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The FBSDE

We consider the FBSDE

dXt = b(t,Xt, th Zt)dt + O'(t,Xt, Yt)dBt,
dYt - —f(t,Xt, Yta Zt)dt + thBt,
YT =g(X7), Xo=x0.
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dYt - —f(t,Xt, Yta Zt)dt + thBt,
YT =g(X7), Xo=x0.

Probabilistic setup: (2, F7,P), d-dimensional Brownian motion with
filtration F

Data: 4 deterministic functions

o drift b= b(t,x,y,z): [0, T] x R x R" x (RY)" — RY

e volatility o = o(t,x,y) : [0, T] x RY x R" — RIxd

o driver f = f(t,x,y,z): [0, T] x R x R" x (RY)" — R"

e terminal condition g = g(x) : R — R”
Undknowns: adapted processes X, Y, Z taking values in RY R" and
(R)".
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Features of interest

We are interested in the situation where
@ n>1, ie Y is multi-dimensional
@ f has quadratic growth: |f(t,x,y,z)| < C(1 + |z|?)
@ the equation are strongly coupled, in the sense that o = o(t, x, y)
depends on y (but o non-degenerate)

Joe Jackson Quadratic FBSDEs 4/20



Features of interest

We are interested in the situation where
@ n>1, ie Y is multi-dimensional
@ f has quadratic growth: |f(t,x,y,z)| < C(1 + |z|?)
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These three issues have received considerable attention... we highlight
o Kobylanski (2000) handles feature 2, but not 1 or 3
@ Delarue (2002) handles features 1 and 3 simultaneously, but not 2
e Xing and Zitkovi¢ (2018) handles 1 and 2 simultaneously, but not 3
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Features of interest

We are interested in the situation where
@ n>1, ie Y is multi-dimensional
@ f has quadratic growth: |f(t,x,y,z)| < C(1 + |z|?)

@ the equation are strongly coupled, in the sense that o = o(t, x, y)
depends on y (but o non-degenerate)

These three issues have received considerable attention... we highlight
o Kobylanski (2000) handles feature 2, but not 1 or 3
@ Delarue (2002) handles features 1 and 3 simultaneously, but not 2
e Xing and Zitkovi¢ (2018) handles 1 and 2 simultaneously, but not 3

Goal: Generalize the works above by establishing well-posedness when
1,2,3 are all present.
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The PDE

By the “4-step scheme” (Ma, Protter, and Yong 1994), solving the
FBSDE boils down to solving

O:u' +tr(a(t, x, u)D?u’) + fi(t,x,u,Du) =0, (t,x) €[0, T] x RY,
u(T,x)=g'(x) xeR7.
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By the “4-step scheme” (Ma, Protter, and Yong 1994), solving the
FBSDE boils down to solving

O:u' +tr(a(t, x, u)D?u’) + fi(t,x,u,Du) =0, (t,x) €[0, T] x RY,
u(T,x)=g'(x) xeR7.

Data: 3 functions
o volatility a= 300", 0 = o(t,x,u) : [0, T] x R x R" — R
o driver (not the same as before!)
f=f(t,x,u,p): [0, T] x RY x R" x (R?)" — R"
e terminal condition g = g(x) : R — R”
Unknowns: u = (u')i—1. ,: [0, T] x RY — R".
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What can go wrong?

Assume o and g are nice. What conditions on the quadratic driver f
guarantee a smooth solution?
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@ u may blow up in finite time (blow-up)

@ even if u stays bounded, Du may blow up (gradient blow-up)
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What can go wrong?

Assume o and g are nice. What conditions on the quadratic driver f
guarantee a smooth solution?

Good news: can expect a smooth solution on [T — ¢, T] (small-time
well-posedness)

Bad news: global existence/uniqueness may fail, because
@ u may blow up in finite time (blow-up)
@ even if u stays bounded, Du may blow up (gradient blow-up)

More good news: if we manage to prove a gradient estimate (an a-priori
estimate on ||Dul|;~), then

@ can be bootstrapped to higher regularity, in particular estimates on
Jullc2.a

@ a-priori estimates in ||ul|c2,o imply existence

Joe Jackson Quadratic FBSDEs 6/20



Table of Contents

9 Main results

Joe Jackson Quadratic FBSDEs 7/20



The key question

Based on the previous slide, we know that understanding the PDE system
boils down to understanding the following.

