Quasilinear parabolic systems and FBSDEs with quadratic growth

Joe Jackson

6/28/2022

Acknowledgement: support from NSF GRFP (2020-2023)

Thanks to Gordan Žitković for many helpful discussions!

Table of Contents

(1) Introduction

(2) Main results

(3) Ideas of the proof

The FBSDE

We consider the FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}\right) d B_{t} \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d B_{t} \\
Y_{T}=g\left(X_{T}\right), \quad X_{0}=x_{0}
\end{array}\right.
$$

Probabilistic setup: $(\Omega, \mathcal{F}, \mathbb{P})$, d-dimensional Brownian motion with filtration \mathbb{F}
Data: 4 deterministic functions

- drift $b=b(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{d}$
- volatility $\sigma=\sigma(t, x, y):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d \times d}$
- driver $f=f(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{n}$
- terminal condition $g=g(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

Unknowns: adapted processes X, Y, Z taking values in $\mathbb{R}^{d}, \mathbb{R}^{n}$, and $\left(\mathbb{R}^{d}\right)^{n}$.

The FBSDE

We consider the FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}\right) d B_{t} \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d B_{t} \\
Y_{T}=g\left(X_{T}\right), \quad X_{0}=x_{0}
\end{array}\right.
$$

Probabilistic setup: $(\Omega, \mathcal{F}, \mathbb{P})$, d-dimensional Brownian motion with filtration \mathbb{F}
Data: 4 deterministic functions

- drift $b=b(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{d}$
- volatility $\sigma=\sigma(t, x, y):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d \times d}$
- driver $f=f(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{n}$
- terminal condition $g=g(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

Unknowns: adapted processes X, Y, Z taking values in $\mathbb{R}^{d}, \mathbb{R}^{n}$, and $\left(\mathbb{R}^{d}\right)^{n}$.

The FBSDE

We consider the FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}\right) d B_{t} \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d B_{t} \\
Y_{T}=g\left(X_{T}\right), \quad X_{0}=x_{0}
\end{array}\right.
$$

Probabilistic setup: $(\Omega, \mathcal{F}, \mathbb{P}), d$-dimensional Brownian motion with filtration \mathbb{F}
Data: 4 deterministic functions

- drift $b=b(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{d}$
- volatility $\sigma=\sigma(t, x, y):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d \times d}$
- driver $f=f(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{n}$
- terminal condition $g=g(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

Unknowns: adapted processes X, Y, Z taking values in $\mathbb{R}^{d}, \mathbb{R}^{n}$, and $\left(\mathbb{R}^{d}\right)^{n}$.

The FBSDE

We consider the FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}\right) d B_{t} \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d B_{t} \\
Y_{T}=g\left(X_{T}\right), \quad X_{0}=x_{0}
\end{array}\right.
$$

Probabilistic setup: $(\Omega, \mathcal{F}, \mathbb{P})$, d-dimensional Brownian motion with filtration \mathbb{F}
Data: 4 deterministic functions

- drift $b=b(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{d}$
- volatility $\sigma=\sigma(t, x, y):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d \times d}$
- driver $f=f(t, x, y, z):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{n}$
- terminal condition $g=g(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

Unknowns: adapted processes X, Y, Z taking values in $\mathbb{R}^{d}, \mathbb{R}^{n}$, and $\left(\mathbb{R}^{d}\right)^{n}$.

Features of interest

We are interested in the situation where
(1) $n>1$, i.e. Y is multi-dimensional
(2) f has quadratic growth: $|f(t, x, y, z)| \leq C\left(1+|z|^{2}\right)$
(3) the equation are strongly coupled, in the sense that $\sigma=\sigma(t, x, y)$ depends on y (but σ non-degenerate)

These three issues have received considerable attention....

- Kobylanski (2000) handles feature 2, but not 1 or 3
- Delarue (2002) handles features 1 and 3 simultaneously, but not 2 - Xing and Žitković (2018) handles 1 and 2 simultaneously, but not 3 Goal: Generalize the works above by establishing well-posedness when 1,2,3 are all present.

Features of interest

We are interested in the situation where
(1) $n>1$, i.e. Y is multi-dimensional
(2) f has quadratic growth: $|f(t, x, y, z)| \leq C\left(1+|z|^{2}\right)$
(3) the equation are strongly coupled, in the sense that $\sigma=\sigma(t, x, y)$ depends on y (but σ non-degenerate)
These three issues have received considerable attention... we highlight

- Kobylanski (2000) handles feature 2, but not 1 or 3
- Delarue (2002) handles features 1 and 3 simultaneously, but not 2
- Xing and Žitković (2018) handles 1 and 2 simultaneously, but not 3 Goal: Generalize the works above by establishing well-posedness when 1,2,3 are all present.

Features of interest

We are interested in the situation where
(1) $n>1$, i.e. Y is multi-dimensional
(2) f has quadratic growth: $|f(t, x, y, z)| \leq C\left(1+|z|^{2}\right)$
(3) the equation are strongly coupled, in the sense that $\sigma=\sigma(t, x, y)$ depends on y (but σ non-degenerate)
These three issues have received considerable attention... we highlight

- Kobylanski (2000) handles feature 2 , but not 1 or 3
- Delarue (2002) handles features 1 and 3 simultaneously, but not 2
- Xing and Žitković (2018) handles 1 and 2 simultaneously, but not 3

Goal: Generalize the works above by establishing well-posedness when $1,2,3$ are all present.

