Set-Valued Backward SDEs and Related Set-Valued Stochastic Analysis

Jin Ma

USC University of Southern California

Based on the joint works with Çağın Ararat and Wenqian Wu

9th Colloquium on BSDEs and Mean-field Systems Annecy, June 30, 2022

Set-Valued BSDEs

Outline

- 2 Set-Valued Analysis/Stochastic Analysis
- 3 Essentials of Set-Valued BSDEs
- 4 New Definitions of Set-Valued Stochastic Integral

×

イロト イヨト イヨト

Introduction

Set-Valued Analysis/Stochastic Analysis Essentials of Set-Valued BSDEs New Definitions of Set-Valued Stochastic Integral

Outline

- 2 Set-Valued Analysis/Stochastic Analysis
- 3 Essentials of Set-Valued BSDEs
- 4 New Definitions of Set-Valued Stochastic Integral

イロト イヨト イヨト

Examples of Set-valued Dynamics

• "Reacheable Sets"

- Any higher dimensional controlled dynamic systems (could be both forward and backward(!))
- The backward version could be used to characterize "DPP" for "time-inconsistent" problems (Karnam-Ma-Zhang, 2017).
- Non-zero Sum/Mean-field Games with multiple equilibria (Feinstein-Rudloff-Zhang, '20, Iseri-Zhang, '21, ...)
- Set-valued Dynamic Risk Measures
 - Systemic Risks (Hamel-Heyde-Rudloff, '11, Feinstein-Rudloff-Weber, '17, Ararat-Hamel-Rudloff '17, Ararat-Rudloff '19, Biagini-Fouque-Fritelli-Meyer-Brandis, '19)
 - Multi-portfolio time consistency (Feinstein-Rudloff, '15)
 - Set-valued Risk measures and BSdI/E (d= difference) (Ararat-Feinstein 2019)

Set-valued SDEs vs SDIs

The Main Point :

A set of processes is NOT necessarily a set-valued process !

In other words, a set-valued process is a process taking values in a (metric) space of subsets in a vector space, rather than a collection of trajectories in this space.

Some obvious technical issues :

- The algebraic structure among sets?
- Measurability ?
- (Stochastic) Analysis?

イロト 不得下 イヨト イヨト

Set-valued SDEs vs SDIs

The Main Point :

A set of processes is NOT necessarily a set-valued process !

In other words, a set-valued process is a process taking values in a (metric) space of subsets in a vector space, rather than a collection of trajectories in this space.

Some obvious technical issues :

- The algebraic structure among sets?
- Measurability ?
- (Stochastic) Analysis?

Outline

2 Set-Valued Analysis/Stochastic Analysis

3 Essentials of Set-Valued BSDEs

4 New Definitions of Set-Valued Stochastic Integral

イロト イヨト イヨト

First Glance of Set-valued Analysis

- (𝔅, ρ) − a metric space
- $\mathscr{P}(\mathbb{X}) := 2^{\mathbb{X}}$ all nonempty subsets of \mathbb{X} .
- $\mathscr{C}(\mathbb{X}) \subset \mathscr{P}(\mathbb{X})$ all *closed* subsets of \mathbb{X} ,
- $\mathscr{K}(\mathbb{X})$ all *compact, convex* subsets of \mathbb{X} .

Definition (Minkowski addition and scalar multiplication)

Let $A, B \in \mathscr{K}(\mathbb{X})$ and $\alpha \in \mathbb{R}$, we define

$$A+B = \{x \in \mathbb{X} : x = a+b, a \in A, b \in B\};$$

$$\alpha A = \{x \in \mathbb{X} : x = \alpha a, a \in A\}.$$

Note : $A - A := A + (-1)A \neq \{0\}!$. That is, -A is NOT the "inverse" of A(!). Thus $\mathscr{K}(\mathbb{X})/\mathscr{C}(\mathbb{X})$ is NOT a vector space.

Set Differences

• Minkovski difference/geometric difference/inf-residuation

$$A - B = \{x \in \mathbb{X} \mid x + B \subset A\}, \quad A, B \in \mathscr{K}(\mathbb{X}),$$

- $A A = \{0\}$, but $(A B) + B \subset A$ (and "=" may fail!)
- Hukuhara difference (1967)

 $A \ominus B = C \quad \Longleftrightarrow \quad A = B + C, \ A, B \in \mathscr{K}(\mathbb{X}).$

- $A \ominus B$ exists $\iff \forall a \in \text{ext}(A), \exists x \in \mathbb{X} \text{ s.t. } a \in x + B \subset A.$
 - a ∈ ext(A) (called an *extreme point* of A) if it cannot be written as a strict convex combination of two points in A.
- If exists, $A \ominus B$ is unique, closed, convex, and = A B.
- Some properties of " \ominus " requires "cancellation law". (I.e., $A + C = B + C \implies A = B$), which is true if X is locally compact, A, B are closed, convex, and C is compact.

Set Differences

• Minkovski difference/geometric difference/inf-residuation

$$A - B = \{x \in \mathbb{X} \mid x + B \subset A\}, \quad A, B \in \mathscr{K}(\mathbb{X}),$$

- $A A = \{0\}$, but $(A B) + B \subset A$ (and "=" may fail!)
- Hukuhara difference (1967)

$$A \ominus B = C \quad \Longleftrightarrow \quad A = B + C, \ A, B \in \mathscr{K}(\mathbb{X}).$$

- $A \ominus B$ exists $\iff \forall a \in \text{ext}(A), \exists x \in \mathbb{X} \text{ s.t. } a \in x + B \subset A.$
 - a ∈ ext(A) (called an *extreme point* of A) if it cannot be written as a strict convex combination of two points in A.
- If exists, $A \ominus B$ is unique, closed, convex, and = A B.
- Some properties of "⊖" requires "cancellation law". (I.e., A + C = B + C ⇒ A = B), which is true if X is locally compact, A, B are closed, convex, and C is compact.

Topological Structure on $\mathscr{K}(\mathbb{X})$

• Recall the Hausdorff distance on $\mathscr{C}(\mathbb{X})/\mathscr{K}(\mathbb{X})$:

$$h(A,B) := \max \{ \sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A) \},$$
 (1)

- $(\mathscr{K}(\mathbb{X}), h)$ is a Polish space (if \mathbb{X} is)
- If $\mathbb{X}=\mathbb{R}^d$, denote $\mathscr{X}=\mathscr{K}(\mathbb{R}^d)$ and
 - $\mathscr{B}(\mathscr{X}) := \sigma(\mathscr{K}(\mathbb{R}^d))$ (Borel) σ -algebra on (\mathscr{X}, h) ;
 - define $||A|| := h(A, \{0\}) = \sup\{|a|, a \in A\},\$
 - Then $\|\cdot\|$ is a "norm", and $h(A,B) = \|A \ominus B\|$, if \ominus exists.
 - Warning: (𝔅, || · ||) is NOT a Banach space, as it is not even a vector space.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへの

Set-Valued Mappings and Selections

Denote $\mathscr{O} = \text{all open sets in } \mathbb{R}^d$.

- For $V \in \mathscr{O}$, define $\mathscr{O}(V) := \{K \in \mathscr{X} : K \cap V \neq \emptyset\}$;
- Let (T, F, μ) be a measure space. A mapping F : T → X is called (weakly) measurable if F⁻(V) := {t ∈ T : F(t) ∈ O(V)} ∈ F, ∀V ∈ O.
- Denote all measurable mappings $F : \mathbb{T} \to \mathscr{X}$ by $\mathscr{M}(\mathbb{T}, \mathscr{X})$.
- A "measurable selector" of F is a function f : T → X, such that f(t) ∈ F(t), a.e. t ∈ T, and f ∈ L⁰(T; R^d). Denote the collection of selectors of F by S(F).
- Clearly, F = G if and only if S(F) = S(G).

(日) (四) (日) (日) (日) (日)

Measurability vs. Decomposibility

Definition

A set $M \subset \mathbb{L}^0(\mathbb{T}; \mathbb{R}^d)$ is called decomposable w.r.t. \mathcal{F} if for any $f_1, f_2 \in M$ and $A \in \mathcal{F}$, the function $\mathbf{1}_A f_1 + \mathbf{1}_{A^c} f_2 \in M$.

For C ⊂ L⁰(T, R^d), we denote dec{C} (resp. dec{C}) to be the decomposable hull of C (resp. closure of dec{C}).

For
$$p \geq 1$$
, define $S_p(F) = S(F) \cap \mathbb{L}^p(\mathbb{T}; \mathscr{X})$, and
 $\mathscr{A}_p(\mathbb{T}, \mathscr{X}) := \{F \in \mathscr{M}(\mathbb{T}; \mathscr{X}) : S_p(F) \neq \emptyset\}$

Theorem

Let M be a nonempty subset of $\mathbb{L}^{p}(\mathbb{T}, \mathbb{R}^{d})$ where $p \geq 1$, such that for each $t \in \mathbb{T}$, $M(t) \in \mathscr{X}$. Then there exists $F \in \mathscr{A}_{p}(\mathbb{T}, \mathscr{X})$ such that $M = S_{p}(F)$ if and only if M is decomposable.

