A Feynman-Kac result via Markov BSDEs with generalized drivers

Elena Issoglio

University of Torino

9th International Colloquium on BSDEs and Mean Field Systems Annecy, 27 June - 1 July 2022

UNIVERSITÀ DEGLI STUDI DI TORINO

イロン 不同 とうほう 不同 とう

This talk is based on a joint work with Francesco Russo:

 Issoglio E., Russo F., *A Feynman-Kac result via Markov BSDEs with generalized drivers*, Bernoulli, Volume 26, Number 1 (2020), 728-766

UNIVERSITÀ DEGLI STUDI DI TORINO

イロン 不同 とくほど 不同 とう

Introduction and Main Result

The integral operator A

Solving the BSDEs & Feynman-Kac representation

UNIVERSITÀ DEGLI STUDI DI TORINO

イロン 不同 とくほど 不同 とう

The rough BSDE We study a BSDE with generalised driver of the form

$$Y_t = \Phi(W_T) + \int_t^T Z_r b(r, W_r) \mathrm{d}r + \int_t^T f(r, W_r, Y_r, Z_r) \mathrm{d}r - \int_t^T Z_r \mathrm{d}W_r$$

where

•
$$Y_t \in \mathbb{R}^d$$

• the coefficient b is rough, in particular $b(t, \cdot)$ is a distribution

• $t \mapsto b(t)$ is a function in an ∞ -dim space

$$\blacktriangleright b(t) \in \mathcal{S}'(\mathbb{R}^d; \mathbb{R}^d)$$

• f is a nonlinearity which is Lipschitz continuous in (y, z)

イロト イボト イヨト イヨト

UNIVERSITÀ DEGLI STUDI DI TORINO

Applications of classical BSDEs

- (1) hedging and pricing
- (2) stochastic control problems
- (3) probabilistic representation of solutions of PDEs

Rough coefficients

- (1) underlying asset price has a rough dynamics (e.g. driven by SDEs with distributional coefficients) -> rough BSDE
- (2) Pontryagin maximum principle applied to stochastic control problems with coefficients with low regularity (continuous but not differentiable) -> rough BSDE
- (3) distributional coefficients are now popular in stochastic PDEs (Hairer, Gubinelli) -> rough BSDE

UNIVERSITÀ DEGLI STUDI DI TORINO

イロト イボト イヨト

Existing literature on BSDEs with distributional coefficients

- Erraoui, Ouknine, Sbi (1998) distribution Φ as terminal condition
- Russo, Wurzer (2017) fwd process X is martingale solution of SDE with *distributional* generator
- ▶ Diehl, Zhang (2017) BSDEs driven by Young drifts
- ▶ Issoglio, Jing (2019) FBSDEs with distributional drivers

UNIVERSITÀ DEGLI STUDI DI TORINO

イロン イヨン イヨン イヨン

Our framework

$$\int_t^T Z_r b(r, W_r) \mathrm{d}r$$

- The coefficient b(t) is a special distribution, not just any element in S'.
- b(t) belongs to a fractional Sobolev space of negative order H_a^{-β}(ℝ^d; ℝ^d)
 - where $\beta \in (0, \frac{1}{2})$ and $q \in (\frac{d}{1-\beta}, \frac{d}{\beta})$

٠

- $H_q^s(\mathbb{R}^d) := A^{-s/2}(L^q(\mathbb{R}^d))$, where $A := I \frac{1}{2}\Delta$
- if s < 0 then $H^s_q(\mathbb{R}^d) \subset \mathcal{S}'(\mathbb{R}^d)$

We choose

$$b \in C([0, T]; H_q^{-\beta}(\mathbb{R}^d; \mathbb{R}^d))$$

UNIVERSITÀ DEGLI STUDI DI TORINO

イロト イポト イヨト イヨト

Assumptions on other coefficients

- $\blacktriangleright \ \beta < \delta < 1 \beta; \quad \frac{d}{\delta} < p < q$
- $\Phi: \mathbb{R}^d \to \mathbb{R}^d$ is an element of $H^{1+\delta+2\gamma}(\mathbb{R}^d; \mathbb{R}^d)$ for some $0 < \gamma < \frac{1-\delta-\beta}{2}$
- ▶ $f : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}^d$ is continuous in (x, y, z) uniformly in *t*, and is Lipschitz continuous in (y, z) uniformly in *t* and *x*
- ▶ f(t, x, 0, 0) is continuous in (t, x); $\sup_{t,x} |f(t, x, 0, 0)| < \infty$ a.s.; $\sup_{t \in [0, T]} ||f(t, \cdot, 0, 0)||_{L^p} < \infty$