The PDE

By the "4-step scheme" (Ma, Protter, and Yong 1994), solving the FBSDE boils down to solving

$$
\left\{\begin{array}{l}
\partial_{t} u^{i}+\operatorname{tr}\left(a(t, x, u) D^{2} u^{i}\right)+f^{i}(t, x, u, D u)=0, \quad(t, x) \in[0, T] \times \mathbb{R}^{d} \\
u^{i}(T, x)=g^{i}(x) \quad x \in \mathbb{R}^{d}
\end{array}\right.
$$

Data: 3 functions

- volatility $a=\frac{1}{2} \sigma \sigma^{T}, \sigma=\sigma(t, x, u):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
- driver (not the same as before!) $f=f(t, x, u, p):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{n}$
- terminal condition $g=g(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ Unknowns: $u=\left(u^{i}\right)_{i=1, \ldots ., n}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

The PDE

By the "4-step scheme" (Ma, Protter, and Yong 1994), solving the FBSDE boils down to solving

$$
\left\{\begin{array}{l}
\partial_{t} u^{i}+\operatorname{tr}\left(a(t, x, u) D^{2} u^{i}\right)+f^{i}(t, x, u, D u)=0, \quad(t, x) \in[0, T] \times \mathbb{R}^{d} \\
u^{i}(T, x)=g^{i}(x) \quad x \in \mathbb{R}^{d}
\end{array}\right.
$$

Data: 3 functions

- volatility $a=\frac{1}{2} \sigma \sigma^{T}, \sigma=\sigma(t, x, u):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
- driver (not the same as before!)

$$
f=f(t, x, u, p):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{n}
$$

- terminal condition $g=g(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

Unknowns: $u=\left(u^{i}\right)_{i=1, \ldots, n}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$.

The PDE

By the "4-step scheme" (Ma, Protter, and Yong 1994), solving the FBSDE boils down to solving

$$
\left\{\begin{array}{l}
\partial_{t} u^{i}+\operatorname{tr}\left(a(t, x, u) D^{2} u^{i}\right)+f^{i}(t, x, u, D u)=0, \quad(t, x) \in[0, T] \times \mathbb{R}^{d} \\
u^{i}(T, x)=g^{i}(x) \quad x \in \mathbb{R}^{d}
\end{array}\right.
$$

Data: 3 functions

- volatility $a=\frac{1}{2} \sigma \sigma^{T}, \sigma=\sigma(t, x, u):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
- driver (not the same as before!)

$$
f=f(t, x, u, p):[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{n}
$$

- terminal condition $g=g(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

Unknowns: $u=\left(u^{i}\right)_{i=1, \ldots, n}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$.

What can go wrong?

Assume σ and g are nice. What conditions on the quadratic driver f guarantee a smooth solution?

Good news: can expect a smooth solution on $[T-\epsilon, T]$ (small-time well-posedness)
Bad news: global existence/uniqueness may fail, because

- u may blow up in finite time (blow-up)
- even if u stays bounded, $D u$ may blow up (gradient blow-up)

More good news: if we manage to prove a gradient estimate (an a-priori estimate on $\left.\|D u\|_{L \infty}\right)$, then

- can be bootstrapped to higher regularity, in particular estimates on $\|u\|_{C^{2, \alpha}}$
- a-priori estimates in $\|u\|_{C^{2, \alpha}}$ imply existence

What can go wrong?

Assume σ and g are nice. What conditions on the quadratic driver f guarantee a smooth solution?

Good news: can expect a smooth solution on $[T-\epsilon, T$] (small-time well-posedness)
Bad news: global existence/uniqueness may fail, because

- u may blow up in finite time (blow-up)
- even if u stays bounded, $D u$ may blow up (gradient blow-up)

More good news: if we manage to prove a gradient estimate (an a-priori estimate on $\left.\|D u\|_{L \infty}\right)$, then

- can be bootstrapped to higher regularity, in particular estimates on
- a-priori estimates in $\|u\|_{C^{2, \alpha}}$ imply existence

What can go wrong?

Assume σ and g are nice. What conditions on the quadratic driver f guarantee a smooth solution?

Good news: can expect a smooth solution on $[T-\epsilon, T$] (small-time well-posedness)
Bad news: global existence/uniqueness may fail, because

- u may blow up in finite time (blow-up)
- even if u stays bounded, Du may blow up (gradient blow-up)

More good news: if we manage to prove a gradient estimate (an a-priori estimate on $\left.\|D u\|_{L \infty}\right)$, then

- can be bootstrapped to higher regularity, in particular estimates on
- a-priori estimates in $\|u\|_{C^{2, \alpha}}$ imply existence

What can go wrong?

Assume σ and g are nice. What conditions on the quadratic driver f guarantee a smooth solution?

