,u
t = ξ ∈ L2(Ω,Ft,P;Rd), Xt,x,ξ,u

t = x ∈ Rd.
(2.1)

 Buckdahn, Li, Peng, Rainer (2017)

+Assumption: b : Rd × P2(Rd)× U → Rd,
σ : Rd × P2(Rd)× U → Rd×d: bounded, uniformly conti. and Lipschitz
conti. in (x, µ), uniformly w.r.t. u ∈ U , i.e., ∃ c > 0

|b(x, µ, u)− b(y, ν, u)|+ |σ(x, µ, u)− σ(y, ν, u)| ≤ c(|x− y|+W2(µ, ν)). (2.2)

 Under our assumptions (2.1) has a unique solution (Xt,x,ξ,u, Xt,ξ,u),
∀(t, x, ξ) ∈ [0, T ]× Rd × L2

Ft(R
d), u ∈ Ut,T .
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2. Preliminaries

2.2. Elementary Controls. The First Main Result

In this subsection: Let the initial time be t = 0. Denote by:

+ U0 := {v : UN → Ω× U : ∃(Ωi)i≥1 an F0-partition of Ω,
v(u) =

∑
i≥1 1Ωiu

i, ∀u = (ui)i≥1 ⊂ U}.

+ Ue := {v := v(u) : v ∈ U0, u = (ui)i≥1, u
i ∈ L0

FB ([0, T ];U), i ≥ 1}.

For every initial datum ξ̄ := (ξ, ξ′) ∈ L2
F0

(R2d), we set

X̄ ξ̄,u = X̄0,ξ̄,u :=
(
X0,ξ,u, X0,ξ′,ξ,u

)
(= (X0,ξ,u, X0,x,ξ,u|x=ξ′)).

With the above notations, for t = 0, our split SDE writes:{
dX̄t,ξ̄,u

s = b̄(X̄t,ξ̄,u
s ,P

X̄t,ξ̄,us
, us)ds+ σ̄(X̄t,ξ̄,u

s ,P
X̄t,ξ̄,us

, us)dBs,

X̄t,ξ̄,u
t = ξ̄. s ∈ [t, T ].

(2.3)
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2. Preliminaries

2.2. Elementary Controls. The First Main Result

Given u = v(u) ∈ Ue, we have the following result stating that, for
initial data ξ̄ ∈ L2

F0
(R2d), the law of the solution X̄ ξ̄,u depends on(

ξ̄, v
)
∈ L2

F0
(R2d)× U0 only through the law of these data.

Theorem 2.1

If (ξ̄, v), (ξ̄′, v′) ∈ L2
F0

(R2d)× U0 have the same law, then, for every

u = (ui)i≥1 ⊂ L0
FB ([0, T ];U),

P
X̄
ξ̄,v(u)
t

= P
X̄
ξ̄′,v′(u)
t

, t ∈ [0, T ]. (2.4)

Remark 2.2. The above theorem shows that the density (in L2-sense) of
the elementary controls Ue in the family of admissible ones U0,T implies
that the value functions in mean-field dynamics control problems depends
on the initial argument ξ ∈ L2

F0
only through its law Pξ.
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2. Preliminaries

2.3. Constrained Problem From now on, we let

•K denote a closed subset of Rd; •K be some closed subset of P2(Rd).

Definition 2.3

K ⊂ P2(Rd) is near-viable w.r.t. (2.1) if,
∀t ∈ [0, T ], ∀µ ∈ K, ∀ε > 0, ∃(ξ, u) ∈ L2

Ft(R
d)× Ut,T such that

Pξ = µ and dK(P
Xt,ξ,u
s

) ≤ ε, ∀s ∈ [t, T ].

Remark 2.4. Theorem 2.1 allows to replace in the above definition
“∃ ξ ∈ L2

Ft(R
d) s.t. Pξ = µ” with the stronger assertion “for all

ξ ∈ L2
Ft(R

d) s.t. Pξ = µ.”