Set-Valued Random Variables and Stochastic Processes

- SV r.v. $Z : \Omega \mapsto \mathscr{X}$ and SV process $\Phi : [0, T] \times \Omega \mapsto \mathscr{X}$ are defined naturally as SV measurable functions.
 - $S_{\mathcal{G}}(Z) \longrightarrow \mathcal{G}$ -measurable selectors, $\mathcal{G} \subseteq \mathcal{F}$;
 - $S(\Phi)$ all $\mathscr{B}([0, T]) \otimes \mathcal{F}$ -measurable selectors
 - $S_{\mathbb{F}}(\Phi)$ $(S_{\mathscr{P}}(\Phi))$ all \mathbb{F} -adapted (progressive) selectors.
- Z is *p*-integrally bounded if E[||Z||^p] = E[h^p(Z, {0})] < ∞ (i.e., S_p(Z) is a bounded set in L^p).
- If $Z \in \mathscr{A}_1(\Omega, \mathscr{X})$, then $\mathbb{E}[Z] := \int_{\Omega} Z(\omega) \mathbb{P}(d\omega)$ (Aumann).
 - If $F \in \mathscr{A}_1(\mathbb{T}, \mathbb{R}^d)$, the Aumann Integral of F is defined by $\int_{\mathbb{T}} F(t)\mu(dt) := cl\{\int_{\mathbb{T}} f(t)\mu(dt) : f \in S_1(F)\} := cl(J(S_1(F))).$
 - It holds that $\int_{\mathbb{T}} F(t)\mu(dt) = \int_{\mathbb{T}} coF(t)dt$, hence convex.

Conditional Expectations

• For $\mathcal{G} \subset \mathcal{F}$ and $Z \in \mathscr{A}_{\mathcal{F}}^1(\Omega)$, we define $\mathbb{E}(Z|\mathcal{G}) \in \mathscr{A}_{\mathcal{G}}^1(\Omega)$ via the Aumann integral identity

$$\int_{A} \mathbb{E}(Z|\mathcal{G})(\omega)\mathbb{P}(d\omega) = \int_{A} Z(\omega)\mathbb{P}(d\omega), \qquad A \in \mathcal{G}.$$
 (2)

• If
$$F \in \mathscr{A}^{1}(\Omega)$$
, then $\exists ! \mathbb{E}[F|\mathcal{G}] \in \mathscr{A}^{1}_{\mathcal{G}}(\Omega)$, s.t.
 $S_{1}(\mathbb{E}[F|\mathcal{G}]) = \operatorname{cl}_{\mathbb{L}}\{\mathbb{E}[f|\mathcal{G}] : f \in S_{1}(F)\}.$ (3)

- $\mathbb{E}[\cdot|\mathcal{G}]$ satisfy all the natural properties in terms of Minkovski addition and scalar multiplication.
- If $X_1 \ominus X_2$ exists. Then, $\mathbb{E}[X_1 \ominus X_2 | \mathcal{G}]$ exists and

 $\mathbb{E}[X_1 \ominus X_2 | \mathcal{G}] = \mathbb{E}[X_1 | \mathcal{G}] \ominus \mathbb{E}[X_2 | \mathcal{G}].$ (4)

イロト イポト イヨト イヨト

Set-Valued Martingales

- A set-valued (\mathbb{P}, \mathbb{F}) -martingale $M = \{M_t\}_{t \ge 0}$ is $M \in \mathscr{L}^1_{\mathbb{F}}$ such that $M_s = \mathbb{E}[M_t | \mathcal{F}_s]$, for $0 \le s \le t$.
 - Set-Valued "sub-" (or "super-") martingales? Order?
 - A set-valued mg M has decomposable $S_{\mathcal{F}_t}(M_t)$ for each $t \geq 0$.

• For a set-valued mg *M*, denote the *martingale selectors* by

$$MS(M) := \{ \text{all } \mathbb{F}\text{-mg } f = \{f_t\} \text{ s.t. } f_t \in S_{\mathcal{F}_t}(M_t), t \ge 0 \}.$$

 $P_t[MS(M)] := \{f_t : f \in MS(M)\} \in \mathscr{P}(\mathbb{L}^1_{\mathcal{F}_t}(\Omega, \mathbb{R}^d)).$

- Note : $S_{\mathcal{F}_t}(M_t)$ and $P_t(MS(M))$ are quite different! In particular, the former is *decomposable*, but the latter is not.
- The following relations holds

$$S_{\mathcal{F}_t}(M_t) = \overline{dec} \{ P_t[MS(M)] \}, \quad t \ge 0.$$
(5)

Set-Valued Stochastic Integrals (Aumann-Itô)

- Let $B = \{B_t\}_{t \in \mathbb{T}:=[0,T]}$ be a *m*-dim B.M. on $(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{F})$.
- Define linear mappings on $\mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^d)$ and $\mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^{d \times m})$: $J(\phi) := \int_0^T \phi_t dt, \quad \mathcal{J}(\psi) := \int_0^T \psi_t dB_t.$
- For $K \in \mathscr{P}(\mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^d))$ and $K' \in \mathscr{P}(\mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^{d \times m}))$, define $J(K) := \{J(\phi) : \phi \in K\}, \mathcal{J}(K') := \{\mathcal{J}(\psi) : \psi \in K'\}.$

Theorem/Definition

For
$$\Phi \in \mathscr{L}^{2,d}_{\mathbb{F}}(\mathbb{T})$$
 and $\Psi \in \mathscr{L}^{2,d \times m}_{\mathbb{F}}(\mathbb{T})$, $\exists \Gamma, Z \in \mathscr{L}^{2,d}_{\mathcal{F}_{T}}(\Omega)$ s.t.
 $S_{\mathcal{F}_{T}}[\Gamma] = \overline{dec} \{J[S_{\mathbb{F}}(\Phi)]\}$, and $S_{\mathcal{F}_{T}}[Z] = \overline{dec} \{\mathcal{J}[S_{\mathbb{F}}(\Psi)]\}$.
Denote $\Gamma := \int_{0}^{T} \Phi dt$ and $Z := \int_{0}^{T} \Psi dB_{t}$.

Remarks

- Both S_{F_T}(∫₀^T Φdt) and S_{F_T}(∫₀^T Ψ_tdB_t) are decomposable (hence F_T-measurable), but none of J(S_F(Φ)) and J(S_F(Ψ)) is, unless singleton. (see Kisielewicz ('13, p105) for the ex's)
- The Indefinite stochastic integral ∫₀^t ΨdB := ∫₀^T 1_[0,t]Ψ_sdB_s is well-defined, and has the "temporal additivity" :

$$\int_0^T \Psi_s dB_s = \int_0^t \Psi_s dB_s + \int_t^T \Psi_s dB_s, \ t \in [0, T].$$

Generalized Aumann-Itô integral

Let $G \in \mathscr{P}(\mathbb{L}^{2}_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^{d \times m}))$. Denote $\mathcal{J}^{t}_{B}(G) = \{\int_{0}^{t} g_{s} dB_{s} : g \in G\},$ $t \in \mathbb{T}$. Then, $\exists ! \ \Phi_{t} \in \mathscr{L}^{2}_{\mathcal{F}_{t}}(\Omega)$ s.t. $S_{\mathcal{F}_{t}}(\Phi_{t}) = \overline{dec}\{\mathcal{J}^{t}_{B}(G)\}.$ We call Φ_{t} the *generalized stochastic integral* and denote it by $\int_{0}^{t} G \circ dB_{s}.$

Remarks

- Both S_{F_T}(∫₀^T Φdt) and S_{F_T}(∫₀^T Ψ_tdB_t) are decomposable (hence F_T-measurable), but none of J(S_F(Φ)) and J(S_F(Ψ)) is, unless singleton. (see Kisielewicz ('13, p105) for the ex's)
- The Indefinite stochastic integral ∫₀^t ΨdB := ∫₀^T 1_[0,t]Ψ_sdB_s is well-defined, and has the "temporal additivity" :

$$\int_0^T \Psi_s dB_s = \int_0^t \Psi_s dB_s + \int_t^T \Psi_s dB_s, \ t \in [0, T].$$

Generalized Aumann-Itô integral

Let $G \in \mathscr{P}(\mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^{d \times m}))$. Denote $\mathcal{J}^t_B(G) = \{\int_0^t g_s dB_s : g \in G\}$, $t \in \mathbb{T}$. Then, $\exists ! \ \Phi_t \in \mathscr{L}^2_{\mathcal{F}_t}(\Omega)$ s.t. $S_{\mathcal{F}_t}(\Phi_t) = \overline{dec}\{\mathcal{J}^t_B(G)\}$. We call Φ_t the *generalized stochastic integral* and denote it by $\int_0^t G \circ dB_s$.