Good news: can expect a smooth solution on $[T-\epsilon, T$] (small-time well-posedness)
Bad news: global existence/uniqueness may fail, because

- u may blow up in finite time (blow-up)
- even if u stays bounded, Du may blow up (gradient blow-up)

More good news: if we manage to prove a gradient estimate (an a-priori estimate on $\left.\|D u\|_{L \infty}\right)$, then

- can be bootstrapped to higher regularity, in particular estimates on $\|u\|_{C^{2, \alpha}}$
- a-priori estimates in $\|u\|_{C^{2, \alpha}}$ imply existence

Table of Contents

(1) Introduction
(2) Main results
(3) Ideas of the proof

The key question

Based on the previous slide, we know that understanding the PDE system boils down to understanding the following.

The key question: what conditions on f will guarantee an a-priori estimate of $\|D u\|_{L \infty}$?

Break this up into three questions:
Q when can we get an estimate or $\|u\|_{L \infty}$?
(2) when does bound on $\|u\|_{L^{\infty}}$ imply bound on $\|u\|_{C^{\alpha}}$?
(3) when does bound on $\|u\|_{C^{\alpha}}$ imply bound on $\|D u\|_{L^{\infty}}$? We focus in this talk on the answers to 2 and 3 .

The key question

Based on the previous slide, we know that understanding the PDE system boils down to understanding the following.

The key question: what conditions on f will guarantee an a-priori estimate of $\|D u\|_{L \infty}$?

Break this up into three questions:
(1) when can we get an estimate on $\|u\|_{L \infty}$?
(3) when does bound on $\|u\|_{L^{\infty}}$ imply bound on $\|u\|_{C^{\alpha}}$?
(3) when does bound on $\|u\|_{C^{\alpha}}$ imply bound on $\|D u\|_{L^{\infty}}$? We focus in this talk on the answers to 2 and 3 .

The key question

Based on the previous slide, we know that understanding the PDE system boils down to understanding the following.

The key question: what conditions on f will guarantee an a-priori estimate of $\|D u\|_{L \infty}$?

Break this up into three questions:
(1) when can we get an estimate on $\|u\|_{L \infty}$?
(2) when does bound on $\|u\|_{L^{\infty}}$ imply bound on $\|u\|_{C^{\alpha}}$?
(3) when does bound on $\|u\|_{c^{\alpha}}$ imply bound on $\|D u\|_{L^{\infty}}$? We focus in this talk on the answers to 2 and 3.

The key question

Based on the previous slide, we know that understanding the PDE system boils down to understanding the following.

The key question: what conditions on f will guarantee an a-priori estimate of $\|D u\|_{L \infty}$?

Break this up into three questions:
(1) when can we get an estimate on $\|u\|_{L \infty}$?
(2) when does bound on $\|u\|_{L^{\infty}}$ imply bound on $\|u\|_{C^{\alpha}}$?
(3) when does bound on $\|u\|_{C^{\alpha}}$ imply bound on $\|D u\|_{L^{\infty}}$?

We focus in this talk on the answers to 2 and 3 .

Some answers

Here are the two main structural conditions.

$$
\left|f^{i}(t, x, u, p)\right| \leq C\left(1+\left|p^{i}\right||p|+\sum_{j<i}\left|p^{j}\right|^{2}+|p|^{2-\epsilon}\right)
$$

$\left\{\begin{array}{l}\left|f(t, x, u, p)-f\left(t, x^{\prime}, u^{\prime}, p\right)\right| \leq C\left(1+|p|^{2}\right)\left(\left|x-x^{\prime}\right|+\left|u-u^{\prime}\right|\right), \text { and } \\ \left|f(t, x, u, p)-f\left(t, x, u, p^{\prime}\right)\right| \leq C\left(1+|p|+\left|p^{\prime}\right|\right)\left|p-p^{\prime}\right|\end{array}\right.$

Theorem (J. 2022)

Under $H_{B F}$, an estimate on $\|u\|_{L^{\infty}}$ implies an estimate on $\|u\|_{C^{\infty}}$

Theorem (J. 2022)
 Under $H_{B F}$ and $H_{\text {Reg, }}$ an estimate on $\|u\|_{C} \propto$ implies an estimate on $\left\|D_{u}\right\|_{L}$

Some answers

Here are the two main structural conditions.

$$
\begin{gathered}
\left|f^{i}(t, x, u, p)\right| \leq C\left(1+\left|p^{i}\right||p|+\sum_{j<i}\left|p^{j}\right|^{2}+|p|^{2-\epsilon}\right) \\
\left\{\begin{array}{l}
\left|f(t, x, u, p)-f\left(t, x^{\prime}, u^{\prime}, p\right)\right| \leq C\left(1+|p|^{2}\right)\left(\left|x-x^{\prime}\right|+\left|u-u^{\prime}\right|\right), \text { and } \\
\left|f(t, x, u, p)-f\left(t, x, u, p^{\prime}\right)\right| \leq C\left(1+|p|+\left|p^{\prime}\right|\right)\left|p-p^{\prime}\right|
\end{array}\right.
\end{gathered}
$$