Elena Issoglio

Feynman-Kac via BSDEs with generalized drivers 8/23

イロト イポト イヨト イヨト

UNIVERSITÀ DEGLI STUDI DI TORINO

Introduction and Main Result The integral operator A Solving the BSDEs & Feynman-Kac representation

Main Results on rough BSDE

• Existence $Y_r = u(r, W_r)$ where *u* solves

$$\begin{cases} \partial_t u + \frac{1}{2}\Delta u = -\nabla u^* b - f(u, \nabla u) \\ u(T) = \Phi. \end{cases}$$

- Uniqueness in the class of $Y_r = \gamma(r, W_r)$ for some $\gamma \in C([0, T]; H_p^{1+\delta})$.
- Feynman-Kac (implicit) representation

$$u(s, x_0) = \mathbb{E} \bigg[\Phi(x_0 + W_{T-s}) \\ + \int_s^T f(r, W_r + x_0, u(r, W_r + x_0), \nabla u(r, W_r + x_0)) dr \\ + A_T^{W,W}((\nabla u^* b)(x_0 + \cdot)) - A_s^{W,W}((\nabla u^* b)(x_0 + \cdot)) \bigg]$$

UNIVERSITÀ DEGLI STUDI DI TORINO

Introduction and Main Result

The integral operator A

Solving the BSDEs & Feynman-Kac representation

UNIVERSITÀ DEGLI STUDI DI TORINO

イロン イヨン イヨン イヨン

The integral operator A - smooth case

• How to define
$$\int_0^t Z_r b(r, W_r) dr$$
?

- ► W is a d-dim Bm, Y is a d-dim stoch process s.t. [W, Y] exists
- ► $A^{W,Y}$: $C_c([0, T] \times \mathbb{R}^d; \mathbb{R}^d) \to C$ defined for $I \in C_c([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ as

$$\mathcal{A}_t^{W,Y}(I) := \left(\int_0^t I^*(r,W_r)\mathrm{d}[W,Y]_r
ight)^*$$

Intuitive idea: $[W, Y]_t = \int_0^t Z_r^* dr$ so $A_t^{W,Y}(I) = \int_0^t Z_r I(r, W_r) dr$ Next step: extend operator to $A : E := C([0, T]; H_q^{-\beta}) \to C$

UNIVERSITÀ DEGLI STUDI DI TORINO

イロト 不得 トイヨト イヨト 二日

Definition of solution to rough BSDE

A continuous $\mathbb{R}^d\text{-valued}$ stochastic process Y is a solution of rough BSDE if

Remark: in the classical setting, this definition is equivalent to the standard definition with (Y, Z) solution.

Elena Issoglio Feynman-Kac via BSDEs with generalized drivers 12/23

(日) (四) (三) (三) (三)

UNIVERSITÀ DEGLI STUDI DI TORINO

A useful representation for the integral operator A

Observe that

- ► In the special case when Y = W then the operator A is simply $A_t^{W,W}(l) = \int_0^t l(r, W_r) dr$
- In the Markovian case (i.e. if Y_t = γ(t, W_t) for some γ ∈ C^{0,1}) A^{Y,W} can be written in terms of A^{W,W} and of the function γ.

In particular for smooth / we have

$$A_t^{Y,W}(l) = A_t^{W,W}(\nabla \gamma^* l)$$

UNIVERSITÀ DEGLI STUDI DI TORINO

Chain rule for A

Proposition

Let $I \in C_c([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$. The chain rule for $A^{W,W}$ holds, namely

$$A_t^{W,W}(l) = \phi(t, W_t) - \phi(0, W_0) - \int_0^t \nabla \phi^*(r, W_r) \mathrm{d}W_r$$

where ϕ is the solution of the heat equation

$$\begin{cases} \partial_t \phi + \frac{1}{2} \Delta \phi = I \\ \phi(T) = \Psi. \end{cases}$$

Corollary

The chain rule holds also for $l \in C([0, T]; H_q^{-\beta})$. Indeed we can show that if $l_n \to l$ in E then $A^{W,W}(l_n) \to A^{W,W}(l)$.

14/23

UNIVERSITÀ DEGLI STUDI DI TORINO

Extension of A to rough b

Proposition

In the Markovian case when $Y_t = \gamma(t, W_t)$ we have that the operator $A^{W,Y}$ is well defined also in E and for $b \in E$

$$A^{W,Y}(b) = A^{W,W}(\nabla \gamma^* b).$$

Tools

- ▶ Pointwise product $\nabla \gamma^* b$ of $\nabla \gamma^* \in C([0, T]; H_p^\delta)$ and $b \in C([0, T]; H_q^{-\beta})$ is well defined and continuous.
- Density of $C_c([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ in $E = C([0, T]; H_q^{-\beta})$

Introduction and Main Result

The integral operator A

Solving the BSDEs & Feynman-Kac representation

UNIVERSITÀ DEGLI STUDI DI TORINO

イロン イヨン イヨン イヨン

Existence and uniqueness of a solution

Theorem

Assume b and f as above.