The key question: what conditions on f will guarantee an a-priori
estimate of ||Dul|j?
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The key question

Based on the previous slide, we know that understanding the PDE system
boils down to understanding the following.

The key question: what conditions on f will guarantee an a-priori
estimate of ||Dul|j?

Break this up into three questions:
© when can we get an estimate on ||ul[;<?
@ when does bound on ||ul| = imply bound on ||ul[¢ca?
© when does bound on ||u|[ca imply bound on ||Duf|;?

We focus in this talk on the answers to 2 and 3.
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Some answers

Here are the two main structural conditions.

’fi(tax7 U,p)| S C(]- + |PIHP| + Z ’P]|2 + |P|276) (HBF)
Jj<i
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Some answers

Here are the two main structural conditions.

’fi(tax7 U,p)| S C(]- + |PIHP| + Z ’P]|2 + |P|276) (HBF)
Jj<i

|f(t7X7 u,p) - f(t,X’, ul7p)| < C(l + ‘p|2)(|X - X/| + ‘U - u/|)’ and
[F(t,x,u,p) — F(t,x,u,p)| < C(1+ |p| + |p'])|p — Pl
(HReg)
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’fi(ta)(? U,p)| S C(]- + |PIHP| + Z ’P]|2 + |P|276) (HBF)
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Some answers

Here are the two main structural conditions.
’fi(ta)(? U,p)| S C(]- + |P’HP| + Z ’P]|2 + |P|276) (HBF)
j<i
{|f(t,X, u,p) - f(t,X’, ul7p)| < C(l + ‘p|2)(|X - X/| + ‘U - u/|)’ and

[F(t,x,u,p) — f(t,x,u,p')] < C(L+|p|+1p)|lp— Pl
(HReg)

Theorem (J. 2022)

Under Hpr, an estimate on ||u||~ implies an estimate on ||u|ca.

Theorem (J. 2022)

Under Hgr and Hgeg, an estimate on ||ul|ca implies an estimate on
| Dul| oo
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Back to the FBSDE

Theorem (J. 2022)

Assume that that all data is jointly continuous, and

Q@ o =o(t,x,y) is non-degnerate and Lipschitz in (x,y)
@ g = g(x) bounded and Lipschitz
@ b= b(t,x,y,z) Lipschitz in (x,y, z),

b(t,x,y,z)| < C(1+ |y|+|z])
Q f satisfies Hgr and Hgeg, and Hag (a technical condition to get
[[ul[Lee < o0)

Then there is a solution to the FBSDE

dXt = b(t,)(t7 Yt, Zt)dt + O'(t,Xt, Yt)dBt,
dYt = —f(t7 Xt, Yt, Zt)dt aF thBt,
YT = g(XT), XO = X0.

Joe Jackson Quadratic FBSDEs 10/20




Comments on related literature

Our results can be viewed as...
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Our results can be viewed as...
@ a generalization of the results of Delarue (2002 and 2003) to the
quadratic case

o Delarue (2002) gives existence for FBSDEs with Lipschitz data
o Delarue (2003) gives probabilistic approach to Holder and gradient
estimates in the Lipschitz case
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Comments on related literature

Our results can be viewed as...

@ a generalization of the results of Delarue (2002 and 2003) to the
quadratic case
o Delarue (2002) gives existence for FBSDEs with Lipschitz data
o Delarue (2003) gives probabilistic approach to Holder and gradient
estimates in the Lipschitz case
@ a generalization of the results of Bensoussan and Frehse (2002), Xing
and Zitkovi¢ (2018), and Harter and Richou (2019) to the case
o =o(t,x,y) (versus o = o(t, x))
e Bensoussan and Frehse obtain Holder and Sobolev estimates in a
bounded domain via PDE arguments
o Xing and Zitkovi¢ (2018) obtain a Holder estimate in the whole space
via mix of PDE and probabilistic arguments
e Harter and Richou obtain a gradient estimate by studying linear BSDEs
with bmo coefficients
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The big picture

The Holder estimate
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The big picture

The Holder estimate

@ The basic idea is the same as the one used by Delarue in Lipschitz
setting - combine Krylov Safonov estimates with BMO-martingale
theory

@ Execution is different - concept of sliceability is used to deal with
quadratic growth
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The big picture

The Holder estimate

@ The basic idea is the same as the one used by Delarue in Lipschitz
setting - combine Krylov Safonov estimates with BMO-martingale
theory

@ Execution is different - concept of sliceability is used to deal with
quadratic growth

The gradient estimate
@ Again, sliceability is key
@ Holder estimate implies a-priori sliceability of Z

@ Probabilistic representation of Du via linear BSDE with sliceable
coefficients (thanks to sliceability of Z!)

o Conclude using results from J. and Zitkovi¢ 2021 (see also Delbaen
and Tang 2008 and Harter and Richou 2019)
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Preliminaries

From here on, we suppose we have a nice solution u to the PDE system,
and we define for tg,xg € [0, T] x RY the triple (X0, Yoo Z0:x0) by

t
Xt-thO = Xp +/ O_(S’Xsto,Xo, U(S7Xsfo,xo))d85, to<t<T

to

ytoxo — u(,)xto,Xo)7 Ztxo — U(,7Xt,x7 Yt,X)Du(‘jxt,X).
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Preliminaries

From here on, we suppose we have a nice solution u to the PDE system,
and we define for tg,xg € [0, T] x RY the triple (X0, Yoo Z0:x0) by

t
X{0 = xo + / (s, X7, u(s, X0))dBs, to<t<T
to
Yto,xo — u(,7xt0,xo)7 Zto,Xo — U(-,Xt’x, Yt’X)DU(‘,Xt’X).
If (to, X0) is not important, we just write (X, Y, Z). Note that

dXt = O'(t,Xt, Yt)dBt,
dYt = —f(t, Xt7 Yt; Uﬁl(t, Xt, Yt)Zt)dt + thBt.
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Preliminaries

Notation:

T
IIleﬁmozsupllE[/ |ZPdt| Fo]lles ellpmorsz = 1V llEmo
T T

Z is sliceable if || Z1};_s 4llbmo is small for § small.
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Preliminaries

Notation:

1Z]1Emo —SUPH]E[/ |Z12dt|F e, Nellmerz = 11V 1o l[fmo
Z is sliceable if || Z1};_s 4llbmo is small for § small.

Definition
A c-Lyapunov pair (h, k) is a smooth function h = h(y) : R” — R and a
constant k such that h(0) = 0, Dh(0) =0, and for |y| < c,

1 < .
5 D (Dh(y))jz' - 2 = Dhly) - £(t,x, 4,07 (8, x, u)2) = |2 -
ij=1
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Preliminaries

Notation:

1Z1lmo —SUPH]E[/ |ZPdt|F]lle,  lellpmerz = V] llomo

Z is sliceable if || Z1};_s 4llbmo is small for § small.

Definition

A c-Lyapunov pair (h, k) is a smooth function h = h(y) : R” — R and a
constant k such that h(0) = 0, Dh(0) =0, and for |y| < c,

1 < .
5 D (Dh(y))jz' - 2 = Dhly) - £(t,x, 4,07 (8, x, u)2) = |2 -
ij=1

The point is that (h, k) is a c-Lyapunov function, then
h(Y) + kt — / |Z|?dt is a submartingale if |Y| < c.
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The connection between Holder regularity and sliceability

Lemma (Xing and Zitkovi¢)

Under Hgr, for any ¢ > 0 there exists a c-Lyapunov pair (h, k).
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The connection between Holder regularity and sliceability

Lemma (Xing and Zitkovi¢)

Under Hgr, for any ¢ > 0 there exists a c-Lyapunov pair (h, k).

Now suppose we have a c-Lyapunov pair (h, k) and |Y| < c. Then for
t—6<7<t.

IET[/t |Ze|?ds] < kh+E.[h(u(t, X¢)) — h(u(T, X;)]

< kh+ CllullcoEr[6°7 + [Xe = X,|*] < k6 + C5*2 < C
= Hl[t—&,t]ZHbmo < Cda/4
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The connection between Holder regularity and sliceability

Lemma (Xing and Zitkovi¢)

Under Hgr, for any ¢ > 0 there exists a c-Lyapunov pair (h, k).

Now suppose we have a c-Lyapunov pair (h, k) and |Y| < c. Then for
t—6<7<t.

IET[/t |Ze|?ds] < kh+E.[h(u(t, X¢)) — h(u(T, X;)]

< kh+ CllullcoEr[6°7 + [Xe = X,|*] < k6 + C5*2 < C
= Hl[t—&,t]ZHbmo < Cda/4

Thus under Hgg,

uis Holder = Z is sliceable .
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The connection between Holder regularity and sliceability

Sliceability implies Holder: Suppose we have a bounded solution v to
Owv +tr(aD?u) + b-Du+ k=0, (t,x) € (0, T) x R?
Krylov-Safonov estimates show that
1
a= §JUT bounded and elliptic & b, k bounded — v is Holder,

at least away from t = T.
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Krylov-Safonov estimates show that
1
a= §JUT bounded and elliptic & b, k bounded — v is Holder,

at least away from t = T.

Ideas from Delarue (2003) show that the same argument works when

sup||b(-, X*)[Jbmo < 00

(t.x)

instead of b bounded.

Joe Jackson Quadratic FBSDEs 17 /20



The connection between Holder regularity and sliceability

Sliceability implies Holder: Suppose we have a bounded solution v to
Owv +tr(aD?u) + b-Du+ k=0, (t,x) € (0, T) x R?

Krylov-Safonov estimates show that
1
a= §JUT bounded and elliptic & b, k bounded — v is Holder,

at least away from t = T.

Ideas from Delarue (2003) show that the same argument works when

sup||b(-, X*)[Jbmo < 00

(t.x)

instead of b bounded.

We take this one step further by showing that if
160, XY lbmo < € & [[1[s_s,5k(-, X¥)

then v is Holder.
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The connection between Holder regularity and sliceability

Because the arguments from previous slide don't use regularity of o, they
apply to quasi-linear setting. Under Hgp, we can write

drut +tr(aD?u’) + b- Dut + f =0,

where
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The connection between Holder regularity and sliceability

Because the arguments from previous slide don't use regularity of o, they
apply to quasi-linear setting. Under Hgp, we can write

orut +tr(aD?u’) + b - Dut + f =0,
where
[b] < C(1+|Dul), |f] < C(1+[Dul*™).
Then since Z(t¥) = aDu(-,X.(t’X)), we find
StUP||Z(t’X)Hbmo <C
= supl|B(, XD lomo < € & 11557 Xy < €07

— u' is Holder.
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The connection between Holder regularity and sliceability

Previous slide showed

1

Z € bmo = u" is Holder ,

which in turn implies Z1 is sliceable.
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The connection between Holder regularity and sliceability

Previous slide showed

1

Z € bmo = u" is Holder ,

which in turn implies Z? is sliceable. It turns out similar reasoning lets us
show

Z ebmo & Z', ..., 771 sliceable = u' is Holder & Z' is sliceable.

which lets us prove by induction that v is Holder.
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The connection between Holder regularity and sliceability

Previous slide showed

1

Z € bmo = u" is Holder ,

which in turn implies Z? is sliceable. It turns out similar reasoning lets us
show

Z ebmo & Z', ..., 771 sliceable = u' is Holder & Z' is sliceable.

which lets us prove by induction that v is Holder. The full chain of
reasoning is

ueEL® = Zebmo = u' e C® — Z'sliceable — uv? € C“
— 7' & Z?sliceable — P e Y —= ... = ue C®
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Main estimates:
© under Hgg, bound on |jul|;= == bound on ||ul|ce
@ under Hgr + Hreg, bound on [jul[ce = bound on ||Dul| 1
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Main estimates:

© under Hgf, bound on |ju[;.= == bound on ||u/ca

@ under Hgr + Hreg, bound on [jul[ce = bound on ||Dul| 1
Takeaways:

@ sliceability is a useful concept in regularity theory, in particular...

@ there is a connection between Holder regularity of u and sliceability of
V4
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