Theorem (J. 2022)

Under $H_{B F}$, an estimate on $\|u\|_{L_{\infty}}$ implies an estimate on $\|u\|_{C^{\circ}}$

theorem (J. 2022)
 Under $H_{B F}$ and $H_{R e g}$, an estimate on $\|u\|_{C^{\alpha}}$ implies an estimate on

Some answers

Here are the two main structural conditions.

$$
\begin{gathered}
\left|f^{i}(t, x, u, p)\right| \leq C\left(1+\left|p^{i}\right||p|+\sum_{j<i}\left|p^{j}\right|^{2}+|p|^{2-\epsilon}\right) \\
\left\{\begin{array}{l}
\left|f(t, x, u, p)-f\left(t, x^{\prime}, u^{\prime}, p\right)\right| \leq C\left(1+|p|^{2}\right)\left(\left|x-x^{\prime}\right|+\left|u-u^{\prime}\right|\right) \text {, and } \\
\left|f(t, x, u, p)-f\left(t, x, u, p^{\prime}\right)\right| \leq C\left(1+|p|+\left|p^{\prime}\right|\right)\left|p-p^{\prime}\right|
\end{array}\right.
\end{gathered}
$$

$\left(H_{\text {Reg }}\right)$

Theorem (J. 2022)

Under $H_{B F}$, an estimate on $\|u\|_{L^{\infty}}$ implies an estimate on $\|u\|_{C^{\alpha}}$.

Some answers

Here are the two main structural conditions.

$$
\begin{gather*}
\left|f^{i}(t, x, u, p)\right| \leq C\left(1+\left|p^{i}\right||p|+\sum_{j<i}\left|p^{j}\right|^{2}+|p|^{2-\epsilon}\right) \tag{BF}\\
\left\{\begin{array}{l}
\left|f(t, x, u, p)-f\left(t, x^{\prime}, u^{\prime}, p\right)\right| \leq C\left(1+|p|^{2}\right)\left(\left|x-x^{\prime}\right|+\left|u-u^{\prime}\right|\right), \text { and } \\
\left|f(t, x, u, p)-f\left(t, x, u, p^{\prime}\right)\right| \leq C\left(1+|p|+\left|p^{\prime}\right|\right)\left|p-p^{\prime}\right|
\end{array}\right.
\end{gather*}
$$

$\left(H_{\text {Reg }}\right)$

Theorem (J. 2022)

Under $H_{B F}$, an estimate on $\|u\|_{L^{\infty}}$ implies an estimate on $\|u\|_{C^{\alpha}}$.

Theorem (J. 2022)

Under $H_{B F}$ and $H_{\text {Reg, }}$, an estimate on $\|u\|_{C^{\alpha}}$ implies an estimate on $\|D u\|_{L^{\infty}}$.

Back to the FBSDE

Theorem (J. 2022)

Assume that that all data is jointly continuous, and
(1) $\sigma=\sigma(t, x, y)$ is non-degnerate and Lipschitz in (x, y)
(2) $g=g(x)$ bounded and Lipschitz
(3) $b=b(t, x, y, z)$ Lipschitz in $(x, y, z),|b(t, x, y, z)| \leq C(1+|y|+|z|)$
(9) f satisfies $H_{B F}$ and $H_{\text {Reg }}$, and $H_{A B}$ (a technical condition to get

$$
\left.\|u\|_{L^{\infty}}<\infty\right)
$$

Then there is a solution to the FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}\right) d B_{t} \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d B_{t} \\
Y_{T}=g\left(X_{T}\right), \quad X_{0}=x_{0}
\end{array}\right.
$$

Comments on related literature

Our results can be viewed as...

- a generalization of the results of Delarue (2002 and 2003) to the quadratic case
- Delarue (2002) gives existence for FBSDEs with Lipschitz data
- Delarue (2003) gives probabilistic approach to Hölder and gradient estimates in the Lipschitz case
- a generalization of the results of Bensoussan and Frehse (2002), Xing and Žitković (2018), and Harter and Richou (2019) to the case $\sigma=\sigma(t, x, y)$ (versus $\sigma=\sigma(t, x))$
- Bensoussan and Frehse obtain Hölder and Sobolev estimates in a bounded domain via PDE arguments
- Xing and Žitković (2018) obtain a Hölder estimate in the whole space via mix of PDE and probabilistic arguments
- Harter and Richou obtain a gradient estimate by studying linear BSDEs with bmo coefficients

Comments on related literature

Our results can be viewed as...

- a generalization of the results of Delarue (2002 and 2003) to the quadratic case
- Delarue (2002) gives existence for FBSDEs with Lipschitz data
- Delarue (2003) gives probabilistic approach to Hölder and gradient estimates in the Lipschitz case
- a generalization of the results of Bensoussan and Frehse (2002), Xing and Žitković (2018), and Harter and Richou (2019) to the case $\sigma=\sigma(t, x, y)$ (versus $\sigma=\sigma(t, x)$)
- Bensoussan and Frehse obtain Hölder and Sobolev estimates in a bounded domain via PDE arguments
- Xing and Zitković (2018) obtain a Hölder estimate in the whole space via mix of PDE and probabilistic arguments
- Harter and Richou obtain a gradient estimate by studying linear BSDEs with bmo coefficients

Comments on related literature

Our results can be viewed as...

