Set-Valued Backward SDEs and Related Set-Valued Stochastic Analysis

Jin Ma

Based on the joint works with Çağın Ararat and Wenqian Wu

9th Colloquium on BSDEs and Mean-field Systems
Annecy, June 30, 2022

Outline

(1) Introduction
(2) Set-Valued Analysis/Stochastic Analysis
(3) Essentials of Set-Valued BSDEs
(4) New Definitions of Set-Valued Stochastic Integral

Outline

(1) Introduction

(2) Set-Valued Analysis/Stochastic Analysis
(3) Essentials of Set-Valued BSDEs
4. New Definitions of Set-Valued Stochastic Integral

Examples of Set-valued Dynamics

- "Reacheable Sets"
- Any higher dimensional controlled dynamic systems (could be both forward and backward(!))
- The backward version could be used to characterize "DPP" for "time-inconsistent" problems (Karnam-Ma-Zhang, 2017).
- Non-zero Sum/Mean-field Games with multiple equilibria (Feinstein-Rudloff-Zhang, '20, Iseri-Zhang, '21, ...)
- Set-valued Dynamic Risk Measures
- Systemic Risks (Hamel-Heyde-Rudloff, '11, Feinstein-Rudloff-Weber, '17, Ararat-Hamel-Rudloff '17, Ararat-Rudloff '19, Biagini-Fouque-Fritelli-Meyer-Brandis, '19)
- Multi-portfolio time consistency (Feinstein-Rudloff, '15)
- Set-valued Risk measures and BSdI/E ($\mathrm{d}=$ difference) (Ararat-Feinstein 2019)

Set-valued SDEs vs SDIs

The Main Point :

A set of processes is NOT necessarily a set-valued process!
In other words, a set-valued process is a process taking values in a (metric) space of subsets in a vector space, rather than a collection of trajectories in this space.

Some obvious technical issues

- The algebraic structure among sets?
- Measurability ?
- (Stochastic) Analysis?

Set-valued SDEs vs SDIs

The Main Point :
A set of processes is NOT necessarily a set-valued process!
In other words, a set-valued process is a process taking values in a (metric) space of subsets in a vector space, rather than a collection of trajectories in this space.

Some obvious technical issues :

- The algebraic structure among sets?
- Measurability?
- (Stochastic) Analysis?

Set-Valued Analysis/Stochastic Analysis

Essentials of Set-Valued BSDEs
New Definitions of Set-Valued Stochastic Integral

Outline

(1) Introduction
(2) Set-Valued Analysis/Stochastic Analysis
(3) Essentials of Set-Valued BSDEs

4 New Definitions of Set-Valued Stochastic Integral

First Glance of Set-valued Analysis

- (\mathbb{X}, ρ) - a metric space
- $\mathscr{P}(\mathbb{X}):=2^{\mathbb{X}}$ - all nonempty subsets of \mathbb{X}.
- $\mathscr{C}(\mathbb{X}) \subset \mathscr{P}(\mathbb{X})$ - all closed subsets of \mathbb{X},
- $\mathscr{K}(\mathbb{X})$ - all compact, convex subsets of \mathbb{X}.

Definition (Minkowski addition and scalar multiplication)

Let $A, B \in \mathscr{K}(\mathbb{X})$ and $\alpha \in \mathbb{R}$, we define

$$
\begin{aligned}
A+B & =\{x \in \mathbb{X}: x=a+b, a \in A, b \in B\} \\
\alpha A & =\{x \in \mathbb{X}: x=\alpha a, a \in A\}
\end{aligned}
$$

Note : $A-A:=A+(-1) A \neq\{0\}!$. That is, $-A$ is NOT the "inverse" of $A(!)$. Thus $\mathscr{K}(\mathbb{X}) / \mathscr{C}(\mathbb{X})$ is NOT a vector space.

Set Differences

- Minkovski difference/geometric difference/inf-residuation

$$
A-B=\{x \in \mathbb{X} \mid x+B \subset A\}, \quad A, B \in \mathscr{K}(\mathbb{X}),
$$

- $A \cdot A=\{0\}$, but $(A-B)+B \subset A$ (and " $=$ " may fail!)
- Hukuhara difference (1967)

- $A \ominus B$ exists $\Longleftrightarrow \forall a \in \operatorname{ext}(A), \exists x \in \mathbb{X}$ s.t. $a \in x+B \subset A$. - $a \in \operatorname{ext}(A)$ (called an extreme point of A) if it cannot be written as a strict convex combination of two points in A.
- If exists, $A \ominus B$ is unique, closed, convex, and $=A-B$
- Some properties of " \ominus " requires "cancellation law". (I.e. $A+C=B+C \Longrightarrow A=B$), which is true if \mathbb{X} is locally
compact, A, B are closed, convex, and C is compact.

Set Differences

- Minkovski difference/geometric difference/inf-residuation

$$
\begin{aligned}
A-B & =\{x \in \mathbb{X} \mid x+B \subset A\}, \quad A, B \in \mathscr{K}(\mathbb{X}), \\
\text { - } A \cdot A & =\{0\}, \text { but }(A-B)+B \subset A \text { (and " }=\text { " may fail!) }
\end{aligned}
$$

- Hukuhara difference (1967)

$$
A \ominus B=C \quad \Longleftrightarrow \quad A=B+C, \quad A, B \in \mathscr{K}(\mathbb{X}) .
$$

- $A \ominus B$ exists $\Longleftrightarrow \forall a \in \operatorname{ext}(A), \exists x \in \mathbb{X}$ s.t. $a \in x+B \subset A$.
- $a \in \operatorname{ext}(A)$ (called an extreme point of A) if it cannot be written as a strict convex combination of two points in A.
- If exists, $A \ominus B$ is unique, closed, convex, and $=A-B$.
- Some properties of " \ominus " requires "cancellation law". (I.e., $A+C=B+C \Longrightarrow A=B$), which is true if \mathbb{X} is locally compact, A, B are closed, convex, and C is compact.

Topological Structure on $\mathscr{K}(\mathbb{X})$

- Recall the Hausdorff distance on $\mathscr{C}(\mathbb{X}) / \mathscr{K}(\mathbb{X})$:

$$
\begin{equation*}
h(A, B):=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}, \tag{1}
\end{equation*}
$$

- $(\mathscr{K}(\mathbb{X}), h)$ is a Polish space (if \mathbb{X} is)
- If $\mathbb{X}=\mathbb{R}^{d}$, denote $\mathscr{X}=\mathscr{K}\left(\mathbb{R}^{d}\right)$ and
- $\mathscr{B}(\mathscr{X}):=\sigma\left(\mathscr{K}\left(\mathbb{R}^{d}\right)\right)$ - (Borel) σ-algebra on (\mathscr{X}, h);
- define $\|A\|:=h(A,\{0\})=\sup \{|a|, a \in A\}$,
- Then $\|\cdot\|$ is a "norm", and $h(A, B)=\|A \ominus B\|$, if \ominus exists.
- Warning : $(\mathscr{X},\|\cdot\|)$ is NOT a Banach space, as it is not even a vector space.

Set-Valued Mappings and Selections

Denote $\mathscr{O}=$ all open sets in \mathbb{R}^{d}.

- For $V \in \mathscr{O}$, define $\mathscr{O}(V):=\{K \in \mathscr{X}: K \cap V \neq \emptyset\}$;
- Let $(\mathbb{T}, \mathcal{F}, \mu)$ be a measure space. A mapping $F: \mathbb{T} \rightarrow \mathscr{X}$ is called (weakly) measurable if

$$
F^{-}(V):=\{t \in \mathbb{T}: F(t) \in \mathscr{O}(V)\} \in \mathcal{F}, \forall V \in \mathscr{O} .
$$

- Denote all measurable mappings $F: \mathbb{T} \rightarrow \mathscr{X}$ by $\mathscr{M}(\mathbb{T}, \mathscr{X})$.
- A "measurable selector" of F is a function $f: \mathbb{T} \mapsto \mathbb{X}$, such that $f(t) \in F(t)$, a.e. $t \in \mathbb{T}$, and $f \in \mathbb{L}^{0}\left(\mathbb{T} ; \mathbb{R}^{d}\right)$. Denote the collection of selectors of F by $S(F)$.
- Clearly, $F=G$ if and only if $S(F)=S(G)$.

Measurability vs. Decomposibility

Definition

A set $M \subset \mathbb{L}^{0}\left(\mathbb{T} ; \mathbb{R}^{d}\right)$ is called decomposable w.r.t. \mathcal{F} if for any $f_{1}, f_{2} \in M$ and $A \in \mathcal{F}$, the function $\mathbf{1}_{A} f_{1}+\mathbf{1}_{A c} f_{2} \in M$.

- For $C \subset \mathbb{L}^{0}\left(\mathbb{T}, \mathbb{R}^{d}\right)$, we denote $\operatorname{dec}\{C\}$ (resp. $\left.\overline{\operatorname{dec}}\{C\}\right)$ to be the decomposable hull of C (resp. closure of $\operatorname{dec}\{C\}$).

For $p \geq 1$, define $S_{p}(F)=S(F) \cap \mathbb{L}^{p}(\mathbb{T} ; \mathscr{X})$, and

$$
\mathscr{A}_{p}(\mathbb{T}, \mathscr{X}):=\left\{F \in \mathscr{M}(\mathbb{T} ; \mathscr{X}): S_{p}(F) \neq \emptyset\right\} .
$$

Theorem

Let M be a nonempty subset of $\mathbb{L}^{p}\left(\mathbb{T}, \mathbb{R}^{d}\right)$ where $p \geq 1$, such that for each $t \in \mathbb{T}, M(t) \in \mathscr{X}$. Then there exists $F \in \mathscr{A}_{p}(\mathbb{T}, \mathscr{X})$ such that $M=S_{p}(F)$ if and only if M is decomposable.

Set-Valued Random Variables and Stochastic Processes

- SV r.v. $Z: \Omega \mapsto \mathscr{X}$ and SV process $\Phi:[0, T] \times \Omega \mapsto \mathscr{X}$ are defined naturally as SV measurable functions.
- $S_{\mathcal{G}}(Z)-\mathcal{G}$-measurable selectors, $\mathcal{G} \subseteq \mathcal{F}$;
- $S(\Phi)$ - all $\mathscr{B}([0, T]) \otimes \mathcal{F}$-measurable selectors
- $S_{\mathbb{F}}(\Phi)\left(S_{\mathscr{P}}(\Phi)\right)$ - all \mathbb{F}-adapted (progressive) selectors.
- Z is p-integrally bounded if $\mathbb{E}\left[\|Z\|^{p}\right]=\mathbb{E}\left[h^{p}(Z,\{0\})\right]<\infty$ (i.e., $S_{p}(Z)$ is a bounded set in \mathbb{L}^{p}).
- If $Z \in \mathscr{A}_{1}(\Omega, \mathscr{X})$, then $\mathbb{E}[Z]:=\int_{\Omega} Z(\omega) \mathbb{P}(d \omega)$ (Aumann).
- If $F \in \mathscr{A}_{1}\left(\mathbb{T}, \mathbb{R}^{d}\right)$, the Aumann Integral of F is defined by $\int_{\mathbb{T}} F(t) \mu(d t):=c l\left\{\int_{\mathbb{T}} f(t) \mu(d t): f \in S_{1}(F)\right\}:=c l\left(J\left(S_{1}(F)\right)\right)$.
- It holds that $\int_{\mathbb{T}} F(t) \mu(d t)=\int_{\mathbb{T}} \operatorname{coF}(t) d t$, hence convex.

Conditional Expectations

- For $\mathcal{G} \subset \mathcal{F}$ and $Z \in \mathscr{A}_{\mathcal{F}}^{1}(\Omega)$, we define $\mathbb{E}(Z \mid \mathcal{G}) \in \mathscr{A}_{\mathcal{G}}^{1}(\Omega)$ via the Aumann integral identity

$$
\begin{equation*}
\int_{A} \mathbb{E}(Z \mid \mathcal{G})(\omega) \mathbb{P}(d \omega)=\int_{A} Z(\omega) \mathbb{P}(d \omega), \quad A \in \mathcal{G} \tag{2}
\end{equation*}
$$

- If $F \in \mathscr{A}^{1}(\Omega)$, then \exists ! $\mathbb{E}[F \mid \mathcal{G}] \in \mathscr{A}_{\mathcal{G}}^{1}(\Omega)$, s.t.

$$
\begin{equation*}
S_{1}(\mathbb{E}[F \mid \mathcal{G}])=\operatorname{cl}_{\mathbb{L}}\left\{\mathbb{E}[f \mid \mathcal{G}]: f \in S_{1}(F)\right\} \tag{3}
\end{equation*}
$$

- $\mathbb{E}[\cdot \mid \mathcal{G}]$ satisfy all the natural properties in terms of Minkovski addition and scalar multiplication.
- If $X_{1} \ominus X_{2}$ exists. Then, $\mathbb{E}\left[X_{1} \ominus X_{2} \mid \mathcal{G}\right]$ exists and

$$
\begin{equation*}
\mathbb{E}\left[X_{1} \ominus X_{2} \mid \mathcal{G}\right]=\mathbb{E}\left[X_{1} \mid \mathcal{G}\right] \ominus \mathbb{E}\left[X_{2} \mid \mathcal{G}\right] \tag{4}
\end{equation*}
$$

Set-Valued Martingales

- A set-valued (\mathbb{P}, \mathbb{F})-martingale $M=\left\{M_{t}\right\}_{t \geq 0}$ is $M \in \mathscr{L}_{\mathbb{F}}^{1}$ such that $M_{s}=\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]$, for $0 \leq s \leq t$.
- Set-Valued "sub-" (or "super-") martingales? Order?
- A set-valued $\mathrm{mg} M$ has decomposable $S_{\mathcal{F}_{t}}\left(M_{t}\right)$ for each $t \geq 0$.
- For a set-valued $\mathrm{mg} M$, denote the martingale selectors by

$$
\begin{aligned}
& M S(M):=\left\{\text { all } \mathbb{F} \text {-mg } f=\left\{f_{t}\right\} \text { s.t. } f_{t} \in S_{\mathcal{F}_{t}}\left(M_{t}\right), t \geq 0\right\} . \\
& P_{t}[M S(M)]:=\left\{f_{t}: f \in M S(M)\right\} \in \mathscr{P}\left(\mathbb{L}_{\mathcal{F}_{t}}^{1}\left(\Omega, \mathbb{R}^{d}\right)\right)
\end{aligned}
$$

- Note : $S_{\mathcal{F}_{t}}\left(M_{t}\right)$ and $P_{t}(M S(M))$ are quite different! In particular, the former is decomposable, but the latter is not.
- The following relations holds

$$
\begin{equation*}
S_{\mathcal{F}_{t}}\left(M_{t}\right)=\overline{\operatorname{dec}}\left\{P_{t}[M S(M)]\right\}, \quad t \geq 0 \tag{5}
\end{equation*}
$$

Set-Valued Stochastic Integrals (Aumann-ltô)

- Let $B=\left\{B_{t}\right\}_{t \in \mathbb{T}}:=[0, T]$ be a m-dim B.M. on $(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{F})$.
- Define linear mappings on $\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d}\right)$ and $\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d \times m}\right)$:

$$
J(\phi):=\int_{0}^{T} \phi_{t} d t, \quad \mathcal{J}(\psi):=\int_{0}^{T} \psi_{t} d B_{t} .
$$

- For $K \in \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d}\right)\right)$ and $K^{\prime} \in \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d \times m}\right)\right.$, define $J(K):=\{J(\phi): \phi \in K\}, \mathcal{J}\left(K^{\prime}\right):=\left\{\mathcal{J}(\psi): \psi \in K^{\prime}\right\}$.

Theorem/Definition

For $\Phi \in \mathscr{L}_{\mathbb{F}}^{2, d}(\mathbb{T})$ and $\psi \in \mathscr{L}_{\mathbb{F}}^{2, d \times m}(\mathbb{T}), \exists \Gamma, Z \in \mathscr{L}_{\mathcal{F}_{T}}^{2, d}(\Omega)$ s.t.

$$
S_{\mathcal{F}_{T}}[\Gamma]=\overline{\operatorname{dec}}\left\{J\left[S_{\mathbb{F}}(\Phi)\right]\right\} \text {, and } S_{\mathcal{F}_{T}}[Z]=\overline{\operatorname{dec}}\left\{\mathcal{J}\left[S_{\mathbb{F}}(\Psi)\right]\right\} .
$$

Denote $\Gamma:=\int_{0}^{T} \Phi d t$ and $Z:=\int_{0}^{T} \Psi d B_{t}$.

Remarks

- Both $S_{F_{T}}\left(\int_{0}^{T} \Phi d t\right)$ and $S_{F_{T}}\left(\int_{0}^{T} \Psi_{t} d B_{t}\right)$ are decomposable (hence \mathcal{F}_{T}-measurable), but none of $J\left(S_{\mathbb{F}}(\Phi)\right)$ and $\mathcal{J}\left(S_{\mathbb{F}}(\Psi)\right)$ is, unless singleton. (see Kisielewicz ('13, p105) for the ex's)
- The Indefinite stochastic integral $\int_{0}^{t} \Psi d B:=\int_{0}^{T} \mathbf{1}_{[0, t]} \Psi_{s} d B_{s}$ is well-defined, and has the "temporal additivity":

$$
\int_{0}^{T} \Psi_{s} d B_{s}=\int_{0}^{t} \Psi_{s} d B_{s}+\int_{t}^{T} \Psi_{s} d B_{s}, \quad t \in[0, T]
$$

Generalized Aumann-Itô integral
\square

Remarks

- Both $S_{F_{T}}\left(\int_{0}^{T} \Phi d t\right)$ and $S_{F_{T}}\left(\int_{0}^{T} \Psi_{t} d B_{t}\right)$ are decomposable (hence \mathcal{F}_{T}-measurable), but none of $J\left(S_{\mathbb{F}}(\Phi)\right)$ and $\mathcal{J}\left(S_{\mathbb{F}}(\Psi)\right)$ is, unless singleton. (see Kisielewicz ('13, p105) for the ex's)
- The Indefinite stochastic integral $\int_{0}^{t} \Psi d B:=\int_{0}^{T} \mathbf{1}_{[0, t]} \Psi_{s} d B_{s}$ is well-defined, and has the "temporal additivity" :

$$
\int_{0}^{T} \Psi_{s} d B_{s}=\int_{0}^{t} \psi_{s} d B_{s}+\int_{t}^{T} \psi_{s} d B_{s}, \quad t \in[0, T]
$$

Generalized Aumann-Itô integral

Let $G \in \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d \times m}\right)\right.$). Denote $\mathcal{J}_{B}^{t}(G)=\left\{\int_{0}^{t} g_{s} d B_{s}: g \in G\right\}$, $t \in \mathbb{T}$. Then, \exists ! $\Phi_{t} \in \mathscr{L}_{\mathcal{F}_{t}}^{2}(\Omega)$ s.t. $S_{\mathcal{F}_{t}}\left(\Phi_{t}\right)=\overline{\operatorname{dec}}\left\{\mathcal{J}_{B}^{t}(G)\right\}$. We call Φ_{t} the generalized stochastic integral and denote it by $\int_{0}^{t} G \circ d B_{s}$.

Hukuhara Difference for Stochastic Integrals

Proposition (Ararat-M.-Wu, 2020)

- If $\Phi, \Psi \in \mathscr{A}(\mathbb{T}, \mathscr{X})$. Then
- $\Phi+\Psi, \Phi \ominus \Psi$ (if exists) $\in \mathscr{A}(\mathbb{T}, \mathscr{X})$,
- $S(\Phi+\Psi)=S(\Phi)+S(\Psi), S(\Phi \ominus \Psi)=S(\Phi) \ominus S(\Psi)$.
- If $\Phi, \psi \in \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}(\mathbb{T}, \mathscr{X})\right)$, s.t., $\Phi \ominus \psi$ exists, then
- $\mathcal{J}_{s}^{t}(\Phi) \ominus \mathcal{J}_{s}^{t}(\Psi)=\mathcal{J}_{s}^{t}(\Phi \ominus \Psi), 0 \leq s<t \leq T$. $\Longrightarrow \int_{0}^{T} \Phi \circ d B_{s} \ominus \int_{0}^{T} \Psi \circ d B_{s}:=\int_{0}^{T}(\Phi \ominus \Psi) \circ d B_{s}, \mathbb{P}$-a.s.
- If Φ, Ψ are convex and square integrably bounded, then all stochastic integrals above can be in the Aumann-Itô sense.
- $\int_{0}^{T} \Phi \circ d B_{s} \ominus \int_{0}^{T} \Psi \circ d B_{s}=\{0\} \Longrightarrow \int_{0}^{T} \Phi \circ d B_{s}=\int_{0}^{T} \Psi \circ d B_{s}$.
- $\int_{0}^{t} \Phi \circ d B_{s} \ominus \int_{0}^{t} \Psi \circ d B_{s}=\{0\}, \mathbb{P}$-a.s., $\forall t \in \mathbb{T} \Longrightarrow \Phi \equiv \Psi$.

Some Important Estimates

- Define

$$
\begin{cases}H(\Phi, \Psi):=\mathbb{E} h(\Phi, \Psi), & \Phi, \Psi \in \mathscr{L}_{\mathcal{F}_{T}}^{1}(\Omega ; \mathscr{X}) ; \\ \mathcal{H}_{2}(\Phi, \Psi):=\left[\mathbb{E} h^{2}(\Phi, \Psi)\right]^{1 / 2}, & \Phi, \Psi \in \mathscr{L}_{\mathcal{F}_{T}}^{2}(\Omega ; \mathscr{X})\end{cases}
$$

- Then for $\mathcal{G} \subset \mathcal{F}$, it holds that
- $H(\mathbb{E}[\Phi \mid \mathcal{G}], \mathbb{E}[\Psi \mid \mathcal{G}]) \leq H(\Phi, \Psi)($ Kisielewicz '13)
- $h^{2}(\mathbb{E}[\Phi \mid \mathcal{G}], \mathbb{E}[\Psi \mid \mathcal{G}]) \leq \mathbb{E}\left[h^{2}(\Phi, \Psi) \mid \mathcal{G}\right]$, \mathbb{P}-a.s. (Ararat-M.-Wu)
- $\mathcal{H}_{2}(\mathbb{E}[\Phi \mid \mathcal{G}], \mathbb{E}[\Psi \mid \mathcal{G}]) \leq \mathcal{H}_{2}(\Phi, \Psi)$.
- $h^{2}\left(\int_{t}^{T} \Phi_{s} d s, \int_{t}^{T} \psi_{s} d s\right) \leq(T-t) \int_{t}^{T} h^{2}\left(\Phi_{s}, \Psi_{s}\right) d s, \mathbb{P}-$ a.s.

Outline

(1) Introduction
(2) Set-Valued Analysis/Stochastic Analysis
(3) Essentials of Set-Valued BSDEs
4. New Definitions of Set-Valued Stochastic Integral

Set-Valued Martingale Representation Theorem

- Assume $\mathbb{F}=\mathbb{F}^{B}$ and let M be a set-valued $\left(\mathbb{L}^{2}\right) \mathbb{F}$-martingale. Then for each $f \in M S(M), \exists!g^{f} \in \mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d \times m}\right)$, such that $f_{t}=\int_{0}^{t} g_{s}^{f} d B_{s}, t \in \mathbb{T}, \mathbb{P}$-a.s.
- Denote $\mathcal{G}^{M}:=\left\{g^{f}: f \in M S(M)\right\} \in \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d \times m}\right)\right)$.

Theorem (Kisielevicz, 2014)

Assume $\mathbb{F}=\mathbb{F}^{B}$, where B is a \mathbb{R}^{m}-valued Brownian motion. Then for every set-valued martingale $M=\left\{M_{t}\right\}_{t \in[0, T]} \in \mathscr{L}_{\mathbb{F}}^{2, d}(\mathbb{T})$, with $M_{0}=\{0\}$, there exists $\mathcal{G}^{M} \in \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} ; \mathbb{R}^{d \times m}\right)\right)$, such that $M_{t}=\int_{0}^{t} \mathcal{G}^{M} \circ d B_{s}, \mathbb{P}$-a.s. $t \in \mathbb{T}$.

- Note: The set \mathcal{G}^{M} is likely not decomposable, thus the stochastic integral can only be in the generalized sense.

Simplest Possible Set-Valued BSDEs

$$
Y_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s \mid \mathcal{F}_{t}\right], \quad t \in \mathbb{T}=[0, T] .
$$

Simplest Possible Set-Valued BSDEs

$$
\begin{aligned}
& Y_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s \mid \mathcal{F}_{t}\right], \quad t \in \mathbb{T}=[0, T] . \\
& Y_{t}=\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s-\int_{t}^{T} Z \circ d B_{s}, \quad t \in \mathbb{T},
\end{aligned}
$$

Simplest Possible Set-Valued BSDEs

$$
\begin{aligned}
& Y_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s \mid \mathcal{F}_{t}\right], \quad t \in \mathbb{T}=[0, T] . \\
& Y_{t}=\left[\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s\right] \ominus \int_{t}^{T} Z \circ d B_{s}, \quad t \in \mathbb{T},
\end{aligned}
$$

where $\xi \in \mathscr{L}_{\mathcal{F}_{T}}^{2}(\Omega), F: \mathbb{T} \times \Omega \times \mathscr{X} \mapsto \mathscr{X}$ is a multifunction to be specified, and the stochastic integral is in generalized sense!

Simplest Possible Set-Valued BSDEs

$$
\begin{aligned}
& Y_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s \mid \mathcal{F}_{t}\right], \quad t \in \mathbb{T}=[0, T] . \\
& Y_{t}=\left[\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s\right] \ominus \int_{t}^{T} Z \circ d B_{s}, \quad t \in \mathbb{T}, \\
& Y_{t}+\int_{t}^{T} Z \circ d B_{s}=\xi+\int_{t}^{T} F\left(s, Y_{s}, \cdots\right) d s, \quad t \in \mathbb{T},
\end{aligned}
$$

where $\xi \in \mathscr{L}_{\mathcal{F}_{T}}^{2}(\Omega), F: \mathbb{T} \times \Omega \times \mathscr{X} \mapsto \mathscr{X}$ is a multifunction to be specified, and the stochastic integral is in generalized sense!

Well-postedness (First Take)

Consider the following simplest SVBSDE :

$$
\begin{equation*}
Y_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} F\left(s, ., Y_{s}\right) d s \mid \mathscr{F}_{t}\right], \quad t \in[0, T] \tag{6}
\end{equation*}
$$

Main Idea :

- Consider the mapping

$$
(\Phi(Y))_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} F\left(s, Y_{s}\right) d s \mid \mathscr{F}_{t}\right], \quad t \in \mathbb{T}
$$

- Find an appropriate space \mathcal{Y}, so that $\Phi: \mathcal{Y} \mapsto \mathcal{Y}$, and is a contraction.

Well-postedness (First Take)

- Consider $\left(\mathscr{K}\left(\mathbb{L}^{2}\right), H_{\mathbb{L}^{2}}\right)$, where $\mathbb{L}^{2}=\mathbb{L}^{2}\left(\Omega ; \mathbb{R}^{d}\right)$.
- Note: $H_{\mathbb{L}^{2}}$ is not $\mathcal{H}_{2}(!)$, and one shows that

$$
\begin{align*}
H_{\mathbb{L}^{2}}^{2}\{ & \left.\mathbb{E}\left[\int_{\tau}^{t} \Psi_{s} d s \mid \mathcal{F}_{t}\right], \mathbb{E}\left[\int_{\tau}^{t} \Psi_{s}^{\prime} d s \mid \mathcal{F}_{t}\right]\right) \tag{7}\\
& \leq(t-\tau) \int_{\tau}^{t} \mathcal{H}_{2}^{2}\left(\Psi_{s}, \Psi_{s}^{\prime}\right) d s, \quad 0 \leq \tau<t \leq T
\end{align*}
$$

- Now consider $\mathcal{Y}=\mathbb{C}\left(\mathbb{T}, \mathscr{K}\left(\mathbb{L}^{2}\right)\right)$ with the metric :

$$
D_{\lambda}(X, Y):=\sup _{t \in[0, T]} e^{-\lambda(T-t)} H_{\mathbb{L}^{2}}\left(X_{t}, Y_{t}\right), \quad \lambda>0
$$

Then $\left(\mathcal{Y}, D_{\lambda}\right)$ is a complete metric space.

