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Contract theory: a review



Contract theory: the big picture

V L d
Output XV < J b
I |

Agent Principa

Given information about a system X, FX,

max

Principal: offers contract ¢ € FX -5 Up (X7, ).

Agent: — accepts/rejects contract £ € =,
— chooses an effort v —220L, xv X, 1y, (¢ (XY, ).
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Contract theory: the big picture

V acas
Output XV < J )
R |

Agent Principa
P weak solution to: ¢ € [0,7]
. — Continuous time.
Xy =20+ / A (Xono, v )dr + o (Xpp ) AW — Controls drift.
0

T
V?(ﬁ) 1= sup EF” {SQTUA(Q —/ e e (Xpn., v )dr
rveA 0
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Contract theory: the big picture

V Sy
Output XV < J )
I |

Agent Principa

The contract £ € 75, i.e.

— asymmetry of information: access X, not Agent’s effort.

— time horizon enforces a non-Markovian structure, £(X.ar).
V§ = sup EP |:XT —&(X AT)
gex

Holmstrom and Milgrom '87. Sannikov '08. Cvitani¢, Possamai, and Touzi'18.
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Contract theory: time-consistent preferences

ct(z,a)=a?, \(z,a)=a. v T
t( ) t( ) V?(&) = sup EP |:e—a(T—t)£7/6—a(r—t)l/3d,r,:|
Ua(z)=2z. veA 0

— VA(¢) satisfies dynamic prog. principle: A's problem is time-consistent.

T Z2 T
Yt=£+/ (—TfaYr)drf/ Zrd Xy,
t 2 t
t Z2 t
= {g =y Z yyoZ =y, —/ (f - aYr)dr +/ ZrdXT}.
0 0

[
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Ua(z)=2z. veA 0

— VA(¢) satisfies dynamic prog. principle: A's problem is time-consistent.

T Z2 T
yt:§+/ (—TfaYr)drf/ Zrd Xy,
t 2 t
t Z2 t
= {g =y Z Yy r =y, —/ (f - aYr)dr +/ ZTdXT}.
0 0

[

— P identifies all of A’s optimal actions: maximisers of Hamiltonian, a*(r, z, 2).

~ L T Z2
E=Z = Vi =C +supE’ [/ (—T—aYTyO’Z)dr}
z 0 2

— Standard stochastic control problem: control Z, state variables (X, Y'¥0:%).

2/13



Time-inconsistent contract theory

¢

I/ el

Output XV < J b <——
Ua

Agent Principal

Agent sees contract £ and rejects/accepts contract

Chooses effort v according to time-inconsistent preferences Uy .
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Inconsistent Control
Consistent planning



Three approaches: Strotz '95

Pre-committed, Naive agent.

Consistent Planning: Game theoretic approach. Considers a non-cooperative
game, where the agent plays against future versions of himself, and look
for sub-game perfect Nash equilibria.

Ekeland and Lazrak; Ekeland and Pirvu; Hu, Jin, and Zhou; Bjork, Khapko, and
Murgoci; Czichowsky; Wei, Yong, and Zu.

— Bjork, Khapko, and Murgoci '17: extended HJB (PDE). Limited to a
verification argument.

— He and Jiang '19: characterisation of Markovian equilibria.
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Time—inconsistent contract theory

Output XV : J <: \
Up .
vV

Agent Principal

Agent sees contract £ and chooses equilibrium effort, v* € £(&), according
to time-inconsistent preferences, iel
fﬂ.

T
V€)= I8t 1, vh€) == EF {f(T —1)UA() —/tf(r = er(Xen, vi)dr

Principal solves

VP .= sup sup E” [Up (XT - f)]
EEEVEE(E)

1Non—exponential discounting f, f(0) =1
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What is for us an equilibrium? Continuous time

“[The] problem [of a sophisticated agent] is then to find the best plan
among those that [he| will actually follow." Strotz '95.

— Roughly speaking the same of Ekeland, Lazrak and Pirvu '06, '08, '10:

e-equilibrium 4+ local property.
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What is for us an equilibrium? Continuous time

“[The] problem [of a sophisticated agent] is then to find the best plan
among those that [he| will actually follow." Strotz '95.

— Roughly speaking the same of Ekeland, Lazrak and Pirvu '06, '08, '10:
e-equilibrium 4+ local property.

Definition (H, Possamai. '20)
Let v* € A, candidate. v @y v := vl g + v e 1)
Ve >0, 3. V(U t,v)e(0,0.)x [0,T]x A

At v%) = TMt v @y v*) > —cf
then v* is an equilibrium model.

Vv €) = TAt,v5€), vr € £(9).
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Consistent planning: H. and Possamai '20

— VA satisfies an extended dynamic programming principle: Agent's value
alongside equilibrium is time-consistent.

Iterating the definition for arbitrary partitions of [0,7] with mesh smaller
than /., and passing to the limit.
]-]Ddr

;

T . T
VA =sup EF {Vf - / (a,,(X, v) +EF {f’(Tfr)U,\({) - / Fllu=r)ew (X, v2)du

veA
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Consistent planning: H. and Possamai '20

— VA satisfies an extended dynamic programming principle: Agent’s value
alongside equilibrium is time-consistent.
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Consistent planning: H. and Possamai '20

— VA satisfies an extended dynamic programming principle: Agent’s value
alongside equilibrium is time-consistent.

— v*is an equilibrium iff there is (Y, Z) solution to the type-I BSVIE
T T
V= UG €+ [ B (5, Xon 22 Z0)dr = [ 20X, (s 000,11,
t t
for which v* maximises the Hamiltonian.

Let Hi(z,2) := sup {Ae(z,a) 2 — ct(x,a) }, a*(t,x,2) € M denotes a maximiser
acA

in H, and ! (s,z,z,2) = M\(z,a*(t,2,2))-2 — f(t — 8)ce(z, a* (¢, z,2))
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Consistent planning: H. and Possamai '20

— VA satisfies an extended dynamic programming principle: Agent’s value
alongside equilibrium is time-consistent.

— v*is an equilibrium iff there is (Y, Z) solution to the type-1 BSVIE

T T
V= UG €) o+ [ B (s, Xonn 22 Z0) e [ 2, (s 000,11,
t t
for which v* maximises the Hamiltonian.
— All in all,
Vv =V, &= {((l*(t,X»/\t,Zf)ze[o,T]ya* € M}.

Existence and uniqueness of equilibria.
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Time-inconsistent contract theory



Recap

— By refining the definition of consistent plans, i.e. v* € &(), we obtained
an extended dynamic programming principle for the problem of the Agent.

Infinite system (type-| extended BSVIE). It is sufficient for v* € £(€).

— Interestingly, it is also necessary, i.e. any equilibria arises from type-I BSVIE
and v* maximises the Hamiltonian.

The well-posedness of type-I BSVIEs yields the uniqueness of equilibria (up
to max. of Hamiltonian).
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Recap
— By refining the definition of consistent plans, i.e. v* € &(), we obtained
an extended dynamic programming principle for the problem of the Agent.
— Infinite system (type-| extended BSVIE). It is sufficient for v* € £(€).

— Interestingly, it is also necessary, i.e. any equilibria arises from type-I BSVIE
and v* maximises the Hamiltonian.

— The well-posedness of type-I BSVIEs yields the uniqueness of equilibria (up
to max. of Hamiltonian).

What does this imply about the problem faced by the
Principal?

— Infinitely many representations for &.

— ... cannot use only one and optimise over Z as before, need to understand
relationships between Z and Z° .
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A solvable LQ example: Principal’'s Problem:

ct(z,a)=a?, M\i(z,a)=a.

Ua () =z JA(tt,v6) = EY {f(T — )¢ — /;T Flr —t)v2dr

}'tx]
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A solvable LQ example: Principal’'s Problem:

T r2

T
Vo= 1T s+ [ 2220~ s - 9P [ z2ax,
t t

[1]]

T r2 T 0
— Yo,Z _ Yo f(T) Z’r d UZ’I‘ d v / }
%% i@t T 2T+A ™ ()
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A solvable LQ example: Principal’'s Problem:

T Z7‘2 T
Ve - [ 22 - fr - 95 [ ziax,

t t

_ o T Zr2 T 670 .

== YUU,Z — Yo + f(T) r_dr +/ T dWTI‘/ , 3/ }

Dr =i+ | fim s ) fme o)
s f(T—s) Zs
We check that for s € 0,77, A TT)SZ’? -z, (3"

where Z* comes from the martingale representation of

t
ff} = M+ / o Z:dW?
JO

— When f(t) := e, Z vanishes... effect due to time-inconsistency.
— Z also vanishes whenever Z is deterministic!
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r f(T Z ) }
* e P* ar d
VP:ggg]Eﬂ) [XT—ﬁ]fa: f(T +supIE |:/(; ( r

T f(1) dr
=e- f(T G)
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P _ P* _ P* T ar f(T f)
v 7§L€121E [XT—g]fx—f(T +2:13E [/0 ( :
T (1)
s@- f(T O

We can identify f(T")/f(r) deterministic s.t.

(T =)

2= Ry

Consequently,

& —C+/ 0 —t) -dXy.

Zt, Zf =0 = (3') holds.

)]
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— Agent discounts exponential utility: P has to solve a standard optimal
control problem. Explicit solution when Principal also has exponential
utility: linear contract.

— Agent takes utility of discounted wealth: we find optimal contract in
slightly restricted class (separability in ¢ and s for the controls). Though
optimal control stays deterministic, contract is non-Markovian and non-
linear, and still recovers the standard result for time-consistent agent.
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— Agent discounts exponential utility: P has to solve a standard optimal
control problem. Explicit solution when Principal also has exponential
utility: linear contract.

— Agent takes utility of discounted wealth: we find optimal contract in
slightly restricted class (separability in ¢ and s for the controls). Though
optimal control stays deterministic, contract is non-Markovian and non-

linear, and still recovers the standard result for time-consistent agent.

— What about the general case?
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Type—| extended BSVIE

In great generality, the problem of Agent is given by, (s,t) € [0, T]?

T T
¥ =Uale )+ / B (s, Xon, Y5, 25, Y, 27 ) dr — / Z:dX,.
¢ t

12/13



Type—| extended BSVIE

In great generality, the problem of Agent is given by, (s,t) € [0, T]?

T T
Y = Ua(s,€) +/ Wi (s, Xons, Y, 22,V Z0) dr — / 724X, .
¢ t

H?? . Z € H*? satisfying

t t
Wt =g ’/ P oo X, Y002, 22, X005, 25 ) dr / Z:dX,, (s,t) € [0, 7]
0 0

U (0, v2w02) = U (s, Y0 7), s € 0, 7). (3)
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Type—| extended BSVIE

Theorem (H, Possamai, '21)
Ei={e=U{"0,Y2%), Ze H>2). ThenE=E. For£ € =

E(&) = {a" (6, X nt, Y7 2 serom b Vo () = Y7,

H>2 . Z € H*? satisfying

ot ¢
Y;S,yo,z - ya - / h/:(S7X‘/\T7}/T‘STyUTZ7Zﬁ7 YZ‘,’UO,Z7 Z;)dT + / Z7SdX7‘7 (Svt) S [OvT}Q
JO Jo

Ul (0, v ?) = uY (s, vpr0 %), s € [0, T). (3)
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Type—| extended BSVIE

Theorem (H, Possamai, '21)

VP = sup sup EF () [Up (XT — UE{l) (T, Yg’z))},
YO>R ZcH?2?2

H>2 . Z € H*? satisfying

t t
Y4 :yéf/ h:(s,X_A,mYTS’yD?Z,Z*;‘,)/T"\yo’z,Z,'f)err/ Z:dX,, (s,t) € 0,T)?
0 0

Ul (0, v vo ) = Ul (s, vv07), s € 0, 7). (3)

— Volterra constrained controls... Different from Viens and Zhang'17.
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To

sum up

Insight: VA solves a backward stochastic Volterra integral equation.

characterisation of equilibria holds in greater generality.

Principal’s problem boils to optimal control of a Volterra forward equation
with constrained Volterra controls, i.e. a family (Z;)s.¢)ej0,772, (3) holds

T T
YtS:UA(s,f)—l—/ h;(s,XTA‘,YTS,Z;?,Y[,Zf.‘)dr—/ Z5dX,.
t t

unclear how to generalise the previous examples approach.

Idea: forget about the constraint... and reincorporate it using stochastic
target control ideas.
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