Hukuhara Difference for Stochastic Integrals

Proposition (Ararat-M.-Wu, 2020)

•
$$\mathcal{J}_{s}^{t}(\Phi) \ominus \mathcal{J}_{s}^{t}(\Psi) = \mathcal{J}_{s}^{t}(\Phi \ominus \Psi), \ 0 \leq s < t \leq T.$$

 $\Longrightarrow \int_{0}^{T} \Phi \circ dB_{s} \ominus \int_{0}^{T} \Psi \circ dB_{s} := \int_{0}^{T} (\Phi \ominus \Psi) \circ dB_{s}, \mathbb{P}\text{-a}$

• If Φ, Ψ are convex and square integrably bounded, then all stochastic integrals above can be in the Aumann-Itô sense.

•
$$\int_0^T \Phi \circ dB_s \ominus \int_0^T \Psi \circ dB_s = \{0\} \Longrightarrow \int_0^T \Phi \circ dB_s = \int_0^T \Psi \circ dB_s.$$

•
$$\int_0^t \Phi \circ dB_s \ominus \int_0^t \Psi \circ dB_s = \{0\}, \mathbb{P}\text{-a.s.}, \forall t \in \mathbb{T} \Longrightarrow \Phi \equiv \Psi.$$

Some Important Estimates

• Define

$$\left\{ egin{array}{ll} H(\Phi,\Psi):=\mathbb{E}h(\Phi,\Psi), & \Phi,\Psi\in\mathscr{L}^1_{\mathcal{F}_{\mathcal{T}}}(\Omega;\mathscr{X}); \ \mathcal{H}_2(\Phi,\Psi):=[\mathbb{E}h^2(\Phi,\Psi)]^{1/2}, & \Phi,\Psi\in\mathscr{L}^2_{\mathcal{F}_{\mathcal{T}}}(\Omega;\mathscr{X}) \end{array}
ight.$$

• Then for $\mathcal{G} \subset \mathcal{F}$, it holds that

- $H(\mathbb{E}[\Phi|\mathcal{G}],\mathbb{E}[\Psi|\mathcal{G}]) \leq H(\Phi,\Psi)$ (Kisielewicz '13)
- $h^2(\mathbb{E}[\Phi|\mathcal{G}],\mathbb{E}[\Psi|\mathcal{G}]) \leq \mathbb{E}[h^2(\Phi,\Psi)|\mathcal{G}]$, \mathbb{P} -a.s. (Ararat-M.-Wu)
- $\mathcal{H}_2(\mathbb{E}[\Phi|\mathcal{G}], \mathbb{E}[\Psi|\mathcal{G}]) \leq \mathcal{H}_2(\Phi, \Psi).$

•
$$h^2\Big(\int_t^T \Phi_s ds, \int_t^T \Psi_s ds\Big) \leq (T-t)\int_t^T h^2(\Phi_s, \Psi_s) ds$$
, \mathbb{P} -a.s.

イロト 不得 トイヨト イヨト 二日

Outline

2 Set-Valued Analysis/Stochastic Analysis

3 Essentials of Set-Valued BSDEs

4 New Definitions of Set-Valued Stochastic Integral

Set-Valued BSDEs

イロト イヨト イヨト

Set-Valued Martingale Representation Theorem

- Assume $\mathbb{F} = \mathbb{F}^B$ and let M be a set-valued (\mathbb{L}^2) \mathbb{F} -martingale. Then for each $f \in MS(M)$, $\exists ! g^f \in \mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^{d \times m})$, such that $f_t = \int_0^t g_s^f dB_s$, $t \in \mathbb{T}$, \mathbb{P} -a.s.
- Denote $\mathcal{G}^M := \{g^f : f \in MS(M)\} \in \mathscr{P}(\mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^{d \times m})).$

Theorem (Kisielevicz, 2014)

Assume $\mathbb{F} = \mathbb{F}^B$, where *B* is a \mathbb{R}^m -valued Brownian motion. Then for every set-valued martingale $M = \{M_t\}_{t \in [0,T]} \in \mathscr{L}^{2,d}_{\mathbb{F}}(\mathbb{T})$, with $M_0 = \{0\}$, there exists $\mathcal{G}^M \in \mathscr{P}(\mathbb{L}^2_{\mathbb{F}}(\mathbb{T}; \mathbb{R}^{d \times m}))$, such that $M_t = \int_0^t \mathcal{G}^M \circ dB_s$, \mathbb{P} -a.s. $t \in \mathbb{T}$.

Note : The set G^M is likely not decomposable, thus the stochastic integral can only be in the generalized sense.

Simplest Possible Set-Valued BSDEs

$$Y_t = \mathbb{E}\Big[\xi + \int_t^T F(s, Y_s, \cdots) ds \Big| \mathcal{F}_t\Big], \qquad t \in \mathbb{T} = [0, T].$$

$$Y_t = \xi + \int_t^T F(s, Y_s, \cdots) ds - \int_t^T Z \circ dB_s, \qquad t \in \mathbb{T},$$

x

Set-Valued BSDEs

э

ヘロト 人間ト 人造ト 人造ト

Simplest Possible Set-Valued BSDEs

$$Y_t = \mathbb{E}\Big[\xi + \int_t^T F(s, Y_s, \cdots) ds \Big| \mathcal{F}_t\Big], \qquad t \in \mathbb{T} = [0, T].$$

$$Y_t = \xi + \int_t^T F(s, Y_s, \cdots) ds - \int_t^T Z \circ dB_s, \qquad t \in \mathbb{T},$$

x

Set-Valued BSDEs

э

ヘロト 人間ト 人造ト 人造ト

Simplest Possible Set-Valued BSDEs

$$Y_t = \mathbb{E}\Big[\xi + \int_t^T F(s, Y_s, \cdots) ds \Big| \mathcal{F}_t\Big], \qquad t \in \mathbb{T} = [0, T].$$

$$Y_t = \left[\xi + \int_t^T F(s, Y_s, \cdots) ds\right] \ominus \int_t^T Z \circ dB_s, \qquad t \in \mathbb{T},$$

$$Y_t + \int_t^T Z \circ dB_s = \xi + \int_t^T F(s, Y_s, \cdots) ds, \qquad t \in \mathbb{T},$$

where $\xi \in \mathscr{L}^2_{\mathcal{F}_{\mathcal{T}}}(\Omega)$, $F : \mathbb{T} \times \Omega \times \mathscr{X} \mapsto \mathscr{X}$ is a multifunction to be specified, and the stochastic integral is in generalized sense!

Simplest Possible Set-Valued BSDEs

$$Y_t = \mathbb{E}\Big[\xi + \int_t^T F(s, Y_s, \cdots) ds \Big| \mathcal{F}_t\Big], \qquad t \in \mathbb{T} = [0, T].$$

$$Y_t = \left[\xi + \int_t^T F(s, Y_s, \cdots) ds\right] \ominus \int_t^T Z \circ dB_s, \qquad t \in \mathbb{T},$$

$$Y_t + \int_t^T Z \circ dB_s = \xi + \int_t^T F(s, Y_s, \cdots) ds, \qquad t \in \mathbb{T},$$

where $\xi \in \mathscr{L}^{2}_{\mathcal{F}_{\mathcal{T}}}(\Omega)$, $F : \mathbb{T} \times \Omega \times \mathscr{X} \mapsto \mathscr{X}$ is a multifunction to be specified, and the stochastic integral is in generalized sense!

Well-postedness (First Take)

Consider the following simplest SVBSDE :

$$Y_t = \mathbb{E}\Big[\xi + \int_t^T F(s, .., Y_s) ds \Big| \mathscr{F}_t\Big], \qquad t \in [0, T].$$
(6)

Main Idea :

• Consider the mapping

$$(\Phi(Y))_t = \mathbb{E}\Big[\xi + \int_t^T F(s, Y_s) ds \big| \mathscr{F}_t\Big], \qquad t \in \mathbb{T}.$$

• Find an appropriate space \mathcal{Y} , so that $\Phi : \mathcal{Y} \mapsto \mathcal{Y}$, and is a contraction.