Lemma 2.5

Let ξ, ξ′ ∈ L2
F0

(Rd) be of the same law and v ∈ U0. Then there exists
v′ ∈ U0 such that (ξ, v) and (ξ′, v′) obey the same law.
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2. Preliminaries

2.3. Constrained Problem (continued)

In general, both state and law restrictions, K ⊂ Rd,K ⊂ P2(Rd),

L2
Fs(K)⊗K :=

{
θ = (θ1, θ2) ∈ L2

Fs(R
d × Rd) : θ1 ∈ K, P-a.s. and Pθ2 ∈ K

}
. (2.5)

Definition 2.6

K ×K is near-viable w.r.t (2.1) if
∀t ∈ [0, T ], ∀ξ′ ∈ L2

Ft(K), ∀ξ ∈ L2
Ft(R

d) s.t. Pξ ∈ K and ∀ε > 0,
∃u ∈ Ut,T s.t.

dL2
Fs (K)⊗K((Xt,ξ′,ξ,u

s , Xt,ξ,u
s )) ≤ ε, s ∈ [t, T ]. (2.6)

Proposition 2.7

Rd ×K is near-viable with respect to the controlled flow (2.1) (in the
sense of Definition 2.6) if and only if K is near-viable in the sense of
Definition 2.3. 11 / 32
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3. Main Theoretical Results on Viability

3.1. Law Constrained Flows

The aim of this first subsection is to focus on controlled processes for
which the constraints concern (only) the law.

For every initial time t ∈ [0, T ), every initial measure µ ∈ K and every
T − t > ε > 0, we define the family of processes

Y t,ξ,u
s := ξ +

∫ s

t
b(ξ,Pξ, ur)dr +

∫ s

t
σ(ξ,Pξ, ur)dBr, s ∈ [t, T ], (3.1)

indexed by ξ∈L2
Ft(R

d) such that Pξ=µ. Moreover, to the triplet (t, µ, ε),
we associate the reachable set

St,ε(µ) :=
{
Y t,ξ,u
t+ε : (ξ, u) ∈ L2

Ft(R
d)× Ut,t+ε and Pξ = µ

}
. (3.2)
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3. Main Theoretical Results on Viability

3.1. Law Constrained Flows (continued)

We also introduce the following notation

d2
t,ε(µ→ K) := inf

{
E[|ϑ− θ|2] +

1

ε
E[|EFt [ϑ− θ]|2] :

ϑ ∈ St,ε(µ), θ ∈ L2
Ft+ε(R

d) with Pθ ∈ K
}
.

(3.3)

Definition 3.1 (Mean-field quasi-tangency condition (MFQT1))

The set K ⊂ P2(Rd) is said to satisfy the mean-field quasi-tangency
condition if

lim inf
ε→0+

1

ε
d2
t,ε(µ→ K) = 0, for all t ∈ [0, T ] and all µ ∈ K.
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3. Main Theoretical Results on Viability

3.1. Law Constrained Flows (continued)

We are now able to state the main result in this framework.

Theorem 3.2

A closed set K ⊂ P2(Rd) is near-viable (in the sense of Definition 2.3) if
and only if K satisfies the mean-field quasi-tangency condition MFQT1.

This result will be a consequence of the more general one (with
further state constraints) and the result on the equivalence of mean-field
quasi-tangency conditions without state constraints (i.e., when K = Rd,
cf., Proposition 3.4).
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3. Main Theoretical Results on Viability

3.2. Law and State Constrained Flows

For every initial time t ∈ [0, T ), every initial data ξ, ξ′ ∈ L2
Ft(R

d)
such that ξ′ ∈ K, P-a.s. and Pξ ∈ K and every T − t > ε > 0, we define
the processes

Y t,ξ′,ξ,u
s := ξ′ +

∫ s

t
b(ξ′,Pξ, ur)dr +

∫ s

t
σ(ξ′,Pξ, ur)dBr,

Y t,ξ,u
s := ξ +

∫ s

t
b(ξ,Pξ, ur)dr +

∫ s

t
σ(ξ,Pξ, ur)dBr, s ∈ [t, T ].

(3.4)

Note that Y t,ξ,ξ,u
s =Y t,ξ,u

s , s∈ [t, T ]. Moreover, to (t, ξ′, ξ, ε) we associate
the reachable set

St,ε(ξ′, ξ) :=
{

(Y t,ξ′,ξ,u
t+ε , Y t,ξ,u

t+ε ) : u∈Ut,t+ε
}
⊂L2

Ft+ε(R
d)×L2

Ft+ε(R
d). (3.5)
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3. Main Theoretical Results on Viability

3.2. Law and State Constrained Flows (continued)

We also introduce the following notation

d2
t,ε((ξ

′, ξ)→ K ×K) = inf
{
E[|ϑ− θ|2] +

1

ε
E[|EFt [ϑ− θ]|2] :

ϑ ∈ St,ε(ξ′, ξ), θ ∈ L2
Ft+ε(K)⊗K

}
.