There exists a solution to the BSDE given by $Y_r = u(r, W_r)$ where u is the unique mild solution to PDE

$$\begin{cases} \partial_t u + \frac{1}{2}\Delta u = -\nabla u^* b - f(u, \nabla u) \\ u(T) = \Phi. \end{cases}$$

The solution Y is unique in the class of $Y_r = \gamma(r, W_r)$ for some $\gamma \in C([0, T]; H_p^{1+\delta})$.

UNIVERSITÀ DEGLI STUDI DI TORINO

イロト イボト イヨト

Ideas for proof

Existence

Definition of solution Y to rough BSDE:

(i) A^{W,Y} exists as an operator on C([0, T]; H_q^{-β})
(ii) A^{W,Y}_t(b) is a martingale-orthogonal process;
(iii) Y_T = Φ(W_T);
(iv) M_t := Y_t - Y₀ + A^{W,Y}_t(b) + ∫^t₀ f(r, W_r, Y_r, d[Y,W]_r/dr) dr is a square-integrable F^W-martingale

Tool

 $\int_0^t f(r, W_r, u(r, W_r), \nabla u(r, W_r)) dr = \int_0^t \tilde{f}(r, W_r) dr = A^{W,W}(\tilde{f})$ with $\tilde{f} \in C([0, T]; H_p^{-\beta}) \cap L_{loc}^{\infty}([0, T] \times \mathbb{R}^d; \mathbb{R}^d).$

UNIVERSITÀ DEGLI STUDI DI TORINO

イロト イポト イヨト イヨト 二日

Use linearity of $A^{W,W}$ and chain rule

$$M_{t} = Y_{t} - Y_{0} + A_{t}^{W,Y}(b) + A^{W,W}(\tilde{f})$$

= $Y_{t} - Y_{0} + A_{t}^{W,W}(\nabla u^{*}b + \tilde{f})$
= $u(t, W_{t}) - u(0, W_{0})$
 $- u(t, W_{t}) + u(0, W_{0}) + \int_{0}^{t} \nabla u^{*}(r, W_{r}) dW_{r}$

Uniqueness

- Take two solutions $Y_t^i = \gamma^i(t, W_t)$ for i = 1, 2
- use chain rule on $A_t^{W,Y}(b)$
- use properties of PDE with γ^i on the RHS
- show that $\|\gamma^1 \gamma^2\| \leq 0$

Feynman-Kac implicit representation of u

Theorem

Assume b and f as above.

We have the Feynman-Kac (implicit) representation for the solution u of PDE given by

$$u(s, x_0) = \mathbb{E} \left[\Phi(x_0 + W_{T-s}) + \int_s^T f(r, W_r + x_0, u(r, W_r + x_0), \nabla u(r, W_r + x_0)) dr + A_T^{W, W}((\nabla u^* b)(x_0 + \cdot)) - A_s^{W, W}((\nabla u^* b)(x_0 + \cdot)) \right]$$

for all $s \in [0, T]$ and $x_0 \in \mathbb{R}^d$.

UNIVERSITÀ DEGLI STUDI DI TORINO

References

- J. Diehl and J. Zhang. *Backward stochastic differential equations with Young drift.* Probab. Uncertain. Quant. Risk, 2:Paper No. 5, 17, (2017)
- M. Erraoui, Y. Ouknine, and A. Sbi. *Reflected solutions of backward stochastic differential equations with distribution as terminal condition*. Random Operators and Stochastic Equations, 6(1):1–16, (1998)
- F. Gozzi and F. Russo. Weak Dirichlet processes with a stochastic control perspective. Stoch. Proc. and their Appl., 116(11):1563 1583, (2006)
- E. Issoglio and S. Jing. *Forward-Backward SDEs with distributional coefficients*. Stoch. Proc. and their Appl., 130(1), pp 47-78, (2020)
- E. Issoglio and F. Russo. *A Feynman-Kac result via Markov BSDEs with generalized driver*, Bernoulli, Volume 26, 728–766, (2020)
- F. Russo and L. Wurzer. *Elliptic PDEs with distributional drift and backward SDEs driven by a càdlàg martingale with random terminal time.* Stoch. Dyn., 17(4), (2017)

UNIVERSITÀ DEGLI STUDI DI TORINO

イロト イヨト イヨト イヨト 二日

Thank You for Your Attention.

UNIVERSITÀ DEGLI STUDI DI TORINO

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □