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A) Mean-field doubly reflected BSDE

We consider the following Mean-Field Doubly Reflected Backward
Stochastic Differential Equation: Vt < T

Y, =&+ ftT f(s, Vs, E[Ys], Zs) ds + KF — K7 — (K7 — K;)
— [ Z; dB; ;

h(Ye, E[Y:]) < Vi < g(Yi, E[Y4]);

Jo (Ye = h(Yo E[Y:D)dK: = [ (Ye = (Y2, E[Vi])dK; =(f1>.)



B = (Bt)i<T isaBM and &, f, g and h are given data.

A solution is a quadruple of adapted processes

(Y,Z,K*) = (s, Zt, KE) i<, (Ft)e<T-adapted, Y, K continuous
and K* non decreasing.

a) & is the terminal wealth or the target wealth;

b) h is a solvency treshold;

c) g is a bonus;

d) f is the infinitesimal utility.



e) Y; is the current value of ¢;
f) Z is the control process;

g) K* are consumption processes.



Motivation: Guaranteed life endowment with a
withdrawal-bonus options.

i) A portfolio of a large number N of homogeneous life insurance
policies £ € {1,..., N}.

ii) (YON, Z5NY are the characteristics of the prospective reserve of
each policy .

iii) Nonlinear reserving: the driver f depends on the reserve for the
particular contract £ and on the average reserve characteristics
over the N contracts: Foreach /=1,..., N,

a) F(t, YN (Y MY mse) o= e — 6, YN+
B max(, YN — 5 S, v,
b) h(YEN (VMY mze) = {u— c(YEN) + u(E S0, YN —u)t ) A S

) g(YN, (Y MY mze) = {a(YEM) + aa(E Shy YV —u)y v S,

(0<p<l).



iv) Sending N to infinity, yields the following forms of the driver
and the obstacles:

f(t, Ye, E[Ye]) = ar — 0¢ Y + B max(0;, Yy — E[Y4]);
h(Ye, E[Y:d]) = {u — c(Ye) + w(E[Ye] — u) "} A S,
g(Ye, E[Yi]) = {ca(Ye) + 3(E[Ye])} v St

of the prospective reserve of a representative life insurance
contract, a.k.a. the model-point among actuaries.

Pricing this type of contracts is one of the main motivations of
studying the class (1) of MF-reflected BSDEs.



B) Standard Reflected BSDEs

(i) A solution for the reflected BSDE associated with
{f(ta w,y, 2)7 57 (ht)tSTa (gt)tST} is a trlple of (Ft)tST_adapted
stochastic processes (Y;, Zt, Kt)e< T such that: Vit < T,
Ye=E+ [ f(s, Y, Zo)ds + K — K — (K7 — K{) + [.7 ZsdBs.
he <Y< gt

ST (s — he)dKG = [T (Ys — gs)dK; = 0.



They are related to the valuation of recallable options, Dynkin
games, min-max parabolic PDEs, etc.

(ii) Connection with the value of a Dynkin game

The process Y of (2) has the following representation (when f is
Lipschitz, h < g and ht <& < gr): Vit < T,

ONT

Y: = esssup essinf E{ f(s,Ys,Zs)ds

T>t o>t t

+ g(a)1{0<7'} + h(7)1{7§0,~r< T} + gl{TIUIT}’ff}

= essinf esssup {the same quantity}
ozt T>t



C) Mean-Field doubly reflected BSDEs

C-i) First existence result: Fixed point argument

If (1) has a solution then Y is a fixed point of the following
mapping;:

oNT
®(Y);: = esssup essinfE{/ (s, Ys,E[Ys], Zs)ds
t

T>t o>t
+8(0, Yo, E[Yi]t=0)L{o<ry + (T, Yo, E[Yelt=r) L {r<or< T}
+ 51{7':0':7'}|ft}

= essinf esssup {the same quantity}.
ot T>t



Theorem (CHM, ’20)

Assume that:

i) f does not depend on z and Lipschitz;

i) h,g Lipschitz, h < g and h(§,E[¢]) < € < g(&, E[¢])
iii) For some p > 1, 4§ ,~5, 8% and Bl satify

p—1 p P P
L= (g +81+63) 7 Kp_l) F+8D)+05+88)| <1
(3)
Then there exists 6 > 0 depending only on p, C¢,7%,75, B and B4

such that ® is a contraction on the time interval [T — 6, T].
Therefore the MFRBSDE (1) has a unique solution on [T — 0, T].