(3.6)

Definition 3.3 (MFQT2)

The set K ×K ⊂ Rd × P2(Rd) is said to satisfy the mean-field quasi-tangency
condition if

lim inf
ε→0+

1

ε
d2
t,ε((ξ

′, ξ)→K×K) = 0, for all t ∈ [0, T ], and all (ξ′, ξ)∈L2
Ft(K)⊗K.
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3. Main Theoretical Results on Viability

3.2. Law and State Constrained Flows (continued)

A priori, when K = Rd the quasi-tangency condition MFQT2 is
more restrictive than MFQT1.

Indeed, the definitions imply that, given t ∈ [0, T ], ε > 0 and µ ∈ K,

St,ε(µ) =
⋃

ξ∈L2
Ft

(Rd): Pξ=µ

{
ϑ2 : (ϑ1, ϑ2) ∈

⋃
ξ′∈L2

Ft
(Rd)

St,ε(ξ′, ξ)
}
.

As consequence,

dt,ε(µ→ K) ≤ inf
ξ′∈L2

Ft
(Rd)

dt,ε((ξ
′, ξ)→ Rd ×K).
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3. Main Theoretical Results on Viability

3.2. Law and State Constrained Flows (continued)

In fact, we can prove the equivalence of these both concepts.

Proposition 3.4

A closed set K ⊂ P2(Rd) satisfies the mean-field quasi-tangency condition
MFQT1 if and only if the set Rd ×K satisfies the mean-field
quasi-tangency condition MFQT2.
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3. Main Theoretical Results on Viability

3.2. Law and State Constrained Flows (continued)

The main result of the section states that the notions of near-viability
and mean-field quasi-tangency are equivalent.

Theorem 3.5

Let us consider two closed sets K ⊂ Rd and K ⊂ P2(Rd). The set K ×K
is near-viable (in the sense of Definition 2.6) if and only if the condition
MFQT2 holds true.

Let us just hint at the main steps. The necessity of the condition
MFQT2 will follow from standard estimates for solutions of (2.1).
Basically, on small intervals [t, t+ ε], one needs to replace the actual
process with the Euler-type scheme (3.4) and show that the error obeys
the limiting condition in Definition 3.3. The same intuition for Euler
schemes will be useful for the sufficiency part.
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3. Main Theoretical Results on Viability

3.2.2. Sufficiency of MFQT2

Definition 3.6

ε-appr. constrained solutions
(
T̃ , δ, u, (ϕ′, ϕ), (ψ′, ψ), (Y ′, Y )

)
i) The terminal time satisfies t ≤ T̃ ≤ T ;

ii) The measurable delay δ : [t, T̃ ] −→ [t, T̃ ] is non-decreasing and satisfies

s− ε ≤ δ(s) ≤ s, for all s ∈ [t, T̃ ];

iii) The control process u is admissible;

iv) The error-estimating processes φ ∈ {ϕ,ϕ′, ψ, ψ′} are s.t. φ : [t, T̃ ]× Ω→ Rd
is predictable and satisfies

E
[ ∫ T̃

t

|φ(s)|2ds
]
≤ ε
(
T̃ − t

)
;
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3. Main Theoretical Results on Viability

3.2.2. Sufficiency of MFQT2 (continued)

Definition 3.6 (continued)

v) The process (Y ′, Y ) satisfies

Ys = ξ+

∫ s

t

b
(
Yδ(r),PYδ(r) , ur

)
dr+

∫ s

t

σ
(
Yδ(r),PYδ(r) , ur

)
dBr+

∫ s

t

ϕrdr+

∫ s

t

ψrdBr,

Y ′
s =ξ

′+

∫ s

t

b
(
Y ′
δ(r),PYδ(r) , ur

)
dr+

∫ s

t

σ
(
Y ′
δ(r),PYδ(r) , ur

)
dBr+

∫ s

t

ϕ′
rdr +

∫ s

t

ψ′
rdBr,

for all s ∈ [t, T̃ ];

vi) Moreover,
(a) the delayed process belongs to the set of constraints, i.e., for every s ∈ [t, T̃ ], one

has Y ′
δ(s) ∈ K, P-a.s. and PYδ(s) ∈ K;

(b) at time T̃ , the constraint is satisfied, i.e., Y ′
T̃
∈ K, P-a.s. and PY

T̃
∈ K;

(c) the process is reasonably close to the delayed process, i.e.,

sups∈[t,T̃ ] E[|Ys − Yδ(s)|
2] ≤ ε and sups∈[t,T̃ ] E

[∣∣Y ′
s − Y ′

δ(s)

∣∣2] ≤ ε.
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4. Nagumo-like Results. Application to Smooth Sets

Whenever the system (2.1) is no longer controlled, i.e.,

b : Rd × P2(Rd)→ Rd, respectively, σ : Rd × P2(Rd)→ Rd×d,

we get the following criterion (see, Nagumo (1942) for deterministic
systems).

Corollary 4.1

K ×K ⊂ Rd × P2(Rd) is invariant with respect to (2.1) if and only if, for every
t∈ [0, T ), every ξ∈L2

Ft(R
d) with Pξ∈K, for every ξ′ ∈ L2

Ft(K) and for all

n ∈ N∗, there exists εn > 0, R2d-valued Ft-measurable random variables
ϕ̄n = ((ϕ′)n, ϕn) and predictable processes ψ̄n = ((ψ′)n, ψn) such that the
following conditions hold true:

i) lim
n→∞

εn = 0; ii) lim
n→∞

E[|ϕ̄n|2] = 0; iii) lim
n→∞

E[

∫ t+εn

t

|ψ̄ns |2ds] = 0;
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4. Nagumo-like Results. Application to Smooth Sets

Corollary 4.1 (continued)

iv) Pξ+εnb(ξ,Pξ)+σ(ξ,Pξ)(Bt+εn−Bt)+εnϕn+
√
εn

∫ t+εn
t

ψns dBs
∈ K;

v) ξ′+εnb(ξ
′,Pξ)+σ(ξ′,Pξ)(Bt+εn−Bt)+εn(ϕ′)n+

√
εn

∫ t+εn

t

(ψ′)ns dBs∈K, P-a.s.

The preceding assertions i)-v) are a restatement of the quasi-tangency
condition in the control-independent setting.

Let us now assume that a set of constraints Γ is described by the existence of
a globally smooth function Φ : Rd × P2(Rd)→ R with Φ ∈ C2,1

b (Rd × P2(Rd)):

Γ := {(x, µ) ∈ Rd × P2(Rd) : Φ(x, µ) ≤ 0}.
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4. Nagumo-like Results. Application to Smooth Sets

Proposition 4.2

If the closed set Γ = {(x, µ) ∈ Rd × P2(Rd) : Φ(x, µ) ≤ 0} is near-viable with
respect to the uncontrolled dynamics (2.1) then, for every (ξ′, ξ) ∈ L2

Ft(R
d × Rd)

with (ξ′,Pξ) ∈ Γ, Φ(ξ′,Pξ) = 0, P-a.s., the following two assertions hold
simultaneously:∑

1≤i≤d

∂xiΦ(ξ′,Pξ)bi(ξ′,Pξ) +
1

2

∑
1≤i,j,k≤d

∂2
xixjΦ(ξ′,Pξ)(σikσjk)(ξ′,Pξ)

+Ẽ[
∑

1≤i≤d

(∂µΦ)i(ξ
′,Pξ, ξ̃)bi(ξ̃,Pξ)]

+Ẽ[
1

2

∑
1≤i,j,k≤d

∂yi(∂µΦ)j(ξ
′,Pξ, ξ̃)σik(ξ̃,Pξ)σjk(ξ̃,Pξ)] ≤ 0,

(4.1)

and, for all 1 ≤ j ≤ d, ∑
1≤i≤d

∂xiΦ(ξ′,Pξ)σij(ξ′,Pξ) = 0. (4.2)
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4. Nagumo-like Results. Application to Smooth Sets

Here ξ̃ denotes an independent copy of ξ, defined on a probability
space (Ω̃, F̃ , P̃), and Ẽ[·] is the expectation w.r.t. P̃ only concerning
random variables endowed with “∼”.

The proof for this assertion relies on Itô’s formula for mean-field flows
(e.g., Buckdahn, Li, Peng, Rainer (2017)) applied to Euler-approximating
flows appearing in Corollary 4.1-iv) and v).
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4. Nagumo-like Results. Application to Smooth Sets

4.1. Convex-order Comparison of Solutions

We recall that two probability measures on (R,B(R)) are
convex-ordered µ �cx ν if∫

R
φdµ ≤

∫
R
φdν, for all φ : R→ R convex, integrable.