×

イロト 不得 トイヨト イヨト

Well-postedness (First Take)

- Consider $(\mathscr{K}(\mathbb{L}^2), H_{\mathbb{L}^2})$, where $\mathbb{L}^2 = \mathbb{L}^2(\Omega; \mathbb{R}^d)$.
- Note : $H_{\mathbb{L}^2}$ is not $\mathcal{H}_2(!)$, and one shows that

$$\begin{aligned} \mathcal{H}_{\mathbb{L}^{2}}^{2} \Big\{ \mathbb{E} \Big[\int_{\tau}^{t} \Psi_{s} ds \Big| \mathcal{F}_{t} \Big], \mathbb{E} \Big[\int_{\tau}^{t} \Psi_{s}' ds \Big| \mathcal{F}_{t} \Big] \Big) & (7) \\ & \leq (t - \tau) \int_{\tau}^{t} \mathcal{H}_{2}^{2}(\Psi_{s}, \Psi_{s}') ds, \qquad 0 \leq \tau < t \leq T. \end{aligned}$$

• Now consider $\mathcal{Y}=\mathbb{C}(\mathbb{T},\mathscr{K}(\mathbb{L}^2))$ with the metric :

$$D_{\lambda}(X,Y) := \sup_{t\in[0,T]} e^{-\lambda(T-t)} H_{\mathbb{L}^2}(X_t,Y_t), \qquad \lambda > 0.$$

Then $(\mathcal{Y}, D_{\lambda})$ is a complete metric space.

• Using (7) to show that $\Phi: \mathcal{Y} \mapsto \mathcal{Y}$ is a contraction for λ large.

What about Z?

Consider again the simplest form :

$$Y_t + \int_t^T Z \circ dB_s = \xi + \int_t^T F(s, Y_s) ds, \qquad t \in \mathbb{T}, \ a.s.$$
(8)

_emma (Aarat-M.-Wu, '21

Given $\xi \in \mathscr{L}^{2}_{\mathcal{F}_{T}}(\Omega; \mathscr{X})$ and $\Phi \in \mathscr{L}^{2}_{\mathbb{F}}(\mathbb{T}; \mathscr{X})$, there exists a unique $(Y, Z) \in \mathscr{L}^{2}_{\mathbb{F}}(\mathbb{T}; \mathscr{X}) \times \mathscr{P}(\mathbb{L}^{2}_{\mathbb{F}}(\mathbb{T} \times \mathbb{R}^{d \times m}))$, such that $Y_{t} = \mathbb{E}\Big[\xi + \int_{t}^{T} \Phi_{s} ds \Big| \mathcal{F}_{t}\Big] = \Big[\xi + \int_{t}^{T} \Phi_{s} ds\Big] \ominus \int_{t}^{T} Z \circ dB_{s}, \ t \in \mathbb{T}.$

This can be proved by using the SV MRT, the properties of Hukuhara difference, and the cancellation law, and the cancellat

Jin Ma (USC)

Set-Valued BSDEs

What about Z?

Consider again the simplest form :

$$Y_t + \int_t^T Z \circ dB_s = \xi + \int_t^T F(s, Y_s) ds, \qquad t \in \mathbb{T}, \ a.s.$$
(8)

Lemma (Aarat-M.-Wu, '21)

Given $\xi \in \mathscr{L}^{2}_{\mathcal{F}_{T}}(\Omega; \mathscr{X})$ and $\Phi \in \mathscr{L}^{2}_{\mathbb{F}}(\mathbb{T}; \mathscr{X})$, there exists a unique $(Y, Z) \in \mathscr{L}^{2}_{\mathbb{F}}(\mathbb{T}; \mathscr{X}) \times \mathscr{P}(\mathbb{L}^{2}_{\mathbb{F}}(\mathbb{T} \times \mathbb{R}^{d \times m}))$, such that $Y_{t} = \mathbb{E}\Big[\xi + \int_{t}^{T} \Phi_{s} ds \Big| \mathcal{F}_{t}\Big] = \Big[\xi + \int_{t}^{T} \Phi_{s} ds\Big] \ominus \int_{t}^{T} Z \circ dB_{s}, \ t \in \mathbb{T}.$

This can be proved by using the SV MRT, the properties of Hukuhara difference, and the cancellation law.

Picard Iteration

- Define the iteration sequence $\{(Y^{(n)}, Z^{(n)})\}$ (Lemma)
- Denote $\Delta Y^{(n)}_t := Y^{(n)}_t \ominus Y^{(n-1)}_t$, $\Delta Z^{(n)}_t = Z^{(n)}_t \ominus Z^{(n-1)}_t$
- Argue that (with $M_{r,T}^{(n)} := \int_r^T Z^{(n)} \circ dB_s$)

$$\Delta Y_t^{(n)} + \Delta M_{t,T}^{(n)} = \int_t^T [F(s, Y_s^{(n-1)}) \ominus F(s, Y_s^{(n-2)})] ds$$

• With some assumptions on F one shows that

$$\mathbb{E} \| \triangle Y_t^{(n)} \|^2 \leq \| \Delta Y_t^{(n)} + \triangle M_{t,T}^{(n)} \|^2 \leq T \mathcal{K}^2 \int_t^T \mathbb{E} \| \triangle Y_s^{(n-1)} \|^2 ds.$$

$$\implies \mathbb{E}\|\Delta Y_t^{(n)}\|^2 \leq \frac{CK^{n-1}T^{2(n-1)}}{(n-1)!} =: a_n^2, \text{ where } \sum_{n=0}^{\infty} a_n < \infty.$$

Finally ...

• Using properties of Hukuhara difference to show that

$$\|Y_t^{(n)} \ominus Y_t^{(m)}\|_H \le \sum_{k=m}^{n-1} \|\Delta Y_t^{(k)}\|_H \le \sum_{k=m}^{n-1} a_k.$$

• Since $h(A, B) \leq ||A \ominus B||$, $\{Y_t^{(n)}\}$ is Cauchy in $\mathscr{L}^2_{\mathcal{F}_T}(\Omega; \mathscr{X})$, hence $\exists Y \in \mathscr{L}^2_{\mathcal{F}_T}(\Omega; \mathscr{X})$, such that

$$\sup_{t\in[0,T]} \|Y_t^{(n-1)}\ominus Y_t\|_H^2 \leq \sum_{k=n-1}^\infty a_k \to 0, \qquad n\to\infty.$$

• Argue that Y satisfies the SVBSDE

$$Y_t = \xi + \mathbb{E}\Big[\int_t^T f(s, Y_s) ds \Big| \mathcal{F}_t\Big], \quad t \in \mathbb{T} \implies Done!$$

Jin Ma (USC)

Some hidden subtleties

• Existence of $\Delta Y^{(n)}$ and $\Delta Z^{(n)}$?

- $\Delta Y^{(n-1)}$ exists $\Longrightarrow \Delta [F(t, Y^{(n-1)}_t)]$ exists.
- $\Delta Y_t^{(n)} + \Delta M_t^{(n)} = \int_t^T [\Delta F(s, Y_s^{(n-1)})] ds$
- (MRT) $\Delta M_t^{(n)} = \int_0^t \Delta Z^{(n)} \circ dB_s.$
- Assume $Y^{(n)} \oplus Y^{(m)}$ exists $\forall n, m \oplus \lim_{n,m} ||Y^{(n)} \oplus Y^{(m)}|| = 0$. (I.e., $\{Y^{(n)}\}$ is Cauchy in (\mathscr{X}, h)). Do we actually know that $\exists Y$ such that $Y^{(n)} \oplus Y$ exists for all n?

Proposition (Ararat-M.-Wu, '21)

Assume that $\{A_n\}_{n\geq 1}, A, B \in \mathscr{K}(\mathbb{R}^d), h(A_n, A) \to 0$, as $n \to \infty$. and $A_n \ominus B$ exists for all n. Then, $A \ominus B$ exists.

Some Serious Issues

Two theorems from Kisielewicz's 2020 book (Springer) :

Unboundedness of Aumann-Itô SV-Integrals (Corollary 5.3.2)

For every nonempty decomposable set $K \subset \mathbb{L}^2(\mathbb{T}, \mathscr{X})$ and every $0 \leq s < t \leq T$, the ltô set-valued integral $\int_s^t K_s dB_s$ is square integrably bounded *if and only if K is a singleton*.

Decomposition of Unity (Lemma 3.3.4)

For every set $K \subset \mathbb{L}^2(\mathbb{T} \times \Omega, \mathscr{X})$, and every partition $\pi : 0 = \tau_0 < \tau_1 < \cdots \tau_n = T$ of [0, T], it holds that

$$K \subseteq \mathbf{1}_{[0,\tau_1]}K + \mathbf{1}_{(\tau_1,\tau_2]}K + \cdots + \mathbf{1}_{(\tau_{n-1},T]}K.$$

If K is *decomposable*, then the equality holds.

Also ...

A result from recent paper by J.P. Zhang and Kouji Yano (2020) :

Singleton Test (Lemma 3.1)

For any set-valued random variable $F \in L^1(\Omega, \mathcal{K}(\mathscr{X}))$ and any $a \in \mathscr{X}$, the expectation $\mathbb{E}(F) = \{a\}$ if and only if F degenerates to a random singleton $\{f\}$ with $\mathbb{E}(f) = a$.

Representability of Set-Valued Martingale (Theorem 3.1)

Let M be a set-valued \mathbb{F} -martingale. Then

$$M_t = \mathbb{E}[M_0] + \int_0^t G_s dB_s \quad \Longleftrightarrow \quad M_t = C + \int_0^t g_s dB_s,$$

for some $g \in \mathbb{L}^2_{\mathbb{F}}(\Omega; \mathscr{X})$ and $C \in \mathcal{K}(\mathscr{X})$.

Some Bad News

- Kisielewicz' set-valued MRT essentially holds only for vector-valued martingales (singleton), since M₀ = {0};
- If MRT holds and *M* is square-integrably bounded, then *Z* cannot be measurable/decomposible unless it is a singleton(!).
- But a generalized integral is NOT temporally additive, that is,

$$\int_0^T Z \circ dB_s \subsetneq \int_0^t Z \circ dB_s + \int_t^T Z \circ dB_s,$$

thus the whole scheme would collapse in general!

The Remedies

• Consider only BSDEs without Z

- Use other set-valued stochastic integrals (e.g., "trajectory integrals") that are easily temporally additive
 - The danger : the integral may not be a set-valued process, therefore even more hopeless for MRT.
- Find new definition of set-valued stochastic integrals that are
 - non-singleton expected value (truly set-valued);
 - temporally additive; and
 - MRT compatible !

×

ヘロト 人間ト 人造ト 人造ト

The Remedies

- Consider only BSDEs without Z
- Use other set-valued stochastic integrals (e.g., "trajectory integrals") that are easily temporally additive
 - The danger : the integral may not be a set-valued process, therefore even more hopeless for MRT.
- Find new definition of set-valued stochastic integrals that are
 - non-singleton expected value (truly set-valued);
 - temporally additive; and
 - MRT compatible !

ヘロト ヘヨト ヘヨト ヘヨト

The Remedies

- Consider only BSDEs without Z
- Use other set-valued stochastic integrals (e.g., "trajectory integrals") that are easily temporally additive
 - The danger : the integral may not be a set-valued process, therefore even more hopeless for MRT.
- Find new definition of set-valued stochastic integrals that are
 - non-singleton expected value (truly set-valued);
 - temporally additive; and
 - MRT compatible !

イロト イポト イヨト イヨト

Outline

- 2 Set-Valued Analysis/Stochastic Analysis
- 3 Essentials of Set-Valued BSDEs
- 4 New Definitions of Set-Valued Stochastic Integral

x

イロト イヨト イヨト

What do we know

Main Delemmas

- If MRT holds, then the integrand Z cannot be decomposable;
- If integrand Z is not decomposable, then the additivity fails;
- If the initial value M₀ is a singleton (e.g., {0}), then the martingale must be degenerate (singleton);
- If the MRT holds with a standard Aumman-Itô integral, then the martingale must be a constant set "pushed" by a vector-valued martingale.
- All these conflicts are due to the definition and properties of the existing theory on the set-valued stochastic integrals !

Main Delemmas

- If MRT holds, then the integrand Z cannot be decomposable;
- If integrand Z is not decomposable, then the additivity fails;
- If the initial value M₀ is a singleton (e.g., {0}), then the martingale must be degenerate (singleton);
- If the MRT holds with a standard Aumman-Itô integral, then the martingale must be a constant set "pushed" by a vector-valued martingale.
- All these conflicts are due to the definition and properties of the existing theory on the set-valued stochastic integrals !

First Try (Aarat-M.-Wu, '21)

- Consider $\mathbb{R}_t := \mathbb{L}^2_{\mathcal{F}_t}(\Omega, \mathbb{R}^d) \times \mathbb{L}^2_{\mathbb{F}}([t, T] \times \Omega, \mathbb{R}^{d \times m})$, $t \in \mathbb{T}$.
- Define a mapping $F^t \colon \mathbb{R}_0 \mapsto \mathbb{R}_t$ by

$$F^t(x,z) := \left(x + \int_0^t z_s dB_s, z^t\right), \quad (x,z) \in \mathbb{R}_0,$$

where $z^t := (z_u)_{u \in [t,T]}$, the restriction of z onto [t, T].

• For $t \in [0, T]$ and $(\xi, z^t) \in \mathbb{R}_t$, define, for $u \in [0, T]$,

$$\mathcal{J}_u^t(\xi, z^t) := \mathbb{E}[\xi|\mathcal{F}_u]\mathbf{1}_{[0,t)}(u) + \left\{\xi + \int_t^u z_s^t dB_s\right\}\mathbf{1}_{[t,T]}(u).$$

Then, for any $t\in\mathbb{T}$, $\mathcal{J}^t(\xi,z^t)$ is an \mathbb{F} -martingale on \mathbb{T} ,

• (Time Consistency) $\mathcal{J}^t \circ F^t = \mathcal{J}^s \circ F^s = \mathcal{J}^0$ on \mathbb{R}_0 , $s, t \in \mathbb{T}$.

- For $\mathcal{R} \subset \mathbb{R}_0$, $t \ge 0$, \exists SV r.v $I_0^t(\mathcal{R}) \in \mathbb{L}^2_{\mathcal{F}_t}(\Omega, \mathscr{C}(\mathbb{R}^d))$, s.t. $S^2_{\mathcal{F}_t}(I_0^t(\mathcal{R})) = \overline{\operatorname{dec}}_{\mathcal{F}_t}(\mathcal{J}^0_t[\mathcal{R}]).$ (9)
 - We call $I_0^t(\mathcal{R}) := \int_{0-}^t \mathcal{R} \circ dB$ the generalized stoch. integral.
 - This integral tracks the initial values of the mg's in $\mathcal{J}^0[\mathcal{R}](\,!).$
- Let *M* be a L²-SV mg, and *MS(M)* its (L²-)mg selectors. By standard MRT we can define, for each *t* ∈ T,

$$\mathcal{R}^M_t := \{(\xi, z) \in \mathbb{R}_t \colon \mathcal{J}^t(\xi, z) \in MS(M)\}; \quad \mathcal{R}^M := \mathcal{R}^M_0.$$

Theorem (MRT, Ararat-M.-Wu, 2021)

$$M_t = \int_{0-}^t \mathcal{R}^M \circ dB, \quad \mathbb{P} ext{-a.s.}, t \in \mathbb{T}.$$

Moreover, $S^2_{\mathcal{F}_t}(M_t) = \overline{\operatorname{dec}}_{\mathcal{F}_t}(P_t[MS(M)]) = \overline{\operatorname{dec}}_{\mathcal{F}_t}(\mathcal{J}^0_t[\mathcal{R}^M]).$

Connection with SV BSDEs

• The definition of the new stochastic SV integral can lead to a representation of the SVBSDE (6) :

$$Y_t + \int_{0-}^T \mathcal{Z} \circ dB = \xi + \int_t^T f(s, Y_s) ds + \int_{0-}^t \mathcal{Z} \circ dB. \quad (10)$$

where the pair $(Y, \mathcal{Z}) \in Y \in \mathscr{L}^2_{\mathbb{F}}([0, T] \times \Omega, \mathscr{K}(\mathbb{R}^d)) \times \mathbb{R}_0$ can be defined as the solution, if $Y_0 = \pi_{\xi}[\mathcal{Z}]$ and one can argue that such solution (Y, \mathcal{Z}) exists and is unique.

The Main Issues

- The representation is only defined "a.s." for each $t \in \mathbb{T}$.
- No "path-regularity" for the (*indefinite*) integral $t \mapsto I_0^t(\mathcal{R})$
- "Temporal additivity"? $(M_t \neq "I_{s-}^t(\mathcal{R}^M)" + M_s)$

Indefinite Integrals — A "Path" View

- Recall : for $\mathcal{R} \subset \mathbb{R}_0$, $\mathcal{J}^0[\mathcal{R}] \subset \mathbb{L}^2_{\mathcal{F}_T}(\Omega, \mathbb{C}^d_T)$.
- $I^{\mathcal{R}} = I_0^{\mathcal{T}}(\mathcal{R}) \in \mathscr{M}(\Omega; \mathcal{C}(\mathbb{C}^d_T))$, s.t. $S^2_{\mathcal{F}_T}(I^{\mathcal{R}}) = \overline{\operatorname{dec}}_{\mathcal{F}_T}(\mathcal{J}^0[\mathcal{R}])$.
- Define, for $t \in \mathbb{T}$, $I_t^{\mathcal{R}}(\omega) := \overline{P_t[I^{\mathcal{R}}(\omega)]}, \quad \omega \in \Omega.$
 - Note that $I^{\mathcal{R}}(\omega) \subset \mathbb{C}_{T}^{d}$ is closed, bdd, but not necessarily weakly compact, thus $P_{t}[I^{\mathcal{R}}(\omega)]$ is not necessarily closed(!).

Proposition (Ararat-M. (2022))

- For each $t \in \mathbb{T}$, $I_t^{\mathcal{R}}$ is an \mathcal{F}_T -measurable SV random variable.
- The set-valued mapping $(t, \omega) \mapsto I_t^{\mathcal{R}}(\omega)$ on $\mathbb{T} \times \Omega$ is $\mathscr{B}(\mathbb{T}) \otimes \mathcal{F}_T$ -measurable.

•
$$S^2_{\mathcal{F}_{\mathcal{T}}}(I^{\mathcal{R}}_t) = \operatorname{cl}_{\mathbb{L}^2(\Omega)}\{y_t \colon y \in S^2_{\mathcal{F}_{\mathcal{T}}}(I^{\mathcal{R}})\}.$$

Moreover ...

• For $t \in \mathbb{T}$, define the $\mathbb{E}[I_t^{\mathcal{R}}|\mathcal{F}_t] : \Omega \to \mathcal{C}(\mathbb{R}^d)$ s.t. $S^2_{\mathcal{F}_t}(\mathbb{E}[I_t^{\mathcal{R}}|\mathcal{F}_t]) = \overline{\operatorname{dec}}_{\mathcal{F}_t}\{\mathbb{E}[\xi|\mathcal{F}_t] : \xi \in S^2_{\mathcal{F}_T}(I_t^{\mathcal{R}})\}$ $= \operatorname{cl}_{\mathbb{L}^2}\{\mathbb{E}[\xi|\mathcal{F}_t] : \xi \in S^2_{\mathcal{F}_T}(I_t^{\mathcal{R}})\}.$

• (R. Wang (2001)) \exists ! optional set-valued process $({}^{o}I_{t}^{\mathcal{R}})_{t\in[0,T]}$ s.t. $\mathbb{E}[I_{\tau}^{\mathcal{R}}|\mathcal{F}_{\tau}] = {}^{o}I_{\tau}^{\mathcal{R}}$, a.s., for every \mathbb{F} -stopping time τ .

Theorem (Ararat-M. (2022))

• For $t \in \mathbb{T}$, $S^2_{\mathcal{F}_t}({}^0I^{\mathcal{R}}_t) = \overline{\operatorname{dec}}_{\mathcal{F}_t}(\mathcal{J}^0_t[\mathcal{R}]).$

•
$${}^{o}I_t^{\mathcal{R}} = \mathbb{E}[I_t^{\mathcal{R}}|\mathcal{F}_t] = \int_{0-}^t \mathcal{R} \circ dB$$
 P-a.s.

• Let M be a convex, \mathbb{L}^2 -integrably bounded SV mg. Then $M_t = \mathbb{E}[I_t^{\mathcal{R}^M} | \mathcal{F}_t] = {}^oI_t^{\mathcal{R}^M}$, \mathbb{P} -a.s.

Temporal Additivity of Indefinite Integrals

• Let $\Pi_n = \{\pi = (t_i)_{i=0}^n\}$ be the set of partitions on \mathbb{T} .

• Let $\mathcal{Y} \subset \mathbb{L}^0(\mathbb{T}, \mathbb{R}^d)$. For $\pi \in \Pi_n$ and $\{y^i\}_{i=0}^n \subset \mathcal{Y}$, define

$$y_t^{\pi} = y_t^0 \mathbf{1}_{\{0\}}(t) + \sum_{i=1}^n y_t^i \mathbf{1}_{(t_{i-1},t_i]}(t), \ t \in \mathbb{T}.$$

- \mathcal{Y} is called *temporally decomposable* if $\forall n \in \mathbb{N}, \pi \in \Pi_n$, and $\{y^i\}_{i=0}^n \subset \mathcal{Y} \Longrightarrow y^{\pi} \in \mathcal{Y}$.
 - Denote the "temporally decomposable hull" of $\mathcal Y$ by temp($\mathcal Y$).
 - For $A \in \mathscr{B}(\mathbb{T})$, $\mathcal{Y} \subset \mathcal{Y}\mathbf{1}_{A} + \mathcal{Y}\mathbf{1}_{A^{c}}$ ("=" if \mathcal{Y} is t-decomposable)
 - $\operatorname{temp}(\mathcal{Y}) = \operatorname{temp}(\mathcal{Y}\mathbf{1}_{[0,t]}) + \operatorname{temp}(\mathcal{Y}\mathbf{1}_{(t,T]}).$

Hope

• Define $I^{\mathcal{R}} \in \mathscr{M}(\Omega, \mathcal{C}(\mathbb{D}_{\mathsf{T}}^{-}))$ s.t. $S^{2}_{\mathcal{F}_{\mathsf{T}}}(I^{\mathcal{R}}) = \overline{\operatorname{dec}}(\operatorname{temp}(\mathcal{J}_{0}[\mathcal{R}])).$

• $t \mapsto {}^{o}I_t^{\mathcal{R}} := \mathbb{E}_t[\overline{P_t(I^{\mathcal{R}})}]$ is *temp-additive*, and $M_t = {}^{o}I_t^{\mathcal{R}^M}$, a.s.

Main Difficulties

- Observe : I^R will now be C(D_T) -valued, instead of C(C^d_T)-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology?
 - \mathbb{D}_T^- with Skorohod topology is *not a topological vector space*
 - $(\mathbb{D}_{\mathcal{T}}^{-}, \|\cdot\|_{\infty})$ is a Banach Space but *not separable*
- Why separable?
 - needed for, e.g., measurability \iff decomposibility

- $(\mathbb{D}_{T}^{-}, \|\cdot\|_{\infty})^{*}$ is weak*-separable(!)
- Scalar measurability, Aumann-Pettis integration theory , ..., etc., for multi-functions on non-separable Banach spaces

Main Difficulties

- Observe : I^R will now be C(D_T) -valued, instead of C(C^d_T)-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology?
 - \mathbb{D}_{T}^{-} with Skorohod topology is *not a topological vector space*
 - $(\mathbb{D}_{\mathcal{T}}^{-}, \|\cdot\|_{\infty})$ is a Banach Space but *not separable*
- Why separable ?
 - $\bullet \ \ \text{needed for, e.g., measurability} \Longleftrightarrow \ \text{decomposibility} \\$

- $(\mathbb{D}_{T}^{-}, \|\cdot\|_{\infty})^{*}$ is weak*-separable(!)
- Scalar measurability, Aumann-Pettis integration theory , ..., etc., for multi-functions on non-separable Banach spaces

Main Difficulties

- Observe : I^R will now be C(D_T[−]) -valued, instead of C(C^d_T)-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology?
 - \mathbb{D}_{T}^{-} with Skorohod topology is *not a topological vector space*
 - $(\mathbb{D}_{\mathcal{T}}^{-}, \|\cdot\|_{\infty})$ is a Banach Space but *not separable*
- Why separable?
 - $\bullet \ \ {\sf needed} \ \ {\sf for, \ e.g., \ measurability} \Longleftrightarrow \ {\sf decomposibility}$

- $(\mathbb{D}_{\mathcal{T}}^{-}, \|\cdot\|_{\infty})^{*}$ is weak*-separable(!)
- Scalar measurability, Aumann-Pettis integration theory , ..., etc., for multi-functions on non-separable Banach spaces

Main Difficulties

- Observe : I^R will now be C(D_T[−]) -valued, instead of C(C^d_T)-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology?
 - \mathbb{D}_T^- with Skorohod topology is *not a topological vector space*
 - $(\mathbb{D}_{\mathcal{T}}^{-}, \|\cdot\|_{\infty})$ is a Banach Space but *not separable*
- Why separable?
 - $\bullet \ \ {\sf needed} \ \ {\sf for, \ e.g., \ measurability} \Longleftrightarrow \ {\sf decomposibility}$

- $(\mathbb{D}_{T}^{-}, \|\cdot\|_{\infty})^{*}$ is weak*-separable(!)
- Scalar measurability, Aumann-Pettis integration theory , ..., etc., for multi-functions on non-separable Banach spaces

Pettis Integration

- Let X be a Banach space. A function f : (Ω, F, μ) → X is called scalarly measurable/integrable if ω → ⟨x*, f(ω)⟩ is measurable/integrable for each x* ∈ X*.
- f is called *Pettis integrable* if it is scalarly integrable \oplus $\forall A \in \mathcal{F}, \exists \int_A f d\mu \in \mathbb{X}$ such that

$$\langle x^*, \int_A \mathrm{fd}\mu \rangle = \int_A \langle x^*, f \rangle \, \mathrm{d}\mu, \quad x^* \in \mathbb{X}^*.$$

 Note : If X is separable, then f is Pettis integrable ↔ {⟨x*, f⟩ : x* ∈ B_{X*}} is uniformly integrable. But If X is nonseparable, then the equivalence holds only when X has the μ-Pettis Integral Property (μ-PIP) (i.e., every scalarly bounded and measurable function is Pettis integrable).

The space $\mathbb{X} = \mathbb{D}_T^-$, while non-separable, is μ -PIP(!)

Pettis Integration

- Let X be a Banach space. A function f : (Ω, F, μ) → X is called scalarly measurable/integrable if ω → ⟨x*, f(ω)⟩ is measurable/integrable for each x* ∈ X*.
- f is called *Pettis integrable* if it is scalarly integrable \oplus $\forall A \in \mathcal{F}, \exists \int_A f d\mu \in \mathbb{X}$ such that

$$\langle x^*, \int_A \mathrm{fd}\mu \rangle = \int_A \langle x^*, f \rangle \, \mathrm{d}\mu, \quad x^* \in \mathbb{X}^*.$$

 Note : If X is separable, then f is Pettis integrable ↔ {⟨x*, f⟩ : x* ∈ B_{X*}} is uniformly integrable. But If X is nonseparable, then the equivalence holds only when X has the μ-Pettis Integral Property (μ-PIP) (i.e., every scalarly bounded and measurable function is Pettis integrable).

The space $\mathbb{X} = \mathbb{D}_{T}^{-}$, while non-separable, is μ -PIP(!)

The Space $Pe(\mu, \mathbb{X})$

 Let Pe(μ, X) be the space of all Pettis integrable X-valued functions, with the strong topology defined by the norm :

$$\|f\|_{Pe} := \sup_{x^* \in \mathbb{B}_{\mathbb{X}^*}} \int_{\Omega} |\langle x^*, f(\omega) \rangle | \mu(d\omega).$$

• We identify $(Pe(\mu, \mathbb{X}))^* \simeq \mathbb{L}^{\infty}(\mu) \times \mathbb{X}^*$, in the sense that the dual product on $Pe(\mu, \mathbb{X})$ is defined by the linear mapping :

$$f \mapsto \langle h \otimes x^*, f \rangle_{Pe} := \int_{\Omega} h(\omega) \langle x^*, f(\omega) \rangle \mu(d\omega).$$

- For M ⊂ Pe(μ, X), we denote by cl_{Pe}(M) (cl^w_{Pe}(M)) the closure of M w.r.t. the strong (weak) topology on Pe(μ, X).
- The space Pe(µ, 𝔅) with its weak topology is a Hausdorff topological vector space.

イロト 不得 トイヨト イヨト

Aumann-Pettis Set-Valued Integrals

- $\mathbb X$ a Banach space such that $\mathbb X^*$ is weak* separable.
 - $\mathscr{C}_w(\mathbb{X})$ weakly closed subsets of \mathbb{X} ,
 - $\mathscr{K}_w(\mathbb{X})$ convex weakly compact subsets of \mathbb{X} .
- For F: (Ω, F, μ) → C_w(X), let S_{Pe}(F) := S(F) ∩ Pe(μ, X), and ω → δ*(x*, F(ω)) := sup{⟨x*, x⟩: x ∈ F(ω)}, ω ∈ Ω, be the support function of F.
- F is called scalarly measurable/integrable if the support function δ^{*}(x^{*},F(·))∈L⁰(Ω)/L¹(Ω), x^{*} ∈ X^{*}.
- *F* is called *Aumann-Pettis integrable* if $S_{Pe}(F) \neq \emptyset$.
- *F* is called *Pettis integrable* if it is scalarly integrable and $\forall A \in \mathcal{F}, \exists \int_A Fd\mu \in \mathscr{K}_w(\mathbb{X})$ such that

$$\delta^*\left(x^*, \int_A Fd\mu\right) = \int_A \delta^*(x^*, F)d\mu, \quad x^* \in \mathbb{X}^*.$$

A E A E AQA

Known Results (Cascales-Ladets-Rodríguez, '10)

Assume that \mathbb{X} in non-separable, but \mathbb{X}^* is weak* separable. Let $F: \Omega \to \mathscr{K}_w(\mathbb{X})$ be a set-valued function. (Think : $\mathbb{X} = \mathbb{D}_T^-$!)

- *F* is Pettis integrable \iff every scalarly measurable selector of *F* is Pettis integrable.
- F is Pettis integrable $\Longrightarrow \exists \{f_n\}_{n\in\mathbb{N}} \subset S_{Pe}(F)$ such that

$$F(\omega) = \operatorname{cl}_{\mathbb{X}}^{w} \{ f_{n}(\omega) \colon n \in \mathbb{N} \}, \quad \omega \in \Omega.$$

- Such a property is known as Castaing Representation
- As a consequence, "Pettis" \implies "Aumann-Pettis" !
- F is Pettis integrable ⇒ {δ*(x*, F): x* ∈ B_{X*}} is uniformly integrable. The converse holds if X has μ-PIP.

Moreover ...

Theorem (Ararat-M. (2022))

Assume that X is non-separable, but X^* is weak*-separable. Assume further that B_{X^*} (unit ball in X^*) is weak*-separable. Let $M \subset Pe(\mu, X)$ be weakly closed decomposable set. Then

- If M = cl^w_{Pe} dec{f_n: n ∈ N} for some sequence (f_n)_{n∈N} in Pe(µ, X), then there exists an Aumann-Pettis integrable SV function F: Ω → C_w(X) such that M = cl^w_{Pe}S_{Pe}(F).
- If $M = \operatorname{cl}_{Pe}^{w} S_{Pe}(F)$ for some Pettis integrable set-valued function $F \colon \Omega \to \mathscr{K}_{w}(\mathbb{X})$, then there exists a sequence $(f_{n})_{n \in \mathbb{N}}$ in $Pe(\mu, \mathbb{X})$ such that $M = \operatorname{cl}_{Pe}^{w} \operatorname{dec} \{f_{n} \colon n \in \mathbb{N}\}$ and $F(\omega) = \operatorname{cl}_{\mathbb{X}}^{w} \{f_{n}(\omega) \colon n \in \mathbb{N}\}$ for every $\omega \in \Omega$.

ヘロト ヘロト ヘヨト

Temporally Additive SV Stochastic Integral

Given $(\Omega, \mathcal{F}, \mathbb{P})$, consider $\mathcal{J}^0 \colon \mathbb{R}_0 \to \mathbb{L}^2_{\mathcal{F}_T}(\Omega, \mathbb{C}_T) \subset \underline{Pe_{\mathcal{F}_T}(\mathbb{P}, \mathbb{D}_T^-)}$.

- If $\mathcal{R} \subset \mathbb{R}_0$, then $\exists \{(x^n, z^n)\}_{n \in \mathbb{N}} \subset \mathcal{R}$, such that
 - $\operatorname{cl} \mathcal{R} = \operatorname{cl} \{ (x^n, z^n) \colon n \in \mathbb{N} \}$
 - $\operatorname{cl} \mathcal{J}^0[\mathcal{R}] = \operatorname{cl} \{ \mathcal{J}^0(x^n, z^n) \colon n \in \mathbb{N} \}$
 - $\operatorname{cl}_{Pe}^{w} \mathcal{J}^{0}[\mathcal{R}] = \operatorname{cl}_{Pe}^{w} \{ \mathcal{J}^{0}(x^{n}, z^{n}) \}_{n \in \mathbb{N}},$
 - $\operatorname{cl}_{Pe}^{w} \operatorname{dectemp}_{\mathbb{Q}} \mathcal{J}^{0}[\mathcal{R}] = \operatorname{cl}_{Pe}^{w} \operatorname{dectemp}_{\mathbb{Q}} \{ \mathcal{J}^{0}(x^{n}, z^{n}) \}_{n \in \mathbb{N}}$
- Since temp_Q{ $\mathcal{J}^0(x^n, z^n)$: $n \in \mathbb{N}$ } is countable, there exists an Aumann-Pettis integrable SV r.v. $\Phi^{\mathcal{R}}: \Omega \to \mathscr{C}_w(\mathbb{D}_T^-)$ such that

$$\operatorname{cl}_{\operatorname{Pe}}^{\operatorname{w}}\operatorname{dec}\operatorname{temp}_{\mathbb{Q}}\mathcal{J}^{0}[\mathcal{R}] = \operatorname{cl}_{\operatorname{Pe}}^{\operatorname{w}}S_{\operatorname{Pe}}(\Phi^{\mathcal{R}}).$$

• We call $\Phi^{\mathcal{R}}$ the stochastic Aumann-Pettis integral of \mathcal{R} and denote it by $\Phi^{\mathcal{R}} := \int_{0-}^{T} \mathcal{R} \circ dB$.

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Temporally Additive Indefinite Integral

- For $t \in \mathbb{T}$, let $J^t(\mathcal{R}) := \mathcal{J}^0_{t \wedge \cdot}(\mathcal{R})$; $J^t_{\mathbb{Q}}(\mathcal{R}) := \bigcup_{q \in \mathbb{Q}, q < t} J^q[\mathcal{R}]$
- $\operatorname{cl}_{Pe}^w \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} J_{\mathbb{Q}}^t[\mathcal{R}] = \operatorname{cl}_{Pe}^w \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} \bigcup_{q \in \mathbb{Q}, q < t} \{J^q(x^n, z^n)\}_{n \in \mathbb{N}}.$
- \exists Aumann-Pettis integrable SV r.v. $\tilde{\Phi}^t(\mathcal{R}) \colon \Omega \to \mathscr{C}_w(\mathbb{D}_T^-)$ s.t. $\operatorname{cl}_{P_e}^w S_{P_e}(\tilde{\Phi}^t(\mathcal{R})) = \operatorname{cl}_{P_e}^w \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} J_{\mathbb{Q}}^t[\mathcal{R}].$
- Similarly, for s < t, define $J_s^t(\mathbb{R}_s) := \mathcal{J}_{t\wedge \cdot}^0 \circ F^{-s}(\mathbb{R}_s)$, where $F^{-s}: \mathbb{R}_s \ni (\xi, z) \mapsto (\mathbb{E}[\xi], z^s \oplus z) \in \mathbb{R}_0, \ \xi = \mathbb{E}[\xi] + \int_0^s z_u^s dB_u$.
- \exists Aumann-Pettis integrable $\tilde{\Phi}_{s}^{t}(\mathcal{R}) \colon \Omega \to \mathscr{C}_{w}(\mathbb{D}_{T}^{-}) \text{ s.t.}$ $\operatorname{cl}_{Pe}^{w} S_{Pe}(\tilde{\Phi}_{s}^{t}(\mathcal{R})) = \operatorname{cl}_{Pe}^{w} \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} J_{s}^{t}[\mathcal{R}].$
- Denote $\tilde{\Phi}_{s}^{t}(\mathcal{R}) = \int_{s-}^{t} \mathcal{R} \circ dB$, $0 \le s < t \le T$, we expect $\int_{0-}^{t} \mathcal{R} \circ dB = \int_{s-}^{t} \mathcal{R} \circ dB + \int_{0-}^{s} \mathcal{R} \circ dB$.

Important Facts

- $\mathbb{D}_{\mathcal{T}}^-$ is a *Banach space* (hence a topological vector space)
- $(\mathbb{D}_T^-)^*$ is weak* separable and \mathbb{P} -PIP for any $\mathbb{P} \in \mathcal{P}(\mathbb{D}_T^-)$
- $B_{(\mathbb{D}_{\tau}^{-})^{*}}$ is weak* separable (not trivial!)
- $temp(\mathcal{Y}) = temp(\mathcal{Y}\mathbf{1}_{[0,t)}) + temp(\mathcal{Y}\mathbf{1}_{[t,T]})$
- $dec(A+B) = dec(A) + dec(B), \qquad A, B \in \mathscr{C}_w(\mathbb{D}_T^-)$
- $\operatorname{cl}_{Pe}^{w}(A+B) = \operatorname{cl}_{Pe}^{w}(A) + \operatorname{cl}_{Pe}^{w}(B), \qquad A, B \in \mathscr{K}_{w}(\mathbb{D}_{T}^{-})$
- $S_{Pe}(X+Y) = S_{Pe}(X) + S_{Pe}(Y), \qquad X, Y \in \mathscr{M}(\mathbb{T}, \mathbb{D}_T^-).$

Set-Valued BSDEs

- (Time Consistency)
 - $\mathcal{J}^t \circ F^t = \mathcal{J}^s \circ F^s = \mathcal{J}^0$ on \mathbb{R}_0 , $s, t \in \mathbb{T}$.
 - $F^t[\mathcal{R}_0] = \mathcal{R}_t$, $F^{-t}[\mathcal{R}_t] = \mathcal{R}_0$

•

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Jin Ma (USC)

A Story ...

R

Weak* separability of dual unit ball of D[0,1]

Asked 7 days ago Modified 4 days ago Viewed 95 times

- Let D[0, 1] be the space of all right-continuous left-limited functions $f: [0, 1] \rightarrow \mathbb{R}$ equipped with the supremum norm $f \mapsto ||f||_{\infty} = \sup_{t \in [0, 1]} |f(t)|$. This is a non-separable Banach space whose dual $D[0, 1]^*$ is known to be separable in the weak* topology; see, e.g., Chapter 41, p. 1756 of
 - Johnson, W. B. (ed.); Lindenstrauss, J. (ed.), Handbook of the geometry of Banach spaces. Volume 2, Amsterdam: North-Holland. xii, 1007-1866 (2003). ZBL1013.46001.
 - Is the unit ball in D[0, 1]* separable in the weak* topology?

[The question was posted on the website : *Mathstackexchange*.]

A Story ...

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 366, Number 9, September 2014, Pages 4733-4753 S 0002-9947(2014)05962-X Article electronically published on May 5, 2014

A WEAK* SEPARABLE $C(K)^*$ SPACE WHOSE UNIT BALL IS NOT WEAK* SEPARABLE

A. AVILÉS, G. PLEBANEK, AND J. RODRÍGUEZ

ABSTRACT. We provide a ZFC example of a compact space K such that $C(K)^*$ is w^* -separable but its closed unit ball $B_{C(K)^*}$ is not w^* -separable. All previous examples of such kind had been constructed under CH. We also discuss the measurability of the supremum norm on that C(K) equipped with its weak Baire σ -algebra.

1. INTRODUCTION

Let K be a compact space (all our topological spaces are assumed to be Hausdorff) and let C(K) be the Banach space of all continuous real-valued functions on K (equipped with the supremum norm). One can consider the following list of properties related to the separability in K and $C(K)^{*}$.

Jin Ma (USC)

Set-Valued BSDEs

Annecy, 6/30/2022 52/55

A Story ...

1 Answer

Sorted by: Highest score (default)

1

 $(D([0, 1]), \|\cdot\|_{\infty})$ is a commutative C^* -algebra, so it is isometrically isomorphic to $C(\Delta)$ by the Gelfand map, where Δ is the character space of D([0, 1]).

Let $h_{1+} \in \Delta$ be defined by $h_{1+}(f) = f(1)$ for all $f \in (D([0, 1])$. Every $h \in \Delta \setminus \{h_{1+}\}$ is either of the form

$$\forall f \in D([0,1]) \quad h_{c+}(f) = f(c+) = \lim_{x \to c+} f(x)$$

for some $c \in [0, 1)$ or of the form

$$\forall f \in D([0,1]) \quad h_{c-}(f) = f(c-) = \lim_{x \to c-} f(x)$$

for some $c \in (0, 1]$. Let $K = \{(c, 1) : c \in [0, 1]\} \cup \{(c, -1) : c \in (0, 1]\}$ with the <u>weak parallel</u> <u>line topology</u>. It is relatively straightforward to show that Δ is homeomorphic to K. K is a <u>separable</u>, compact, Hausdorff space.

Since Δ and K are homeomorphic, $C(\Delta)$ and C(K) are isometrically isomorphic as Banach spaces. Lastly, see the implications in the first page of the paper https://doi.org/10.48550/arXiv.1112.5710 : since K is separable, the unit ball of $(C(K))^*$ is weak* separable.

×

Conclusion

- We argue that the current set-valued stochastic analysis may have fundamental difficulties in studying a set-valued BSDE.
- A successful remedy might have to contain a new notion of set-valued stochastic integrals that satisfies following requirements :
 - It is a set-valued process (decomposable) allowing non-decomposable integrand;
 - it is temporally additive; and
 - It permits a (set-valued) martingale representation theorem.
- We proposed possible new definition of set-valued stochastic integral that meets the desired the properties.
- There is a long, but hopeful way ahead...

イロト 不得 トイヨト イヨト

Conclusion

- We argue that the current set-valued stochastic analysis may have fundamental difficulties in studying a set-valued BSDE.
- A successful remedy might have to contain a new notion of set-valued stochastic integrals that satisfies following requirements :
 - It is a set-valued process (decomposable) allowing non-decomposable integrand;
 - it is temporally additive; and
 - It permits a (set-valued) martingale representation theorem.
- We proposed possible new definition of set-valued stochastic integral that meets the desired the properties.
- There is a long, but hopeful way ahead...

イロト 不得 トイヨト イヨト

THANK YOU VERY MUCH!

x

Set-Valued BSDEs

Annecy, 6/30/2022 55/ 55

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