- a generalization of the results of Delarue (2002 and 2003) to the quadratic case
- Delarue (2002) gives existence for FBSDEs with Lipschitz data
- Delarue (2003) gives probabilistic approach to Hölder and gradient estimates in the Lipschitz case
- a generalization of the results of Bensoussan and Frehse (2002), Xing and Žitković (2018), and Harter and Richou (2019) to the case $\sigma=\sigma(t, x, y)$ (versus $\sigma=\sigma(t, x)$)
- Bensoussan and Frehse obtain Hölder and Sobolev estimates in a bounded domain via PDE arguments
- Xing and Žitković (2018) obtain a Hölder estimate in the whole space via mix of PDE and probabilistic arguments
- Harter and Richou obtain a gradient estimate by studying linear BSDEs with bmo coefficients

Table of Contents

(1) Introduction

(2) Main results

(3) Ideas of the proof

The big picture

The Hölder estimate

- The basic idea is the same as the one used by Delarue in Lipschitz setting - combine Krylov Safonov estimates with BMO-martingale theory
- Execution is different - concept of sliceability is used to deal with quadratic growth

The gradient estimate

- Again, sliceability is key
- Hölder estimate implies a-priori sliceability of Z
- Probabilistic renresentation of Du via linear BSDE with sliceable coefficients (thanks to sliceability of Z !)
- Conclude using results from J. and Žitković 2021 (see also Delbaen and Tang 2008 and Harter and Richou 2019)

The big picture

The Hölder estimate

- The basic idea is the same as the one used by Delarue in Lipschitz setting - combine Krylov Safonov estimates with BMO-martingale theory
- Execution is different - concept of sliceability is used to deal with quadratic growth
The gradient estimate
- Again, sliceability is key
- Hölder estimate implies a-priori sliceability of Z
- Probabilistic representation of Du via linear BSDE with sliceable coefficients (thanks to sliceability of Z!)
- Conclude using results from J. and Žitković 2021 (see also Delbaen and Tang 2008 and Harter and Richou 2019)

The big picture

The Hölder estimate

- The basic idea is the same as the one used by Delarue in Lipschitz setting - combine Krylov Safonov estimates with BMO-martingale theory
- Execution is different - concept of sliceability is used to deal with quadratic growth

The gradient estimate

- Again, sliceability is key
- Hölder estimate implies a-priori sliceability of Z
- Probabilistic renresentation of D! via linear BSDF with sliceable coefficients (thanks to sliceability of Z !)
- Conclude using results from J. and Žitković 2021 (see also Delbaen and Tang 2008 and Harter and Richou 2019)

The big picture

The Hölder estimate

- The basic idea is the same as the one used by Delarue in Lipschitz setting - combine Krylov Safonov estimates with BMO-martingale theory
- Execution is different - concept of sliceability is used to deal with quadratic growth
The gradient estimate
- Again, sliceability is key
- Hölder estimate implies a-priori sliceability of Z
- Probabilistic representation of $D u$ via linear BSDE with sliceable coefficients (thanks to sliceability of Z !)
- Conclude using results from J. and Žitković 2021 (see also Delbaen and Tang 2008 and Harter and Richou 2019)

Preliminaries

From here on, we suppose we have a nice solution u to the PDE system, and we define for $t_{0}, x_{0} \in[0, T] \times \mathbb{R}^{d}$ the triple $\left(X^{t_{0}, x_{0}}, Y^{t_{0}, x_{0}}, Z^{t_{0}, x_{0}}\right)$ by

$$
\begin{aligned}
& X_{t}^{t_{0}, x_{0}}=x_{0}+\int_{t_{0}}^{t} \sigma\left(s, X_{s}^{t_{0}, x_{0}}, u\left(s, X_{s}^{t_{0}, x_{0}}\right)\right) d B_{s}, \quad t_{0} \leq t \leq T \\
& Y^{t_{0}, x_{0}}=u\left(\cdot, X^{t_{0}, x_{0}}\right), \quad Z^{t_{0}, x_{0}}=\sigma\left(\cdot, X^{t, x}, Y^{t, x}\right) D u\left(\cdot, X^{t, x}\right)
\end{aligned}
$$

If $\left(t_{0}, x_{0}\right)$ is not important, we just write (X, Y, Z). Note that

$$
\left\{\begin{array}{l}
d X_{t}=\sigma\left(t, X_{t}, Y_{t}\right) d B_{t} \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, \sigma^{-1}\left(t, X_{t}, Y_{t}\right) Z_{t}\right) d t+Z_{t} d B_{t}
\end{array}\right.
$$

Preliminaries

From here on, we suppose we have a nice solution u to the PDE system, and we define for $t_{0}, x_{0} \in[0, T] \times \mathbb{R}^{d}$ the triple $\left(X^{t_{0}, x_{0}}, Y^{t_{0}, x_{0}}, Z^{t_{0}, x_{0}}\right)$ by

$$
\begin{aligned}
& X_{t}^{t_{0}, x_{0}}=x_{0}+\int_{t_{0}}^{t} \sigma\left(s, X_{s}^{t_{0}, x_{0}}, u\left(s, X_{s}^{t_{0}, x_{0}}\right)\right) d B_{s}, \quad t_{0} \leq t \leq T \\
& Y^{t_{0}, x_{0}}=u\left(\cdot, X^{t_{0}, x_{0}}\right), \quad Z^{t_{0}, x_{0}}=\sigma\left(\cdot, X^{t, x}, Y^{t, x}\right) D u\left(\cdot, X^{t, x}\right)
\end{aligned}
$$

If $\left(t_{0}, x_{0}\right)$ is not important, we just write (X, Y, Z). Note that

$$
\left\{\begin{array}{l}
d X_{t}=\sigma\left(t, X_{t}, Y_{t}\right) d B_{t} \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, \sigma^{-1}\left(t, X_{t}, Y_{t}\right) Z_{t}\right) d t+Z_{t} d B_{t}
\end{array}\right.
$$

Preliminaries

Notation:

$$
\|Z\|_{\mathrm{bmo}}^{2}=\sup _{\tau}\left\|\mathbb{E}\left[\int_{\tau}^{T}|Z|^{2} d t \mid \mathcal{F}_{\tau}\right]\right\|_{L^{\infty}}, \quad\|\alpha\|_{\mathrm{bmo}^{1 / 2}}=\|\sqrt{|\alpha|}\|_{\mathrm{bmo}}^{2}
$$

Z is sliceable if $\left\|Z 1_{[t-\delta, t]}\right\|_{\text {bmo }}$ is small for δ small.

Definition

A c-Lyapunov pair (h, k) is a smooth function $h=h(y): \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a constant k such that $h(0)=0, D h(0)=0$, and for $|y| \leq c$,

The point is that (h, k) is a c-Lyapunov function, then

Preliminaries

Notation:

$$
\|Z\|_{\mathrm{bmo}}^{2}=\sup _{\tau}\left\|\mathbb{E}\left[\int_{\tau}^{T}|Z|^{2} d t \mid \mathcal{F}_{\tau}\right]\right\|_{L^{\infty}}, \quad\|\alpha\|_{\mathrm{bmo}^{1 / 2}}=\|\sqrt{|\alpha|}\|_{\text {bmo }}^{2}
$$

Z is sliceable if $\left\|Z 1_{[t-\delta, t]}\right\|_{\text {bmo }}$ is small for δ small.

Definition

A c-Lyapunov pair (h, k) is a smooth function $h=h(y): \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a constant k such that $h(0)=0, D h(0)=0$, and for $|y| \leq c$,

$$
\frac{1}{2} \sum_{i, j=1}^{n}\left(D^{2} h(y)\right)_{i j} z^{i} \cdot z^{j}-D h(y) \cdot f\left(t, x, u, \sigma^{-1}(t, x, u) z\right) \geq|z|^{2}-k
$$

The point is that (h, k) is a c-Lyapunov function, then
$h(Y)+k t-\int|Z|^{2} d t$ is a submartingale if $|Y| \leq c$.

Preliminaries

Notation:

$$
\|Z\|_{\mathrm{bmo}}^{2}=\sup _{\tau}\left\|\mathbb{E}\left[\int_{\tau}^{T}|Z|^{2} d t \mid \mathcal{F}_{\tau}\right]\right\|_{L^{\infty}}, \quad\|\alpha\|_{\mathrm{bmo}^{1 / 2}}=\|\sqrt{|\alpha|}\|_{\mathrm{bmo}}^{2}
$$

Z is sliceable if $\left\|Z 1_{[t-\delta, t]}\right\|_{\text {bmo }}$ is small for δ small.

Definition

A c-Lyapunov pair (h, k) is a smooth function $h=h(y): \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a constant k such that $h(0)=0, D h(0)=0$, and for $|y| \leq c$,

$$
\frac{1}{2} \sum_{i, j=1}^{n}\left(D^{2} h(y)\right)_{i j} z^{i} \cdot z^{j}-D h(y) \cdot f\left(t, x, u, \sigma^{-1}(t, x, u) z\right) \geq|z|^{2}-k
$$

The point is that (h, k) is a c-Lyapunov function, then

$$
h(Y)+k t-\int|Z|^{2} d t \text { is a submartingale if }|Y| \leq c
$$

The connection between Hölder regularity and sliceability

Lemma (Xing and Žitković)

Under $H_{B F}$, for any $c>0$ there exists a c-Lyapunov pair (h, k).
Now suppose we have a c-Lyapunov pair (h, k) and $|Y| \leq c$. Then for $t-\delta \leq \tau \leq t$
$\mathbb{E}_{\tau}\left[\int_{\tau}^{t}\left|Z_{s}\right|^{2} d s\right] \leq k h+\mathbb{E}_{\tau}\left[h\left(u\left(t, X_{t}\right)\right)-h\left(u\left(\tau, X_{\tau}\right)\right]\right.$