For two real-valued random variables ξ and η defined on (Ω,F ,P),
ξ �cx η if Pξ �cx Pη.

We have the following properties:

26 / 32



4. Nagumo-like Results. Application to Smooth Sets

4.1. Convex-order Comparison of Solutions (continued)

Proposition 4.3

1) Let X and Y be two square-integrable random variables sharing a common
expectation E[X] = E[Y ]. Then the following assertions are equivalent.

i) X �cx Y ;

ii) For every a ∈ R, E[|X − a|] ≤ E[|Y − a|];
iii) For every a ∈ R, and every ε > 0, E[φa,ε(X)] ≤ E[φa,ε(Y )], where

φa,ε(x) =


(x− a)2

2ε
+
ε

2
, if x ∈ (a− ε, a+ ε),

|x− a|, otherwise;

iv) Let (ρδ)δ>0 be a family of standard mollifiers. For every a ∈ R, ε, δ > 0,

E[φδa,ε(X)] ≤ E[φδa,ε(Y )], where φδa,ε := φa,ε ∗ ρδ.
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4. Nagumo-like Results. Application to Smooth Sets

4.1. Convex-order Comparison of Solutions (continued)

Proposition 4.3 (continued)

2) If X and Y are Gaussian variables, then X �cx Y if and only if E[X] = E[Y ]
and E[X2] ≤ E[Y 2].

3) The convex order is preserved by
i) multiplication with real constants (i.e., if X �cx Y and λ ∈ R, then
λX �cx λY );

ii) sum of independent variables (i.e., if (Xi)1≤i≤m are independent random
variables and (Yi)1≤i≤m is another set of independent random variables such
that Xi �cx Yi for all 1 ≤ i ≤ m, then

∑m
i=1Xi �cx

∑m
i=1 Yi);

iii) L1-limits (i.e., if {X,Y,Xi, Yi : i ≥ 1} ⊂ L1(Ω,F ,P;R) such that Xi → X
in L1, Yi → Y in L1 and Xi �cx Yi for all i ≥ 1, then X �cx Y ).

4) If φ : R→ R such that
∫
R φdµ ≤

∫
R φdν for every µ, ν ∈ P2(R) with µ �cx ν,

then φ is convex.
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4. Nagumo-like Results. Application to Smooth Sets

4.1. Convex-order Comparison of Solutions (continued)

We consider the set

K :=
{
µ = (µ1, µ2) ∈ P2(R)× P2(R) : µ1 �cx µ2

}
. (4.3)

Proposition 4.4

The set K is a non-empty, closed, convex subset of (P2(R))2. Moreover, it
has void interior (in the topology induced by W2).
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4. Nagumo-like Results. Application to Smooth Sets

4.1. Convex-order Comparison of Solutions (continued)

We consider now the uncontrolled, one-dimensional, coefficients
b, σ0 : R→ R, and let σ : P2(R)→ R be given by

σ(µ) := (

∫
R
|σ0(x)|2µ(dx))

1
2 , µ ∈ P2(R).

We are interested in the near-viability of the set K with respect to the
system driven by (b, σ). In other words, given ξ �cx η, what are the

necessary (resp., sufficient) conditions to have Xt,ξ
s �cx Xt,η

s for all
s ∈ [t, T ], where{

dXt,θ
s = b(Xt,θ

s )ds+ σ(P
Xt,θ
s

)dBs, t ≤ s ≤ T,

Xt,θ
t = θ ∈ L2(Ω,Ft,P;R).

(4.4)
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4. Nagumo-like Results. Application to Smooth Sets

4.1. Convex-order Comparison of Solutions (continued)

Proposition 4.5

1) If the set K is near-viable w.r.t (4.4), then the following two conditions
hold true simultaneously:

i) The function b is affine, i.e., ∃ b0, b1 ∈ R s.t. b(x) = b0 + b1x, x ∈ R;

ii) For every µ1 �cx µ2 with the same second order moment, σ0 satisfies∫
R
|σ0(x)|2µ1(dx) ≤

∫
R
|σ0(x)|2µ2(dx).

2) Conversely, if b is affine and |σ0|2 is convex, then K is near-viable.
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Thank you very much

for your attention!

32 / 32


	Objectives of the talk
	Preliminaries
	Main Theoretical Results on Viability
	Nagumo-like Results. Application to Smooth Sets

