Well-posedness of path-dependent semilinear master equations

Huilin Zhang

huilinzhang@sdu.edu.cn

Research Center for Mathematics and Interdisciplinary Sciences,

Shandong University \& Humboldt University

9th Colloquium on BSDEs and MFS, Annecy, France

June 27, 2022

Contents

Introduction to mean-field and path-dependent equations
Introduction to mean-field games/control
A path-dependent framework

Path-dependent master equation in the smooth case Strong vertical derivative and partial Itô formula Solve mean-field PPDE via BSDEs

The non-smooth case
Non-smooth case and general vertical derivative

Introduction to mean-field and path-dependent equations
Introduction to mean-field games/control
A path-dependent framework

Path-dependent master equation in the smooth case Strong vertical derivative and partial Itô formula Solve mean-field PPDE via BSDEs

The non-smooth case
Non-smooth case and general vertical derivative

Motivation for master equations

- Approximate the large system by McKean-Vlasov SDE:

$$
\mathrm{dX}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}(\mathrm{t}), \mathcal{L}_{(\mathrm{X}(\mathrm{t}), \alpha(\mathrm{t}))}, \alpha(\mathrm{t})\right) \mathrm{dt}+\sigma\left(\mathrm{X}(\mathrm{t}), \mathcal{L}_{(\mathrm{X}(\mathrm{t}), \alpha(\mathrm{t}))}, \alpha(\mathrm{t})\right) \mathrm{dW}(\mathrm{t})
$$

- Mean field controls via dynamical programming principle \Rightarrow HJB equation

$$
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \mathrm{x}, \mu)+\sup _{\mathrm{a} \in \mathrm{~A}} \mathrm{H}\left(\mathrm{u}, \mathrm{a}, \partial_{\mathrm{x}} \mathrm{u}, \partial_{\mu} \mathrm{u}, \partial_{\partial_{\mathrm{x}}} \partial_{\mu} \mathrm{u}, \partial_{\mathrm{x}}^{2} \mathrm{u}\right)=0
$$

- Mean field games via HJB+FP lead to

$$
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \mathrm{x}, \mu)+\mathrm{F}\left(\mathrm{u}, \partial_{\mathrm{x}} \mathrm{u}, \partial_{\mathrm{x}}^{2} \mathrm{u}, \partial_{\mu} \mathrm{u}, \partial_{\mathrm{x}} \partial_{\mu} \mathrm{u}\right)=0
$$

where $(\mathrm{x}, \mu) \in \mathbb{R}^{\mathrm{d}} \times \mathcal{P}_{2}\left(\mathbb{R}^{\mathrm{d}}\right)$, and $\partial_{\mu} \mathrm{u}$ is Lions' derivative.

Motivation for master equations

- Approximate the large system by McKean-Vlasov SDE:

$$
\mathrm{dX}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}(\mathrm{t}), \mathcal{L}_{(\mathrm{X}(\mathrm{t}), \alpha(\mathrm{t}))}, \alpha(\mathrm{t})\right) \mathrm{dt}+\sigma\left(\mathrm{X}(\mathrm{t}), \mathcal{L}_{(\mathrm{X}(\mathrm{t}), \alpha(\mathrm{t}))}, \alpha(\mathrm{t})\right) \mathrm{dW}(\mathrm{t})
$$

- Mean field controls via dynamical programming principle $\Rightarrow \mathrm{HJB}$ equation

$$
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \mathrm{x}, \mu)+\sup _{\mathrm{a} \in \mathrm{~A}} \mathrm{H}\left(\mathrm{u}, \mathrm{a}, \partial_{\mathrm{x}} \mathrm{u}, \partial_{\mu} \mathrm{u}, \partial_{\partial_{\mathrm{x}}} \partial_{\mu} \mathrm{u}, \partial_{\mathrm{x}}^{2} \mathrm{u}\right)=0
$$

- Mean field games via HJB+FP lead to

$$
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \mathrm{x}, \mu)+\mathrm{F}\left(\mathrm{u}, \partial_{\mathrm{x}} \mathrm{u}, \partial_{\mathrm{x}}^{2} \mathrm{u}, \partial_{\mu} \mathrm{u}, \partial_{\mathrm{x}} \partial_{\mu} \mathrm{u}\right)=0
$$

where $(\mathrm{x}, \mu) \in \mathbb{R}^{\mathrm{d}} \times \mathcal{P}_{2}\left(\mathbb{R}^{\mathrm{d}}\right)$, and $\partial_{\mu} \mathrm{u}$ is Lions' derivative.

- Lions, Cardaliaguet '12: Lions' derivative and first-order master equation;
- Buckdahn-Li-Peng-Rainer '17, Buckdahn-Li-Peng '09, Buckdahn-Djehiche-Li-Peng '09, Carmona-Delarue '13: second order master equations;
- Bensoussan-Frehse-Yam '15, '17: measures with L^{2} density functions;
- Cardadiaguet-Delarue-Lasry-Lions '19, Chassagneux-Crisan-Delarue '15: fully second order master equation;
- Mou-Zhang '20, Cosso-Gozzi-Kharroubi-Pham-Rosestolato '21, Cecchin-Delarue '22: weak solution and viscosity solution,

Introduction to mean-field and path-dependent equations
Introduction to mean-field games/control
A path-dependent framework

Path-dependent master equation in the smooth case Strong vertical derivative and partial Itô formula Solve mean-field PPDE via BSDEs

The non-smooth case
Non-smooth case and general vertical derivative

Path-dependent partial differential equation

- In practice, problems can be path-dependent/non-Markovian: e.g. pricing for singular options, delayed control problems, rough volatility...
- Motivated by state-dependent stochastic control, consider the following PPDE:

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \omega)+\mathrm{H}\left(\mathrm{u}, \partial_{\omega} \mathrm{u}, \partial_{\omega}^{2} \mathrm{u}\right)=0 \\
\mathrm{u}(\mathrm{~T}, \omega)=\Phi\left(\omega_{\mathrm{T}}\right), \quad \omega \in \mathcal{C}\left([0, \mathrm{~T}], \mathbb{R}^{\mathrm{d}}\right)
\end{array}\right.
$$

where $\partial_{\omega} \mathrm{u}$ is vertical derivative.

- Functional Itô calculus: Dupire '09, Cont-Fournié '10, '13
- Smooth/Viscosity solutions: Wang-Peng '16, Ekren-Touzi-Zhang '14, '16, '18, Zhou '20, '21, Cosso-Gozzi-Rosestolato-Russo '21...

Mean-field PPDE

- For smooth parameters $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \sigma_{1}, \sigma_{2}\right)(\mathrm{t}, \omega, \mu)$, we consider path-dependent master equation:

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \omega, \mu)+\frac{1}{2} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{u}(\mathrm{t}, \omega, \mu) \sigma_{1} \sigma_{1}^{\mathrm{T}}\right]+\frac{1}{2} \operatorname{Tr}\left[\sigma_{2} \sigma_{2}^{\mathrm{T}} \int_{\mathcal{C}} \partial_{\omega^{\prime}} \partial_{\mu} \mathrm{u}\left(\mathrm{t}, \omega, \mu, \omega^{\prime}\right) \mu\left(\mathrm{d} \omega^{\prime}\right)\right] \\
\quad+\mathrm{b}_{2} \int_{\mathcal{C}} \partial_{\mu} \mathrm{u}\left(\mathrm{t}, \omega, \mu, \omega^{\prime}\right) \mu\left(\mathrm{d} \omega^{\prime}\right)+\mathrm{b}_{1} \partial_{\omega} \mathrm{u}(\mathrm{t}, \omega, \mu) \\
\quad+\mathrm{f}\left(\mathrm{t}, \omega, \mathrm{u}(\mathrm{t}, \omega, \mu), \partial_{\omega} \mathrm{u}(\mathrm{t}, \omega, \mu), \mu, \mathcal{L}_{\mathrm{u}\left(\mathrm{t}, \mathrm{~W}^{\mu}, \mu\right)}\right)=0 \\
\mathrm{u}(\mathrm{~T}, \omega, \mu)=\Phi\left(\omega_{\mathrm{T}}, \mu_{\mathrm{T}}\right)
\end{array}\right.
$$

Mean-field PPDE

- For smooth parameters $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \sigma_{1}, \sigma_{2}\right)(\mathrm{t}, \omega, \mu)$, we consider path-dependent master equation:

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \omega, \mu)+\frac{1}{2} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{u}(\mathrm{t}, \omega, \mu) \sigma_{1} \sigma_{1}^{\mathrm{T}}\right]+\frac{1}{2} \operatorname{Tr}\left[\sigma_{2} \sigma_{2}^{\mathrm{T}} \int_{\mathcal{C}} \partial_{\omega^{\prime}} \partial_{\mu} \mathrm{u}\left(\mathrm{t}, \omega, \mu, \omega^{\prime}\right) \mu\left(\mathrm{d} \omega^{\prime}\right)\right] \\
\quad+\mathrm{b}_{2} \int_{\mathcal{C}} \partial_{\mu} \mathrm{u}\left(\mathrm{t}, \omega, \mu, \omega^{\prime}\right) \mu\left(\mathrm{d} \omega^{\prime}\right)+\mathrm{b}_{1} \partial_{\omega} \mathrm{u}(\mathrm{t}, \omega, \mu) \\
\quad+\mathrm{f}\left(\mathrm{t}, \omega, \mathrm{u}(\mathrm{t}, \omega, \mu), \partial_{\omega} \mathrm{u}(\mathrm{t}, \omega, \mu), \mu, \mathcal{L}_{\mathrm{u}\left(\mathrm{t}, \mathrm{~W}^{\mu}, \mu\right)}\right)=0 \\
\mathrm{u}(\mathrm{~T}, \omega, \mu)=\Phi\left(\omega_{\mathrm{T}}, \mu_{\mathrm{T}}\right) .
\end{array}\right.
$$

- Examples: say $\mathrm{b}_{1}=\mathrm{b}_{2}=0, \sigma_{1}=\sigma_{2}=\mathrm{I}$
(i) The state-dependent case: (f, Φ) has a state-dependent form:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{t}, \omega, \mathrm{y}, \mathrm{z}, \mu, \nu)=\mathrm{F}(\mathrm{t}, \omega(\mathrm{t}), \mathrm{y}, \mathrm{z}, \mu(\mathrm{t}), \nu), \\
& \Phi(\mathrm{T}, \omega, \mu)=\mathrm{G}(\omega(\mathrm{~T}), \mu(\mathrm{T})) .
\end{aligned}
$$

(ii) PPDEs: $\mathrm{f}(\mathrm{t}, \omega, \mathrm{y}, \mathrm{z}, \mu, \nu)=\mathrm{H}(\mathrm{t}, \omega, \mathrm{y}, \mathrm{z}), \quad \Phi(\mathrm{T}, \omega, \mu)=\mathrm{I}\left(\omega_{\mathrm{T}}\right)$.
(iii) The path-measure dependent case:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{t}, \omega, \mathrm{y}, \mathrm{z}, \mu, \nu)=\mathrm{J}(\mathrm{t}, \mathrm{y}, \mu), \\
& \Phi(\mathrm{T}, \omega, \mu)=\mathrm{K}\left(\mu_{\mathrm{T}}\right)
\end{aligned}
$$

(iv) Hybrid cases: "path-dependent" + "state-dependent"

Dupire's vertical derivative+ Lions' derivative

Definition (Dupire's horizontal derivative)
$\mathrm{f}(\mathrm{t}, \omega):[0, \mathrm{~T}] \times \mathcal{D}_{\mathrm{T}}^{\mathrm{d}} \rightarrow \mathbb{R}$, is horizontally differentiable at (t, ω) if $\exists \partial_{\mathrm{t}} \mathrm{f}\left(\mathrm{t}, \omega_{\mathrm{t}}\right) \in \mathbb{R}$,

$$
\mathrm{f}\left(\mathrm{t}+\mathrm{h}, \omega_{\mathrm{t}}\right)-\mathrm{f}\left(\mathrm{t}, \omega_{\mathrm{t}}\right)=\partial_{\mathrm{t}} \mathrm{f}\left(\mathrm{t}, \omega_{\mathrm{t}}\right) \mathrm{h}+\mathrm{o}(\mathrm{~h}), \quad \mathrm{h} \rightarrow 0 .
$$

Definition (Dupire's vertical derivative)
Suppose $f(t, \omega)$ non-anticipative. f is vertically differentiable at (t, ω), if $\exists \partial_{\omega} \mathrm{f}(\mathrm{t}, \omega) \in \mathbb{R}^{\mathrm{d}}$,

$$
\mathrm{f}\left(\mathrm{t}, \omega+\mathrm{x} 1_{[\mathrm{t}, \mathrm{~T}]}\right)-\mathrm{f}(\mathrm{t}, \omega)=\partial_{\omega} \mathrm{f}(\mathrm{t}, \omega) \cdot \mathrm{x}+\mathrm{o}(|\mathrm{x}|), \quad \mathrm{x} \rightarrow 0 .
$$

Dupire's vertical derivative+ Lions' derivative

Definition (Dupire's horizontal derivative)
$\mathrm{f}(\mathrm{t}, \omega):[0, \mathrm{~T}] \times \mathcal{D}_{\mathrm{T}}^{\mathrm{d}} \rightarrow \mathbb{R}$, is horizontally differentiable at (t, ω) if $\exists \partial_{\mathrm{t}} \mathrm{f}\left(\mathrm{t}, \omega_{\mathrm{t}}\right) \in \mathbb{R}$,

$$
\mathrm{f}\left(\mathrm{t}+\mathrm{h}, \omega_{\mathrm{t}}\right)-\mathrm{f}\left(\mathrm{t}, \omega_{\mathrm{t}}\right)=\partial_{\mathrm{t}} \mathrm{f}\left(\mathrm{t}, \omega_{\mathrm{t}}\right) \mathrm{h}+\mathrm{o}(\mathrm{~h}), \quad \mathrm{h} \rightarrow 0 .
$$

Definition (Dupire's vertical derivative)
Suppose $f(t, \omega)$ non-anticipative. f is vertically differentiable at (t, ω), if $\exists \partial_{\omega} \mathrm{f}(\mathrm{t}, \omega) \in \mathbb{R}^{\mathrm{d}}$,

$$
\mathrm{f}\left(\mathrm{t}, \omega+\mathrm{x} 1_{[\mathrm{t}, \mathrm{~T}]}\right)-\mathrm{f}(\mathrm{t}, \omega)=\partial_{\omega} \mathrm{f}(\mathrm{t}, \omega) \cdot \mathrm{x}+\mathrm{o}(|\mathrm{x}|), \quad \mathrm{x} \rightarrow 0
$$

Definition (Lions' derivative for path-measures) $\mathrm{f}(\mathrm{t}, \mu):[0, \mathrm{~T}] \times \mathcal{P}_{2}^{\mathrm{D}} \rightarrow \mathbb{R}$ is Fréchet vertically differentiable at (t, μ) if its lift $\mathbf{f}(\mathrm{t}, \mathrm{X})$ (i.e. $\mathbf{f}(\mathrm{t}, \mathrm{X}):=\mathrm{f}(\mathrm{t}, \mu)$ with $\mathcal{L}(\mathrm{X})=\mu$) is Fréchet differentiable at (t, X) : \exists measurable $\partial_{\mu} \mathrm{f}(\mathrm{t}, \mu, \tilde{\omega}):[0, \mathrm{~T}] \times \mathcal{P}_{2}^{\mathrm{D}} \times \mathcal{D}_{\mathrm{T}}^{\mathrm{d}} \rightarrow \mathbb{R}^{\mathrm{d}}$

$$
\mathbf{f}\left(\mathrm{t}, \mathrm{X}+\xi 1_{[\mathrm{t}, \mathrm{~T}]}\right)=\mathbf{f}(\mathrm{t}, \mathrm{X})+\hat{\mathbb{E}}^{\mathrm{P}}\left[\partial_{\mu} \mathrm{f}(\mathrm{t}, \mu, \mathrm{X}) \cdot \xi\right]+\mathrm{o}\left(\|\xi\|_{\mathrm{L}^{2}}\right), \forall \xi \in \mathrm{L}_{\mathrm{P}}^{2}\left(\mathcal{F}_{\mathrm{t}}, \mathbb{R}^{\mathrm{d}}\right)
$$

Itô-Lions-Dupire calculus

Suppose

$$
\left\{\begin{array}{l}
\mathrm{dX}(\mathrm{r})=\mathrm{a}(\mathrm{r}) \mathrm{dr}+\mathrm{b}(\mathrm{r}) \mathrm{dB}(\mathrm{r}), \quad\left\{\begin{array}{l}
\mathrm{dX} \mathrm{X}^{\prime}(\mathrm{r})=\mathrm{c}(\mathrm{r}) \mathrm{dr}+\mathrm{d}(\mathrm{r}) \mathrm{dB}^{\prime}(\mathrm{r}) \\
\mathrm{X}_{\mathrm{t}}^{\prime}=\gamma_{\mathrm{t}}, \quad \mathrm{r} \geq \mathrm{t} .
\end{array}, \quad, \quad \mathrm{r} \geq \mathrm{t} .\right. \tag{1}
\end{array}\right.
$$

Theorem (Tang-Z. '21)
For any $(\mathrm{t}, \gamma, \eta) \in[0, \mathrm{~T}] \times \mathcal{D}_{\mathrm{T}}^{\mathrm{d}} \times\left(\mathbb{M}_{2}^{\mathrm{D}}\right)^{\prime}$, and $\mathrm{f} \in \mathscr{C}_{\mathrm{p}}^{1,2,1,1}\left(\hat{\mathbb{D}}_{\mathrm{T}, \mathrm{d}}\right)$. We have

$$
\begin{align*}
& \mathrm{f}\left(\mathrm{~s}, \mathrm{X}, \mathcal{L}_{\mathrm{X}^{\prime}}\right)-\mathrm{f}\left(\mathrm{t}, \gamma, \mathcal{L}_{\eta}\right) \\
&= \int_{\mathrm{t}}^{\mathrm{s}} \partial_{\mathrm{r}}^{\mathrm{f}}\left(\mathrm{r}, \mathrm{X}, \mathcal{L}_{\mathrm{X}^{\prime}}\right) \mathrm{dr}+\int_{\mathrm{t}}^{\mathrm{s}} \partial_{\omega} \mathrm{f}\left(\mathrm{r}, \mathrm{X}, \mathcal{L}_{\mathrm{X}^{\prime}}\right) \mathrm{dX}(\mathrm{r}) \\
&+\frac{1}{2} \int_{\mathrm{t}}^{\mathrm{s}} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{f}\left(\mathrm{r}, \mathrm{X}_{\mathrm{r}}, \mathcal{L}_{\mathrm{X}^{\prime}}\right) \mathrm{d}\langle\mathrm{X}\rangle(\mathrm{r})\right]+\hat{\mathbb{E}}^{\tilde{\mathrm{P}}^{\prime}}\left[\int_{\mathrm{t}}^{\mathrm{s}} \partial_{\mu} \mathrm{f}\left(\mathrm{r}, \mathrm{X}, \mathcal{L}_{\mathrm{X}^{\prime}}, \tilde{\mathrm{X}}^{\prime}\right) \mathrm{d} \tilde{\mathrm{X}}^{\prime}(\mathrm{r})\right] \tag{2}\\
&+\frac{1}{2} \hat{\mathbb{E}}^{\tilde{P}^{\prime}} \int_{\mathrm{t}}^{\mathrm{s}} \operatorname{Tr}\left[\partial_{\tilde{\omega}} \partial_{\mu} \mathrm{f}\left(\mathrm{r}, \mathrm{X}, \mathcal{L}_{\mathrm{X}^{\prime}}, \tilde{\mathrm{X}}^{\prime}\right) \tilde{\mathrm{d}}(\mathrm{r}) \tilde{\mathrm{d}}(\mathrm{r})^{\mathrm{T}}\right] \mathrm{dr}, \quad \forall \mathrm{~s} \geq \mathrm{t} .
\end{align*}
$$

Introduction to mean-field and path-dependent equations
Introduction to mean-field games/control
A path-dependent framework

Path-dependent master equation in the smooth case Strong vertical derivative and partial Itô formula
Solve mean-field PPDE via BSDEs

The non-smooth case
Non-smooth case and general vertical derivative

Solve mean-field PPDE via probability in a nutshell

- Consider the case $\mathrm{b}_{1}=\mathrm{b}_{2}=0, \sigma_{1}=\sigma_{2}=1$ firstly, i.e.

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \omega, \mu)+\frac{1}{2} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{u}(\mathrm{t}, \omega, \mu)\right]+\frac{1}{2} \operatorname{Tr}\left[\int_{\mathcal{C}} \partial_{\omega^{\prime}} \partial_{\mu} \mathrm{u}\left(\mathrm{t}, \omega, \mu, \omega^{\prime}\right) \mu\left(\mathrm{d} \omega^{\prime}\right)\right] \\
\quad+\mathrm{f}\left(\mathrm{t}, \omega, \mathrm{u}(\mathrm{t}, \omega, \mu), \partial_{\omega} \mathrm{u}(\mathrm{t}, \omega, \mu), \mu, \mathcal{L}_{\mathrm{u}\left(\mathrm{t}, \mathbb{W}^{\mu}, \mu\right)}\right)=0 \\
\mathrm{u}(\mathrm{~T}, \omega, \mu)=\Phi\left(\omega_{\mathrm{T}}, \mu_{\mathrm{T}}\right)
\end{array}\right.
$$

$-\omega^{\gamma_{\mathrm{t}}}(\tau)=\gamma(\tau) 1_{[0, \mathrm{t})}(\tau)+[\gamma(\mathrm{t})+\omega(\mathrm{r})-\omega(\mathrm{t})] 1_{[\mathrm{t}, \mathrm{T}]}(\mathrm{r}) \in \mathcal{D}_{\mathrm{T}}^{\mathrm{d}} ; \quad \mathcal{L}_{\eta}=\mu$

- If u is the solution,

$$
\begin{aligned}
& \mathrm{u}\left(\mathrm{t}+\mathrm{h}, \gamma_{\mathrm{t}}, \mu_{\mathrm{t}}\right)-\mathrm{u}\left(\mathrm{t}, \gamma_{\mathrm{t}}, \mu_{\mathrm{t}}\right)=\mathrm{u}\left(\mathrm{t}+\mathrm{h}, \gamma_{\mathrm{t}}, \mu_{\mathrm{t}}\right) \mp \hat{\mathbb{E}}\left[\mathrm{u}\left(\mathrm{t}+\mathrm{h}, \mathrm{~B}^{\gamma_{\mathrm{t}}}, \mathcal{L}_{\mathrm{B} \eta_{\mathrm{t}}}\right)\right]-\mathrm{u}(\mathrm{t}, \gamma, \mu) \\
& \text { 1. } \mathrm{u}(\mathrm{t}, \gamma, \mu)-\mathrm{u}\left(\mathrm{t}+\mathrm{h}, \mathrm{~B}^{\gamma_{\mathrm{t}}}, \mathcal{L}_{\mathrm{B}} \eta_{\mathrm{t}}\right)=\mathrm{Y}^{\gamma_{\mathrm{t}}, \mu_{\mathrm{t}}}(\mathrm{t})-\mathrm{Y}^{\gamma_{\mathrm{t}}, \mu_{\mathrm{t}}}(\mathrm{t}+\mathrm{h})= \\
& \text { " } \int_{\mathrm{t}}^{\mathrm{th}+\mathrm{h}} \mathrm{fds}+\text { martingale", need "flow property of MFBSDEs" } \\
& \text { 2. } \mathrm{u}\left(\mathrm{t}+\mathrm{h}, \gamma_{\mathrm{t}}, \mu_{\mathrm{t}}\right)-\mathrm{u}\left(\mathrm{t}+\mathrm{h}, \mathrm{~B}^{\gamma_{\mathrm{t}}}, \mathcal{L}_{\mathrm{B} \eta_{\mathrm{t}}}\right)= \\
& \text { " } \partial_{\gamma}^{2} \mathrm{u}+\partial_{\gamma^{\prime}} \partial_{\mu} \mathrm{u}+\text { martingale", need "partial Itô's formula" }
\end{aligned}
$$

Strong vertical derivative

Definition (strong vertical derivative)
We call $\mathrm{f}(\mathrm{t}, \omega)$ strongly vertically differentiable at (t, ω), if $\forall \tau \leq \mathrm{t}, \exists \partial_{\omega_{\tau}} \mathrm{f}(\mathrm{t}, \omega)$ s.t. \forall $\mathrm{x} \in \mathbb{R}^{\mathrm{d}}$,

$$
\mathrm{f}\left(\mathrm{t}, \omega+\mathrm{x}_{[\tau, \mathrm{T}]}\right)=\mathrm{f}(\mathrm{t}, \omega)+\partial_{\omega_{\tau}} \mathrm{f}(\mathrm{t}, \omega) \cdot \mathrm{x}+\mathrm{o}(|\mathrm{x}|), \text { as } \mathrm{x} \rightarrow 0 .
$$

$\partial_{\omega_{\tau}} f(t, \omega)$ is called strong vertical derivative of f at (τ, t, ω).

- For functionals on $\mathcal{P}_{2}^{\mathrm{D}}$, definition of SVD is similar.

Strong vertical derivative

Definition (strong vertical derivative)

We call $\mathrm{f}(\mathrm{t}, \omega)$ strongly vertically differentiable at (t, ω), if $\forall \tau \leq \mathrm{t}, \exists \partial_{\omega_{\tau}} \mathrm{f}(\mathrm{t}, \omega)$ s.t. \forall $x \in \mathbb{R}^{d}$,

$$
\mathrm{f}\left(\mathrm{t}, \omega+\mathrm{x} 1_{[\tau, \mathrm{T}]}\right)=\mathrm{f}(\mathrm{t}, \omega)+\partial_{\omega_{\tau}} \mathrm{f}(\mathrm{t}, \omega) \cdot \mathrm{x}+\mathrm{o}(|\mathrm{x}|), \text { as } \mathrm{x} \rightarrow 0
$$

$\partial_{\omega_{\tau}} \mathrm{f}(\mathrm{t}, \omega)$ is called strong vertical derivative of $\mathrm{fat}(\tau, \mathrm{t}, \omega)$.

- For functionals on $\mathcal{P}_{2}^{\mathrm{D}}$, definition of SVD is similar.

Corollary (Partial Itô-Lions-Dupire formula, Tang-Z.'21) Suppose $\mathrm{f} \in \mathscr{C}_{\mathrm{s}, \mathrm{p}}^{0,2,1,1}\left(\hat{\mathbb{D}}_{\mathrm{T}, \mathrm{d}}\right)$. Then we have that for any $\mathrm{t} \leq \mathrm{s} \leq \mathrm{v} \leq \mathrm{T}$,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}, \mathrm{X}_{\mathrm{s}}, \mathcal{L}_{\mathrm{X}_{\mathrm{s}}^{\prime}}\right)-\mathrm{f}\left(\mathrm{v}, \gamma_{\mathrm{t}}, \mathcal{L}_{\eta_{\mathrm{t}}}\right) \\
& =\int_{\mathrm{t}}^{\mathrm{s}} \partial_{\omega_{\mathrm{r}}} \mathrm{f}\left(\mathrm{v}, \mathrm{X}_{\mathrm{r}}, \mathcal{L}_{\mathrm{X}_{\mathrm{r}}^{\prime}}\right) \mathrm{dX}(\mathrm{r})+\frac{1}{2} \int_{\mathrm{t}}^{\mathrm{s}} \operatorname{Tr}\left[\partial_{\omega_{\mathrm{r}}}^{2} \mathrm{f}\left(\mathrm{v}, \mathrm{X}_{\mathrm{r}}, \mathcal{L}_{\mathrm{X}_{\mathrm{r}}^{\prime}}\right) \mathrm{d}\langle\mathrm{X}\rangle(\mathrm{r})\right] \\
& \quad+\hat{\mathbb{E}}^{\tilde{P}^{\prime}}\left[\int_{\mathrm{t}}^{\mathrm{s}} \partial_{\mu_{\mathrm{r}}} \mathrm{f}\left(\mathrm{v}, \mathrm{X}_{\mathrm{r}}, \mathcal{L}_{\mathrm{X}^{\prime}}, \tilde{\mathrm{X}}^{\prime}\right) \mathrm{d} \tilde{X}^{\prime}(\mathrm{r})\right]+\frac{1}{2} \hat{\mathbb{E}}^{\tilde{P}^{\prime}} \int_{\mathrm{t}}^{\mathrm{s}} \operatorname{Tr}\left[\partial_{\tilde{\omega}_{\mathrm{r}}} \partial_{\mu_{\mathrm{r}}} \mathrm{f}\left(\mathrm{v}, \mathrm{X}_{\mathrm{r}}, \mathcal{L}_{\mathrm{X}_{\mathrm{r}}^{\prime}}, \tilde{\mathrm{X}}_{\mathrm{r}}^{\prime}\right) \tilde{\mathrm{d}}(\mathrm{r}) \tilde{\mathrm{d}}(\mathrm{r})^{\mathrm{T}}\right] \mathrm{dr} .
\end{aligned}
$$

Example

Suppose $\mathrm{f}:[0, \mathrm{~T}] \times \mathcal{D} \rightarrow \mathbb{R}, \mathrm{F}(\mathrm{t}, \mathrm{x}):[0, \mathrm{~T}] \times \mathbb{R}^{\mathrm{d}}$ smooth
(1). (State dependent case) $f(\mathrm{t}, \omega):=\mathrm{F}(\mathrm{t}, \omega(\mathrm{t})), \mathrm{F}(\cdot, \cdot):[0, \mathrm{~T}] \times \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}$ $\forall \tau_{1}, \tau_{2}, \cdots, \tau_{j} \in[0, \mathrm{t}]$,

$$
\partial_{\mathrm{t}} \mathrm{f}(\mathrm{t}, \omega)=\partial_{\mathrm{t}} \mathrm{~F}(\mathrm{t}, \omega(\mathrm{t})), \quad \partial_{\omega_{\tau_{\mathrm{i}}}} \cdots \partial_{\omega_{\tau_{1}}} \mathrm{f}(\mathrm{t}, \omega)=\mathrm{D}_{\mathrm{x}}^{\otimes \mathrm{j}} \mathrm{~F}(\mathrm{t}, \omega(\mathrm{t})) .
$$

(2). (Integral functionals) $\mathrm{f}(\mathrm{t}, \omega):=\int_{0}^{\mathrm{t}} \mathrm{F}(\mathrm{r}, \omega(\mathrm{r})) \mathrm{dr} . \forall \tau_{1}, \tau_{2}, \cdots, \tau_{\mathrm{j}} \in[0, \mathrm{t}]$,

$$
\partial_{\mathrm{t}} \mathrm{f}(\mathrm{t}, \omega)=\mathrm{F}(\mathrm{t}, \omega(\mathrm{t})), \quad \partial_{\omega_{\tau_{\mathrm{j}}}} \cdots \partial_{\omega_{\tau_{1}}} \mathrm{f}(\mathrm{t}, \omega)=\int_{\tau}^{\mathrm{t}} \mathrm{D}_{\mathrm{x}}^{\otimes \mathrm{i} \mathrm{~F}(\mathrm{r}, \omega(\mathrm{r})) \mathrm{dr},}
$$

where $\tau=\max _{1 \leq i \leq i}\left\{\tau_{1}\right\}$.
(3). (Time delayed functionals) $\Phi(\mathrm{T}, \omega):=\mathrm{F}\left(\omega\left(\mathrm{t}_{0}\right)\right), \quad \mathrm{t}_{0} \in(0, \mathrm{~T})$,

$$
\partial_{\omega_{\mathrm{t}}} \Phi(\mathrm{~T}, \omega)=\partial_{\mathrm{x}} \mathrm{~F}\left(\omega\left(\mathrm{t}_{0}\right)\right) 1_{\left[0, \mathrm{t}_{0}\right]}(\mathrm{t}) .
$$

(4). (Piecewise constant functionals) Given a partition of [0, T]: $0=\mathrm{t}_{0}<\mathrm{t}_{1}<\cdots \mathrm{t}_{\mathrm{n}}=\mathrm{T}$

$$
\left.\begin{array}{c}
\mathrm{f}(\mathrm{t}, \omega):=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{i}}\left(\omega\left(\mathrm{t}_{\mathrm{i}}\right)\right) 1_{\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right)}(\mathrm{t}) \\
\left.\partial_{\omega_{\tau}} \mathrm{f}(\mathrm{t}, \omega)=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{DF}_{\mathrm{i}}\left(\omega\left(\mathrm{t}_{\mathrm{i}}\right)\right) 1_{\left[0, \mathrm{t}_{\mathrm{i}}\right]}(\tau) 1_{\left[\mathrm{t}_{i}, \mathrm{t}_{\mathrm{i}}+1\right.}\right)
\end{array}\right) .
$$

Introduction to mean-field and path-dependent equations
Introduction to mean-field games/control
A path-dependent framework

Path-dependent master equation in the smooth case
Strong vertical derivative and partial Itô formula
Solve mean-field PPDE via BSDEs

The non-smooth case
Non-smooth case and general vertical derivative

The Feyman-Kac formula argument

- For any $(\mathrm{t}, \gamma, \mu) \in \hat{\mathbb{D}}_{\mathrm{T}, \mathrm{d}}$, consider

$$
\begin{align*}
\mathrm{Y}^{\gamma_{\mathrm{t}}, \eta_{\mathrm{t}}}(\mathrm{~s})= & \Phi\left(\mathrm{B}_{\mathrm{T}}^{\gamma_{\mathrm{t}}}, \mathcal{L}_{\mathrm{B}_{\mathrm{T}}^{\eta_{\mathrm{r}}}}\right)+\int_{\mathrm{s}}^{\mathrm{T}} \mathrm{f}\left(\mathrm{~B}_{\mathrm{t}}^{\gamma_{\mathrm{t}}}, \mathrm{Y}^{\gamma_{\mathrm{t}}, \eta_{\mathrm{t}}}(\mathrm{r}), \mathrm{Z}^{\gamma_{\mathrm{t}}, \eta_{\mathrm{t}}}(\mathrm{r}), \mathcal{L}_{\mathrm{B}_{\mathrm{t}}^{\eta_{t}}}, \mathcal{L}_{\mathrm{Y} \eta_{\mathrm{t}}(\mathrm{r})}\right) \mathrm{dr} \\
& -\int_{\mathrm{s}}^{\mathrm{T}} \mathrm{Z}^{\gamma_{\mathrm{t}}, \eta_{\mathrm{t}}}(\mathrm{r}) \mathrm{dB}(\mathrm{r}), \quad \mathrm{s} \in[\mathrm{t}, \mathrm{~T}], \tag{2}
\end{align*}
$$

where $\mathrm{Y}^{\eta_{t}}=\left.\mathrm{Y}^{\gamma_{t}, \eta_{t}}\right|_{\gamma=\eta}$ solves the mean-field BSDE

$$
\begin{align*}
\mathrm{Y}^{\eta_{t}}(\mathrm{~s})= & \Phi\left(\mathrm{B}_{\mathrm{T}}^{\eta_{\mathrm{t}}}, \mathcal{L}_{\mathrm{B}_{\mathrm{T}}^{\eta_{\mathrm{t}}}}\right)+\int_{\mathrm{s}}^{\mathrm{T}} \mathrm{f}\left(\mathrm{~B}_{\mathrm{r}}^{\eta_{\mathrm{t}}}, \mathrm{Y}^{\eta_{t}}(\mathrm{r}), \mathrm{Z}^{\eta_{\mathrm{t}}}(\mathrm{r}), \mathcal{L}_{\mathrm{B}_{\mathrm{t}} \eta_{t}}, \mathcal{L}_{\mathrm{Y} \eta_{\mathrm{t}}(\mathrm{r})}\right) \mathrm{dr} \\
& -\int_{\mathrm{s}}^{\mathrm{T}} \mathrm{Z}^{\eta_{t}}(\mathrm{r}) \mathrm{dB}(\mathrm{r}), \quad \mathrm{s} \in[\mathrm{t}, \mathrm{~T}] . \tag{3}
\end{align*}
$$

- The decoupling field $\mathrm{u}(\mathrm{t}, \gamma, \mu):=\mathrm{Y}^{\gamma_{\mathrm{t}}, \mathcal{L}_{\eta_{\mathrm{t}}}}(\mathrm{t}) \in \mathbb{R}$.

Well-posedness of smooth path-dependent master equation

Proposition (Tang-Z. '21)

Suppose that $(\mathrm{f}, \Phi) \in \mathscr{C}_{\mathrm{s}, \mathrm{b}}^{0,2,1,1}$. Then BSDE solution $\left(\mathrm{Y}^{\gamma_{\mathrm{t}}, \eta_{\mathrm{t}}}, \mathrm{Z}^{\gamma_{\mathrm{t}}, \eta_{\mathrm{t}}}\right)$ is twice strongly vertically differentiable at $(\mathrm{t}, \gamma, \mu)$. In particular, $\mathrm{u} \in \mathscr{C}_{\mathrm{s}, \mathrm{p}}^{0,2,1,1}\left(\hat{\mathbb{D}}_{\mathrm{T}, \mathrm{d}}\right)$.

Theorem (Tang-Z. '21)

There exists a unique u: $[0, \mathrm{~T}] \times \mathcal{C} \times \mathcal{P}_{2}^{\mathrm{C}} \rightarrow \mathbb{R}$,

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \omega, \mu)+\frac{1}{2} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{u}(\mathrm{t}, \omega, \mu) \sigma_{1} \sigma_{1}^{\mathrm{T}}\right]+\frac{1}{2} \operatorname{Tr}\left[\sigma_{2} \sigma_{2}^{\mathrm{T}} \int_{\mathcal{C}} \partial_{\omega^{\prime}} \partial_{\mu} \mathrm{u}\left(\mathrm{t}, \omega, \mu, \omega^{\prime}\right) \mu\left(\mathrm{d} \omega^{\prime}\right)\right] \\
\quad+\mathrm{b}_{2} \int_{\mathcal{C}} \partial_{\mu} \mathrm{u}\left(\mathrm{t}, \omega, \mu, \omega^{\prime}\right) \mu\left(\mathrm{d} \omega^{\prime}\right)+\mathrm{b}_{1} \partial_{\omega} \mathrm{u}(\mathrm{t}, \omega, \mu) \\
\quad+\mathrm{f}\left(\mathrm{t}, \omega, \mathrm{u}(\mathrm{t}, \omega, \mu), \partial_{\omega} \mathrm{u}(\mathrm{t}, \omega, \mu), \mu, \mathcal{L}_{\mathrm{u}\left(\mathrm{t}, \mathrm{~W}^{\mu}, \mu\right)}\right)=0 \\
\mathrm{u}(\mathrm{~T}, \omega, \mu)=\Phi\left(\omega_{\mathrm{T}}, \mu_{\mathrm{T}}\right)
\end{array}\right.
$$

Introduction to mean-field and path-dependent equations
Introduction to mean-field games/control
A path-dependent framework

Path-dependent master equation in the smooth case Strong vertical derivative and partial Itô formula Solve mean-field PPDE via BSDEs

The non-smooth case
Non-smooth case and general vertical derivative

Back to PPDE

- Suppose F smooth on \mathbb{R}^{d}, consider $\mathrm{t}_{0}<\mathrm{T}$,

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \omega)+\frac{1}{2} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{u}(\mathrm{t}, \omega)\right]=0 \tag{4}\\
\mathrm{u}(\mathrm{~T}, \omega)=\mathrm{F}\left(\omega\left(\mathrm{t}_{0}\right)\right), \quad(\mathrm{t}, \omega) \in[0, \mathrm{~T}] \times \mathcal{C}
\end{array}\right.
$$

The above equation only has a viscosity solution no matter how smooth F is.

- Peng ICM '10: Which PPDEs correlate with non-Markovian BSDE ?
- Viscosity solution or more: loss of regularity? quadratic equations?

Vertical derivative for random variables

- Let \mathbb{P} be a continuous martingale measure on canonical space $\left(\Omega_{\mathrm{T}}, \mathcal{F}^{\mathrm{B}}\right)$ with $\langle\mathrm{B}\rangle_{\mathrm{t}} \leq \mathrm{Kt}, \mathbb{P}-$ a.s..
- $\mathrm{S}_{\mathrm{T}}^{2}:=\left\{\mathrm{f}(\omega), \mathrm{f} \in \mathscr{C}_{\mathrm{p}}^{2}\left(\Omega_{\mathrm{T}}\right)\right.$, i.e. $\left(\partial_{\omega} \mathrm{f}\left(\omega_{\mathrm{t}}\right), \partial_{\omega} \mathrm{f}\left(\omega_{\mathrm{t}}\right)\right)$ s.t. cts. + poly. growth $\}$. $\subseteq \mathrm{L}^{\mathrm{p}}\left(\Omega_{\mathrm{T}}\right), \forall \mathrm{p} \geq 1$.
- $\mathrm{L}_{\mathrm{D}}^{\mathrm{p}}$ the completion of $\mathrm{S}_{\mathrm{T}}^{2}$ under norm

$$
\|\mathrm{f}(\omega)\|_{\mathrm{L}_{\mathrm{D}}^{2}}:=\sup _{[0, \mathrm{~T}]}\left[\hat{\mathbb{E}}_{\mathbb{P}}\left|\mathrm{f}\left(\omega_{\mathrm{t}}\right)\right|^{2} \mathrm{dt}\right]^{\frac{1}{2}}
$$

- Consider operator

$$
\begin{array}{rll}
\mathrm{D}:=\left(\partial_{\omega}, \partial_{\omega}^{2}\right): & \mathrm{S}_{\mathrm{T}}^{2} & \longrightarrow\left([0, \mathrm{~T}] \times \Omega_{\mathrm{T}}, \mathbb{R}^{\mathrm{d}} \oplus \mathbb{R}^{\mathrm{d} \times \mathrm{d}},\left[\hat{\mathbb{E}}_{\mathbb{P}} \int_{0}^{\mathrm{T}}|\cdot|^{2} \mathrm{dt}\right]^{\frac{1}{2}}\right) \\
& \mathrm{f}(\omega) & \longmapsto\left(\partial_{\omega} \mathrm{f}\left(\omega_{\mathrm{t}}\right), \partial_{\omega}^{2} \mathrm{f}\left(\omega_{\mathrm{t}}\right)\right)
\end{array}
$$

Lemma 1. (Z. 22+) Differential operator D is closable in L_{D}^{2}.

General vertical derivative and its application

- Let $\mathrm{H}_{\mathrm{D}}^{1}$ be the completion of $\mathrm{S}_{\mathrm{T}}^{2}$ under norm

$$
\|\mathrm{f}(\omega)\|_{\mathrm{L}_{\mathrm{D}}^{\mathrm{p}}}+\left\|\left(\partial_{\omega} \mathrm{f}(\omega .), \partial_{\omega}^{2} \mathrm{f}\left(\omega_{.}\right)\right)\right\|_{\mathrm{M}^{2}\left([0, \mathrm{~T}] \times \Omega_{\mathrm{T}}\right)}
$$

$\rightarrow \mathrm{D}:=\left(\partial_{\omega}, \partial_{\omega}^{2}\right): \mathrm{H}_{\mathrm{D}}^{1} \longrightarrow\left([0, \mathrm{~T}] \times \Omega_{\mathrm{T}}, \mathbb{R}^{\mathrm{d}} \oplus \mathbb{R}^{\mathrm{d} \times \mathrm{d}},\left[\hat{\mathbb{E}}_{\mathbb{P}} \int_{0}^{\mathrm{T}}|\cdot|^{2} \mathrm{dt}\right]^{\frac{1}{2}}\right)$

- Itô-Dupire formula holds on $\mathrm{H}_{\mathrm{D}}^{1}$.

General vertical derivative and its application

- Let $\mathrm{H}_{\mathrm{D}}^{1}$ be the completion of $\mathrm{S}_{\mathrm{T}}^{2}$ under norm

$$
\|\mathrm{f}(\omega)\|_{\mathrm{L}_{\mathrm{D}}^{\mathrm{p}}}+\left\|\left(\partial_{\omega} \mathrm{f}(\omega .), \partial_{\omega}^{2} \mathrm{f}\left(\omega_{.}\right)\right)\right\|_{\mathrm{M}^{2}\left([0, \mathrm{~T}] \times \Omega_{\mathrm{T}}\right)}
$$

- $\mathrm{D}:=\left(\partial_{\omega}, \partial_{\omega}^{2}\right): \mathrm{H}_{\mathrm{D}}^{1} \longrightarrow\left([0, \mathrm{~T}] \times \Omega_{\mathrm{T}}, \mathbb{R}^{\mathrm{d}} \oplus \mathbb{R}^{\mathrm{d} \times \mathrm{d}},\left[\hat{\mathbb{E}}_{\mathbb{P}} \int_{0}^{\mathrm{T}}|\cdot|^{2} \mathrm{dt}\right]^{\frac{1}{2}}\right)$
- Itô-Dupire formula holds on $\mathrm{H}_{\mathrm{D}}^{1}$.

Proposition 2. ($\mathrm{Z} . \mathrm{'}^{\prime 2} 2+$) For $\mathrm{f} \in \mathrm{C}_{\mathrm{p}}^{2}\left(\mathbb{R}^{\text {nd }}\right)$, and $0 \leq \mathrm{t}_{1} \leq \cdots \leq \mathrm{t}_{\mathrm{n}} \leq \mathrm{T}$, then

$$
\xi(\omega):=\mathrm{f}\left(\omega\left(\mathrm{t}_{1}\right), \cdots, \omega\left(\mathrm{t}_{\mathrm{n}}\right)\right) \in \mathrm{H}_{\mathrm{D}}^{1}
$$

In particular H_{D}^{1} is dense in $L^{2}\left(\Omega_{T}\right)$, and

$$
\xi=\mathrm{f}(0)+\int_{0}^{\mathrm{T}} \partial_{\omega} \mathrm{f}\left(\omega_{\mathrm{t}}\right) \mathrm{dB}(\mathrm{t})+\frac{1}{2} \int_{0}^{\mathrm{T}} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{f}\left(\omega_{\mathrm{t}}\right)\right] \mathrm{d}\langle\mathrm{~B}\rangle_{\mathrm{t}}, \quad \mathbb{P}-\text { a.s.. }
$$

Proposition 3. ($\mathrm{Z} . \mathrm{I}^{\prime 2} 2+$) For any smooth F with polynomial growth, and $\mathrm{t}_{1} \leq \mathrm{t}_{2} \leq \ldots \leq \mathrm{t}_{\mathrm{n}} \leq \mathrm{T}$, there exists a unique solution $\mathrm{u} \in \mathrm{C}\left([0, \mathrm{~T}], \mathrm{H}_{\mathrm{D}}^{1}\right)$ to

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}(\mathrm{t}, \omega)+\frac{1}{2} \operatorname{Tr}\left[\partial_{\omega}^{2} \mathrm{u}(\mathrm{t}, \omega)\right]=0 \tag{5}\\
\mathrm{u}(\mathrm{~T}, \omega)=\mathrm{F}\left(\omega\left(\mathrm{t}_{1}\right), \omega\left(\mathrm{t}_{2}\right), \ldots, \omega\left(\mathrm{t}_{\mathrm{n}}\right)\right)
\end{array}\right.
$$

Thanks for your attension!