Thus under $H_{B F}$,

The connection between Hölder regularity and sliceability

Lemma (Xing and Žitković)

Under $H_{B F}$, for any $c>0$ there exists a c-Lyapunov pair (h, k).
Now suppose we have a c-Lyapunov pair (h, k) and $|Y| \leq c$. Then for $t-\delta \leq \tau \leq t \ldots$

$$
\begin{aligned}
\mathbb{E}_{\tau}\left[\int_{\tau}^{t}\left|Z_{s}\right|^{2} d s\right] & \leq k h+\mathbb{E}_{\tau}\left[h\left(u\left(t, X_{t}\right)\right)-h\left(u\left(\tau, X_{\tau}\right)\right]\right. \\
& \leq k h+C\|u\|_{C^{\alpha}} \mathbb{E}_{\tau}\left[\delta^{\alpha / 2}+\left|X_{t}-X_{\tau}\right|^{\alpha}\right] \leq k \delta+C \delta^{\alpha / 2} \leq C \\
& \Longrightarrow\left\|1_{[t-\delta, t]} Z\right\|_{\text {bmo }} \leq C \delta^{\alpha / 4}
\end{aligned}
$$

Thus under $H_{B F}$,
u is Hölder $\Longrightarrow Z$ is sliceable

The connection between Hölder regularity and sliceability

Lemma (Xing and Žitković)

Under $H_{B F}$, for any $c>0$ there exists a c-Lyapunov pair (h, k).
Now suppose we have a c-Lyapunov pair (h, k) and $|Y| \leq c$. Then for $t-\delta \leq \tau \leq t \ldots$

$$
\begin{aligned}
\mathbb{E}_{\tau}\left[\int_{\tau}^{t}\left|Z_{s}\right|^{2} d s\right] & \leq k h+\mathbb{E}_{\tau}\left[h\left(u\left(t, X_{t}\right)\right)-h\left(u\left(\tau, X_{\tau}\right)\right]\right. \\
& \leq k h+C\|u\|_{C^{\alpha}} \mathbb{E}_{\tau}\left[\delta^{\alpha / 2}+\left|X_{t}-X_{\tau}\right|^{\alpha}\right] \leq k \delta+C \delta^{\alpha / 2} \leq C \\
& \Longrightarrow\left\|1_{[t-\delta, t]} Z\right\|_{\text {bmo }} \leq C \delta^{\alpha / 4}
\end{aligned}
$$

Thus under $H_{B F}$,
u is Hölder $\Longrightarrow Z$ is sliceable .

The connection between Hölder regularity and sliceability

Sliceability implies Hölder: Suppose we have a bounded solution v to

$$
\partial_{t} v+\operatorname{tr}\left(a D^{2} u\right)+b \cdot D u+k=0, \quad(t, x) \in(0, T) \times \mathbb{R}^{d}
$$

Krylov-Safonov estimates show that

$$
a=\frac{1}{2} \sigma \sigma^{T} \text { bounded and elliptic \& } b, k \text { bounded } \Longrightarrow v \text { is Hölder, }
$$

at least away from $t=T$.

Ideas from Delarue (2003) show that the same argument works when

instead of b bounded

We take this one step further by showing that if

The connection between Hölder regularity and sliceability

Sliceability implies Hölder: Suppose we have a bounded solution v to

$$
\partial_{t} v+\operatorname{tr}\left(a D^{2} u\right)+b \cdot D u+k=0, \quad(t, x) \in(0, T) \times \mathbb{R}^{d}
$$

Krylov-Safonov estimates show that

$$
a=\frac{1}{2} \sigma \sigma^{T} \text { bounded and elliptic } \& b, k \text { bounded } \Longrightarrow v \text { is Hölder, }
$$ at least away from $t=T$.

Ideas from Delarue (2003) show that the same argument works when

$$
\sup _{(t, x)}\left\|b\left(\cdot, X^{t, x}\right)\right\|_{\text {bmo }}<\infty
$$

instead of b bounded.

We take this one step further by showing that if

The connection between Hölder regularity and sliceability

Sliceability implies Hölder: Suppose we have a bounded solution v to

$$
\partial_{t} v+\operatorname{tr}\left(a D^{2} u\right)+b \cdot D u+k=0, \quad(t, x) \in(0, T) \times \mathbb{R}^{d}
$$

Krylov-Safonov estimates show that

$$
a=\frac{1}{2} \sigma \sigma^{T} \text { bounded and elliptic \& } b, k \text { bounded } \Longrightarrow v \text { is Hölder, }
$$ at least away from $t=T$.

Ideas from Delarue (2003) show that the same argument works when

$$
\sup _{(t, x)}\left\|b\left(\cdot, X^{t, x}\right)\right\|_{\text {bmo }}<\infty
$$

instead of b bounded.

We take this one step further by showing that if

$$
\left\|b\left(\cdot, X^{t, x}\right)\right\|_{\mathrm{bmo}} \leq C \&\left\|1_{[s-\delta, s]} k\left(\cdot, X^{t, x}\right)\right\|_{\mathrm{bmo}^{1 / 2}} \leq C \delta^{\alpha}
$$

then v is Hölder.