Main steps of the proof:

SP :=the set of continuous adapted processes ( such that

E[sup |¢t|P] < oo.
t<T

i) For any Y € SP, ¢(Y) € SP.
i) For § >0, Y, Y € S,

E[ sup [®(Y):—D(Y)P] < Z(0)P xE[ sup |Y:— Y{|"]
Se[T—45,T] Se[T—4,T]

where
lim 2(6) = X.
iy =)
Thus for § small enough ® is a contraction on S[”T_(;’T] and then

has a fixed point Y.



The link between ZS Dynkin games and 2-barrier RBSDEs implies
that equation (1) has a solution on [T — §, T] . As a by-product
we obtain by concatenation:

Theorem (CHM, '20)

Under the same assumptions as in Theorem 1, the MFRBSDE (1)
has a unique solution on [0, T].

Idea of the proof: Solve the equation on [T — 24, T — §] with
terminal condition Y! and concatenate to obtain a solution on
[T —24, T], and so onon [T — 34, T — 20] up to reaching a
solution on [0, T].

The solution is unique since the fixed point is unique on
[T—0,T] [T —25,T—9] etc.



Remark:
i) We only have fOT |Z2ds + KF < 00, P— ass..

i) E[Ys] can be replaced with Py, where the distance between two
probabilities 11 and 1> of Pp is given by the p-Wasserstein one.

iii) We cannot remove the condition of (3). Exemple with
B+ 5 =1. Take h(y,y’) = %y, If a solution exists then

Y, > E[Vy]

which is not possible in the general framework.



Remark: [continued]

iii) This result is recently generalized by Djehiche-Dumitrescu '22
to f depending also on z in considering ® defined as follows:

®(U): = esssup essmf Stfog\g{g(a, Us, E[Ut]t=0)1{5<r}
T>t
+ h(7, Ur, E[Ut]t=r )1 (r<or<T) + El{r=0=T} }

where
gth/\a( ) = YtU

and

YtU = g(07 UU?E[Ut]t:U)]‘{O'<T} + h(T7 Ur, E[Uf]f:T)l{TSJ,T< T}+

Elpregery + [T F(s, YV, ZV Py, )ds — [ ZV dB,.



C-ii) Second existence result: Penalization

For n,m > 0, let:
ynm ¢ 53’ zmm ¢ H2’d;

;
Y[ =+ / F(s, YO, E[Y, 5", 2™ ds+
t

.
ZrmdB;,

(4)

n,m,+ n,m,—i— n,m,— nm,—
KomE _ gpmt (KT KT —
t

where,

Kn ,m,+ . ‘—m

Ynm _ S st—l,m—l’E[st—l,m—l]))_ dS;
(5)

o\

nm—_

ﬁ

S Yn 1,m—1 E[Y" 1,m— 1]))



Y00 is the solution of

T T

YOOk [ (s YOO EYS) 2005 - [ 200 e < T,
t t

(6)

whose existence and uniqueness is already stated (BLP, '09) and
by assuming that

Yn,—l — YILO Y—l,m — \/07!717 and Y—l,—l — Y070. (7)

Y



Main assumptions

(i)
(a) f(t,w,y,y’, z) is Lipschitz ;
(b) y' — f(t,y,y’, z) is non-decreasing for fixed t,y, z.

(c) y — f(t,y,y,z) is non-decreasing for fixed t,y, z.



(i) (@) P—a.s. forany t < T, h(w, t,y,y’) and g(w, t,y,y’) are
non-decreasing w.r.t y and y’ and continuous w.r.t t;

(b) Lipschitz condition on g and h, i.e.,
b-i)

lg(t,w,y,y") — g(t,w,y1, 1)l < ¥Ely —nil + 51y — v

with 7§ 4+ 5 < 1.
b-ii)

\h(t,w,y,y") — h(t,w,y1,y1)| < Bfly — w1l + BSly' — ¥4

with 87 + 8 < 1.



(c) Adapted Mokobodski's condition: There exists two process
(Xe)e<T and (Ct)e<7 such that:

C—i) Ct > 0, Vvt S T.

c-ii)

t
VE< T, Xt—X0+/ JsdBs + Vi — V-
0

with J € H>9 and VT, V~ € S2.
c-iii)

h(watvyvy/) < Xt SXt+Ct Sg(watvyvy/)‘



(iii) € is an Fr- measurable, R-valued r.v., E[¢2] < oo and satisfies
P-as.,

h(T, & E[¢]) <& < &(T, &, E[¢]).

Proposition
Foranynm>0,t<T,

Ytn—i-l,m < Ytn,m < Ytn,m—&-l'



Proposition
There exists a constant C > 0 such that for any n,m > 0,

sup B(Y)TPIE| /0 Czempar] < c. (8)

Idea of the proof:
LetU" 1m1 (t Yn lmlE[Yn 1,m— 1])

E(n fy (vim - vt ) sy
9)
< COHE[f, (1Y P+ B[P+ | Z8™)2) ds])



Actually let { Ty }x>1 and {Sk}x>0 defined by:

So=0, Te=inf{S_ 1 <r<T:Y"m>yr-bm=11 AT,

Sk=inf{Tu <r<T:YPm <[ IUAT k>1.

where
L?—l,m—l _ h(t, Ytn—l,m—l’E[Ytn—l,m—l])‘






As h < g then:

i) T« /T and S /T (those sequences are even of stationary
type).
i) ymm> Ln—1m=1 5p [Ti, Sk] N { Tk < Sk}

Then we have:

Sk
Y-,rll’(m = Y;k’m + /Tk f(s, Ys”’m,E[st_l’m_lLZs"’m)ds

Sk Sk n
_/ an’mst _ n/ (Ysmm _ Ug—Lm—l) ds,
Tk Tk



But

Z(YS,:m o Y;;m) < Z(Xsk - XTk) + (& - XT)+‘

k>1 k>1

Then summing over k, we get:

+
nfoT (st,m _ Usn—l,m—l) ds

(5 XT fO ( + Zn m) Zk>l{1[Tk Sk)( )}dBS
H(VF = V) + Jo [F(s, Y E[YS TN, 20 ds.

which implies (9) after squarring and taking expectation.



In the same way we have:
T n,m n—1,m—1\"
El{m [, (Ys Ll ) ds)?]
(10)
< C(L+ B[y (Y72 + B[ NP2 + |28 2) ds)).



Then from (4), we obtain

. T T
E[(Y"™)?] < CE <1+/ (Ys"”")2ds+/ (Ys"17m1)2d5>,
t t

where C is a constant independent of n and m. Finally by
induction:

E[(Y"™)?] < (),

where 7(t) := Ce2S(T=t) which is solution of

" T
2(t) = C(1+2/t +(5)ds).

Therefore estimate (8) holds true.



As a consequence
Corollary

There exists a constant C such that for any n, m,

Efsup(¥;"")] < C. (11)



Limit w.r.t. m

Proposition
For any n > 0, there exist processes (Y",Z", K") that satisfy the
following one barrier reflected BSDE:

Y" € 82, KM € 82 non-decreasing (K(;”Jr =0)
and Z" belongs to H>9;
.

Yi =&+ / f(s, YO, E[Y 7Y, Z20)ds + KT — K

t (12)

T T
- ”/ (Y- Us"_l)+ds—/ ZMdBs, t < T;
t t

-
YI> L < T, and / (YP — L YdKPT =0,
0



Proposition (continued)

where:

a) L7t = h(t, YPLE[YY) ;

b) Up™ = g(t, Y2, E[Y{ ),

Moreover the following estimates hold true:

)
E[ sup (Y7)?] + E| / 120 2dt] + E[(K2 Y]+
0<t<T 0

E[n? </OT (vp —ur )’ dt)z] <C,

where C is a constant which does not depend on n.

(13)



Let
Y" =lim /A Y™™,

Step 1: Y is continuous (this is the main point).

i) By Peng's monotonic limit Y is rcll and (Z™™),, converges to
Z" in LP(dt ® P) for any p € [1,2).

i) The fact that E[(K7"™)?] < C and Y" rcll imply that: For any
t<T,
Ytn > h(tv Ytn_laE[Ytn_l])‘

iii) Through standard reflected BSDEs, Y™™ has the following
representation:



n,m
Yy

= esssup, E{ [} f(s, Yo" E[YS "1, Z ) ds
_nft (Ynm Yn 1,m—1 E[Yn 1,m— 1])) dS
+Y7{’7m A h(T, Y7fhm7E[Ytn7m]t:7)1{7§0,7’< T}

+€1{T:0':T} |Ft}



But the Snell envelope is continuous through increasing rcll
processes and then

Y =esssup,>, E{[; f(s, Y2, E[Y Y, Z0)ds
—n [T (Y2 —g(s, YILE[YI ) T d
+h(1, Y E[Y{ =)l (r<o,r<T}
+E&1l{r—o=1}|Ft}
Next for any predictable stopping time 7
{A,Y" <0} C{Y,L = h(r, Y, E[Y{lt=p-)} N {Ayh(...) <O}
As ﬁf + ﬁé’ < 1, then Y does not have jumps and then Y is

continuous. Thus the convergence of (Y"™),, to Y" is uniform
and we recover classically equation (12).



Limit w.r.t. n
Forany n >0, Y" < Y"1 then let

Y =lim\, Y".
n

Step 1: Y is continuous (this is also the main point).

Let 7 be a stopping time. For n > 0,
pri=inf{s>7, Y] <X} AT.

Then p™t1 < pn. Let p, = lim, p”. We then have:

i)Y, =X, on{p, < T}

ii) For any t € [, p;],

Y= Yo + [P f(s, Yo, E[Ys], Zs)ds — (K3~ — K{) — [/" ZTdBs;

Yt < g(S, YSaE[YS]) and fr;—pT(Yl’ - g(57 YSvE[YS]))thT’_ =0.



Next let
07 :=inf{s > p-, Y7 > Xs+ (AT,

Then 071 > 07 Let 6, = lim,6". We then have:
iii) YgT = (XgT + CgT) on {97- < T}.
iv) For any t € [p., 0],

Ye= Yo, + [ f(s, Yo, E[Ys], Zo)ds + Ky " — KT — 77 Z7dB;

Ye > h(s, Yo, B[Ys]) and [77(Y: — h(s, Ye, E[Y4]))dK] T = 0.



Take now

T =0,7 = po,72 = 0,73 = pr,, 74 = b, etc..
Then:
(i) (yn)n is of stationnay type.
(ii) vn < V41

(iii) Y is continuous on [0,~,] and then continuous on [0, T].



Therefore (Y"), converges to Y uniformly (in S2). Next define
i) Z=Ilim,Z"

i) K+ = lim, K"

i) K~ = lim, n [ (Y — UP~1)*ds.

Go back now to (12), take the limit w.r.t n to obtain:

Theorem
The quadruple (Y,Z, K¥*) is a solution of the MFRBSDE (1).

Remark: In some cases we have also uniqueness



Thanks for your attention.