The connection between Hölder regularity and sliceability

Because the arguments from previous slide don't use regularity of σ, they apply to quasi-linear setting. Under $H_{B F}$, we can write

$$
\partial_{t} u^{1}+\operatorname{tr}\left(a D^{2} u^{i}\right)+\tilde{b} \cdot D u^{1}+\tilde{f}=0
$$

where

Then since $Z^{(t, x)}=\sigma D u\left(\cdot, X^{(t, x)}\right)$, we find

The connection between Hölder regularity and sliceability

Because the arguments from previous slide don't use regularity of σ, they apply to quasi-linear setting. Under $H_{B F}$, we can write

$$
\partial_{t} u^{1}+\operatorname{tr}\left(a D^{2} u^{i}\right)+\tilde{b} \cdot D u^{1}+\tilde{f}=0
$$

where

$$
|\tilde{b}| \leq C(1+|D u|), \quad|\tilde{f}| \leq C\left(1+|D u|^{2-\epsilon}\right)
$$

Then since $Z^{(t, x)}=\sigma D u\left(\cdot, X^{(t, x)}\right)$, we find

$$
\begin{aligned}
& \sup _{t, x}\left\|Z^{(t, x)}\right\|_{\mathrm{bmo}} \leq C \\
& \Longrightarrow \sup _{t, x} \| \tilde{b}\left(\cdot, X^{(t, x))}\left\|_{\mathrm{bmo}} \leq C \&\right\| 1_{[s-\delta, s]} \tilde{f}\left(\cdot, X^{(t, x)}\right) \|_{\mathrm{bmo}^{1 / 2}} \leq C \delta^{\alpha}\right. \\
& \Longrightarrow u^{1} \text { is Hölder. }
\end{aligned}
$$

The connection between Hölder regularity and sliceability

Previous slide showed

$$
Z \in \mathrm{bmo} \Longrightarrow u^{1} \text { is Hölder },
$$

which in turn implies Z^{1} is sliceable. It turns out similar reasoning lets us
show
$Z \in$ bmo \& Z^{1}, \ldots, Z^{i-1} sliceable $\Longrightarrow u^{i}$ is Hölder \& Z^{i} is sliceable.
which lets us prove by induction that u is Hölder. The full chain of reasoning is

The connection between Hölder regularity and sliceability

Previous slide showed

$$
Z \in \mathrm{bmo} \Longrightarrow u^{1} \text { is Hölder }
$$

which in turn implies Z^{1} is sliceable. It turns out similar reasoning lets us show
$Z \in$ bmo \& Z^{1}, \ldots, Z^{i-1} sliceable $\Longrightarrow u^{i}$ is Hölder $\& Z^{i}$ is sliceable. which lets us prove by induction that u is Hölder. The full chain of reasoning is
$u \in L^{\infty} \Longrightarrow Z \in \mathrm{bmo} \Longrightarrow u^{1} \in C^{\alpha} \Longrightarrow Z^{1}$ sliceable

The connection between Hölder regularity and sliceability

Previous slide showed

$$
Z \in \mathrm{bmo} \Longrightarrow u^{1} \text { is Hölder },
$$

which in turn implies Z^{1} is sliceable. It turns out similar reasoning lets us show
$Z \in$ bmo \& Z^{1}, \ldots, Z^{i-1} sliceable $\Longrightarrow u^{i}$ is Hölder $\& Z^{i}$ is sliceable.
which lets us prove by induction that u is Hölder. The full chain of reasoning is

$$
\begin{aligned}
u \in L^{\infty} & \Longrightarrow Z \in \text { bmo } \Longrightarrow u^{1} \in C^{\alpha} \Longrightarrow Z^{1} \text { sliceable } \Longrightarrow u^{2} \in C^{\alpha} \\
& \Longrightarrow Z^{1} \& Z^{2} \text { sliceable } \Longrightarrow u^{3} \in C^{\alpha} \Longrightarrow \ldots \Longrightarrow u \in C^{\alpha}
\end{aligned}
$$

Summary

Main estimates:

(1) under H_{BF}, bound on $\|u\|_{L^{\infty}} \Longrightarrow$ bound on $\|u\|_{C^{\alpha}}$
(2) under $H_{\mathrm{BF}}+H_{\text {Reg }}$, bound on $\|u\|_{C^{\alpha}} \Longrightarrow$ bound on $\|D u\|_{L^{\infty}}$ Takeaways:
(1) sliceability is a useful concept in regularity theory, in particular
(2) there is a connection between Hölder regularity of u and sliceability of

Summary

Main estimates:

(1) under H_{BF}, bound on $\|u\|_{L^{\infty}} \Longrightarrow$ bound on $\|u\|_{C^{\alpha}}$
(2) under $H_{\mathrm{BF}}+H_{\text {Reg }}$, bound on $\|u\|_{C^{\alpha}} \Longrightarrow$ bound on $\|D u\|_{L^{\infty}}$

Takeaways:

(1) sliceability is a useful concept in regularity theory, in particular...
(2) there is a connection between Hölder regularity of u and sliceability of Z