- Using (7) to show that $\Phi: \mathcal{Y} \mapsto \mathcal{Y}$ is a contraction for λ large.

What about Z ?

Consider again the simplest form :

$$
\begin{equation*}
Y_{t}+\int_{t}^{T} Z \circ d B_{s}=\xi+\int_{t}^{T} F\left(s, Y_{s}\right) d s, \quad t \in \mathbb{T}, \text { a.s. } \tag{8}
\end{equation*}
$$

Lemma (Aarat-M.-Wu, '21)

Given $\zeta \in \mathscr{P}_{\mathcal{F}_{T}}\left(\Omega ; \mathscr{X}^{\prime}\right)$ and $\phi \in \mathscr{L}_{\mathbb{R}}^{2}(\mathbb{T} ; \mathscr{X})$, there exists a unique $(Y, Z) \in \mathscr{L}_{\mathbb{F}}^{2}(\mathbb{T} ; \mathscr{X}) \times \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} \times \mathbb{R}^{d \times m}\right)\right)$, such that $Y_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} \Phi_{s} d s \mid \mathcal{F}_{t}\right]=\left[\xi+\int_{t}^{T} \Phi_{s} d s\right] \ominus \int_{t}^{T} Z \circ d B_{s}, t \in \mathbb{T}$.

This can be proved by using the SV MRT, the properties of Hukuhara difference, and the cancellation law

What about Z ?

Consider again the simplest form :

$$
\begin{equation*}
Y_{t}+\int_{t}^{T} Z \circ d B_{s}=\xi+\int_{t}^{T} F\left(s, Y_{s}\right) d s, \quad t \in \mathbb{T} \text {, a.s. } \tag{8}
\end{equation*}
$$

Lemma (Aarat-M.-Wu, '21)

Given $\xi \in \mathscr{L}_{\mathcal{F}_{T}}^{2}(\Omega ; \mathscr{X})$ and $\Phi \in \mathscr{L}_{\mathbb{F}}^{2}(\mathbb{T} ; \mathscr{X})$, there exists a unique $(Y, Z) \in \mathscr{L}_{\mathbb{F}}^{2}(\mathbb{T} ; \mathscr{X}) \times \mathscr{P}\left(\mathbb{L}_{\mathbb{F}}^{2}\left(\mathbb{T} \times \mathbb{R}^{d \times m}\right)\right)$, such that
$Y_{t}=\mathbb{E}\left[\xi+\int_{t}^{T} \Phi_{s} d s \mid \mathcal{F}_{t}\right]=\left[\xi+\int_{t}^{T} \Phi_{s} d s\right] \ominus \int_{t}^{T} Z \circ d B_{s}, t \in \mathbb{T}$.
This can be proved by using the SV MRT, the properties of Hukuhara difference, and the cancellation law.

Picard Iteration

- Define the iteration sequence $\left\{\left(Y^{(n)}, Z^{(n)}\right)\right\}$ (Lemma)
- Denote $\Delta Y_{t}^{(n)}:=Y_{t}^{(n)} \ominus Y_{t}^{(n-1)}, \Delta Z_{t}^{(n)}=Z_{t}^{(n)} \ominus Z_{t}^{(n-1)}$
- Argue that (with $M_{r, T}^{(n)}:=\int_{r}^{T} Z^{(n)} \circ d B_{s}$)

$$
\Delta Y_{t}^{(n)}+\Delta M_{t, T}^{(n)}=\int_{t}^{T}\left[F\left(s, Y_{s}^{(n-1)}\right) \ominus F\left(s, Y_{s}^{(n-2)}\right)\right] d s
$$

- With some assumptions on F one shows that

$$
\begin{aligned}
& \mathbb{E}\left\|\Delta Y_{t}^{(n)}\right\|^{2} \leq\left\|\Delta Y_{t}^{(n)}+\Delta M_{t, T}^{(n)}\right\|^{2} \leq T K^{2} \int_{t}^{T} \mathbb{E}\left\|\Delta Y_{s}^{(n-1)}\right\|^{2} d s \\
& \Longrightarrow \mathbb{E}\left\|\Delta Y_{t}^{(n)}\right\|^{2} \leq \frac{C K^{n-1} T^{2(n-1)}}{(n-1)!}=: a_{n}^{2}, \text { where } \sum_{n=0}^{\infty} a_{n}<\infty
\end{aligned}
$$

Finally ...

- Using properties of Hukuhara difference to show that

$$
\left\|Y_{t}^{(n)} \ominus Y_{t}^{(m)}\right\|_{H} \leq \sum_{k=m}^{n-1}\left\|\Delta Y_{t}^{(k)}\right\|_{H} \leq \sum_{k=m}^{n-1} a_{k} .
$$

- Since $h(A, B) \leq\|A \ominus B\|,\left\{Y_{t}^{(n)}\right\}$ is Cauchy in $\mathscr{L}_{\mathcal{F}_{T}}^{2}(\Omega ; \mathscr{X})$, hence $\exists Y \in \mathscr{L}_{\mathcal{F}_{T}}^{2}(\Omega ; \mathscr{X})$, such that

$$
\sup _{t \in[0, T]}\left\|Y_{t}^{(n-1)} \ominus Y_{t}\right\|_{H}^{2} \leq \sum_{k=n-1}^{\infty} a_{k} \rightarrow 0, \quad n \rightarrow \infty
$$

- Argue that Y satisfies the SVBSDE

$$
Y_{t}=\xi+\mathbb{E}\left[\int_{t}^{T} f\left(s, Y_{s}\right) d s \mid \mathcal{F}_{t}\right], \quad t \in \mathbb{T} \Longrightarrow \text { Done! }
$$

Some hidden subtleties

- Existence of $\Delta Y^{(n)}$ and $\Delta Z^{(n)}$?
- $\Delta Y^{(n-1)}$ exists $\Longrightarrow \Delta\left[F\left(t, Y_{t}^{(n-1)}\right)\right]$ exists.
- $\Delta Y_{t}^{(n)}+\Delta M_{t}^{(n)}=\int_{t}^{T}\left[\Delta F\left(s, Y_{s}^{(n-1)}\right)\right] d s$
- (MRT) $\Delta M_{t}^{(n)}=\int_{0}^{t} \Delta Z^{(n)} \circ d B_{s}$.
- Assume $Y^{(n)} \ominus Y^{(m)}$ exists $\forall n, m \oplus \lim _{n, m}\left\|Y^{(n)} \ominus Y^{(m)}\right\|=0$. (I.e., $\left\{Y^{(n)}\right\}$ is Cauchy in (\mathscr{X}, h)). Do we actually know that $\exists Y$ such that $Y^{(n)} \ominus Y$ exists for all n ?

Proposition (Ararat-M.-Wu, '21)

Assume that $\left\{A_{n}\right\}_{n \geq 1}, A, B \in \mathscr{K}\left(\mathbb{R}^{d}\right), h\left(A_{n}, A\right) \rightarrow 0$, as $n \rightarrow \infty$. and $A_{n} \ominus B$ exists for all n. Then, $A \ominus B$ exists.

Some Serious Issues

Two theorems from Kisielewicz's 2020 book (Springer) :

Unboundedness of Aumann-Itô SV-Integrals (Corollary 5.3.2)

For every nonempty decomposable set $K \subset \mathbb{L}^{2}(\mathbb{T}, \mathscr{X})$ and every $0 \leq s<t \leq T$, the Itô set-valued integral $\int_{s}^{t} K_{s} d B_{s}$ is square integrably bounded if and only if K is a singleton.

Decomposition of Unity (Lemma 3.3.4)

For every set $K \subset \mathbb{L}^{2}(\mathbb{T} \times \Omega, \mathscr{X})$, and every partition $\pi: 0=\tau_{0}<\tau_{1}<\cdots \tau_{n}=T$ of $[0, T]$, it holds that

$$
K \subseteq \mathbf{1}_{\left[0, \tau_{1}\right]} K+\mathbf{1}_{\left(\tau_{1}, \tau_{2}\right]} K+\cdots+\mathbf{1}_{\left(\tau_{n-1}, T\right]} K
$$

If K is decomposable, then the equality holds.

Also ...

A result from recent paper by J.P. Zhang and Kouji Yano (2020) :

Singleton Test (Lemma 3.1)

For any set-valued random variable $F \in L^{1}(\Omega, \mathcal{K}(\mathscr{X}))$ and any $a \in \mathscr{X}$, the expectation $\mathbb{E}(F)=\{a\}$ if and only if F degenerates to a random singleton $\{f\}$ with $\mathbb{E}(f)=a$.

Representability of Set-Valued Martingale (Theorem 3.1)

Let M be a set-valued \mathbb{F}-martingale. Then

$$
M_{t}=\mathbb{E}\left[M_{0}\right]+\int_{0}^{t} G_{s} d B_{s} \quad \Longleftrightarrow \quad M_{t}=C+\int_{0}^{t} g_{s} d B_{s}
$$

for some $g \in \mathbb{L}_{\mathbb{F}}^{2}(\Omega ; \mathscr{X})$ and $C \in \mathcal{K}(\mathscr{X})$.

Some Bad News

- Kisielewicz' set-valued MRT essentially holds only for vector-valued martingales (singleton), since $M_{0}=\{0\}$;
- If MRT holds and M is square-integrably bounded, then Z cannot be measurable/decomposible unless it is a singleton(!).
- But a generalized integral is NOT temporally additive, that is,

$$
\int_{0}^{T} Z \circ d B_{s} \subsetneq \int_{0}^{t} Z \circ d B_{s}+\int_{t}^{T} Z \circ d B_{s}
$$

thus the whole scheme would collapse in general!

The Remedies

- Consider only BSDEs without Z

The Remedies

- Consider only BSDEs without Z
- Use other set-valued stochastic integrals (e.g., "trajectory integrals") that are easily temporally additive
- The danger : the integral may not be a set-valued process, therefore even more hopeless for MRT.
- Find new definition of set-valued stochastic integrals that are
- non-singleton expected value (truly set-valued)
- temporally additive ; and
- MRT compatible!

The Remedies

- Consider only BSDEs without Z
- Use other set-valued stochastic integrals (e.g., "trajectory integrals") that are easily temporally additive
- The danger : the integral may not be a set-valued process, therefore even more hopeless for MRT.
- Find new definition of set-valued stochastic integrals that are
- non-singleton expected value (truly set-valued);
- temporally additive ; and
- MRT compatible!

Outline

(1) Introduction
(2) Set-Valued Analysis/Stochastic Analysis
(3) Essentials of Set-Valued BSDEs
(4) New Definitions of Set-Valued Stochastic Integral

What do we know

- Aumann-ltô : $\underbrace{\int \underbrace{Z_{s}}_{\text {decomposable }} d B_{s}}_{\text {decomposable }}$
(MRT X, Addtive $\sqrt{ }$)
- Trajectory : $\underbrace{\int \underbrace{Z_{s}}_{\text {non-decomposable }} d B_{s}}_{\text {non-decomposable }}$
- G-Aumann-Itô : $\underbrace{\int \underbrace{Z_{s}}_{\text {non-decomposable }} \circ d B_{s}}_{\text {decomposable }}(\mathrm{MRT} \sqrt{ }$, Addtive X)

Main Delemmas

- If MRT holds, then the integrand Z cannot be decomposable;
- If integrand Z is not decomposable, then the additivity fails;
- If the initial value M_{0} is a singleton (e.g., $\{0\}$), then the martingale must be degenerate (singleton);
- If the MRT holds with a standard Aumman-Itô integral, then the martingale must be a constant set "pushed" by a vector-valued martingale.

- All these conflicts are due to the definition and properties of the existing theory on the set-valued stochastic integrals!

Main Delemmas

- If MRT holds, then the integrand Z cannot be decomposable;
- If integrand Z is not decomposable, then the additivity fails;
- If the initial value M_{0} is a singleton (e.g., $\{0\}$), then the martingale must be degenerate (singleton);
- If the MRT holds with a standard Aumman-Itô integral, then the martingale must be a constant set "pushed" by a vector-valued martingale.
- All these conflicts are due to the definition and properties of the existing theory on the set-valued stochastic integrals!

First Try (Aarat-M.-Wu, '21)

- Consider $\mathbb{R}_{t}:=\mathbb{L}_{\mathcal{F}_{t}}^{2}\left(\Omega, \mathbb{R}^{d}\right) \times \mathbb{L}_{\mathbb{F}}^{2}\left([t, T] \times \Omega, \mathbb{R}^{d \times m}\right), t \in \mathbb{T}$.
- Define a mapping $F^{t}: \mathbb{R}_{0} \mapsto \mathbb{R}_{t}$ by

$$
F^{t}(x, z):=\left(x+\int_{0}^{t} z_{s} d B_{s}, z^{t}\right), \quad(x, z) \in \mathbb{R}_{0}
$$

where $z^{t}:=\left(z_{u}\right)_{u \in[t, T]}$, the restriction of z onto $[t, T]$.

- For $t \in[0, T]$ and $\left(\xi, z^{t}\right) \in \mathbb{R}_{t}$, define, for $u \in[0, T]$,

$$
\mathcal{J}_{u}^{t}\left(\xi, z^{t}\right):=\mathbb{E}\left[\xi \mid \mathcal{F}_{u}\right] \mathbf{1}_{[0, t)}(u)+\left\{\xi+\int_{t}^{u} z_{s}^{t} d B_{s}\right\} \mathbf{1}_{[t, T]}(u) .
$$

Then, for any $t \in \mathbb{T}, \mathcal{J}^{t}\left(\xi, z^{t}\right)$ is an \mathbb{F}-martingale on \mathbb{T},

- (Time Consistency) $\mathcal{J}^{t} \circ F^{t}=\mathcal{J}^{s} \circ F^{s}=\mathcal{J}^{0}$ on $\mathbb{R}_{0}, s, t \in \mathbb{T}$.
- For $\mathcal{R} \subset \mathbb{R}_{0}, t \geq 0, \exists \mathrm{SV}$ r.v $I_{0}^{t}(\mathcal{R}) \in \mathbb{L}_{\mathcal{F}_{t}}^{2}\left(\Omega, \mathscr{C}\left(\mathbb{R}^{d}\right)\right)$, s.t.

$$
\begin{equation*}
S_{\mathcal{F}_{t}}^{2}\left(I_{0}^{t}(\mathcal{R})\right)=\overline{\operatorname{dec}}_{\mathcal{F}_{t}}\left(\mathcal{J}_{t}^{0}[\mathcal{R}]\right) \tag{9}
\end{equation*}
$$

- We call $I_{0}^{t}(\mathcal{R}):=\int_{0-}^{t} \mathcal{R} \circ d B$ the generalized stoch. integral.
- This integral tracks the initial values of the mg's in $\mathcal{J}^{0}[\mathcal{R}](!)$.
- Let M be a \mathbb{L}^{2}-SV mg, and $M S(M)$ its $\left(\mathbb{L}^{2}-\right) \mathrm{mg}$ selectors. By standard MRT we can define, for each $t \in \mathbb{T}$,

$$
\mathcal{R}_{t}^{M}:=\left\{(\xi, z) \in \mathbb{R}_{t}: \mathcal{J}^{t}(\xi, z) \in M S(M)\right\} ; \quad \mathcal{R}^{M}:=\mathcal{R}_{0}^{M}
$$

Theorem (MRT, Ararat-M.-Wu, 2021)

$$
M_{t}=\int_{0-}^{t} \mathcal{R}^{M} \circ d B, \quad \mathbb{P} \text {-a.s. }, t \in \mathbb{T}
$$

Moreover, $S_{\mathcal{F}_{t}}^{2}\left(M_{t}\right)=\overline{\operatorname{dec}}_{\mathcal{F}_{t}}\left(P_{t}[M S(M)]\right)=\overline{\operatorname{dec}}_{\mathcal{F}_{t}}\left(\mathcal{J}_{t}^{0}\left[\mathcal{R}^{M}\right]\right)$.

Connection with SV BSDEs

- The definition of the new stochastic SV integral can lead to a representation of the SVBSDE (6) :

$$
\begin{equation*}
Y_{t}+\int_{0-}^{T} \mathcal{Z} \circ d B=\xi+\int_{t}^{T} f\left(s, Y_{s}\right) d s+\int_{0-}^{t} \mathcal{Z} \circ d B \tag{10}
\end{equation*}
$$

where the pair $(Y, \mathcal{Z}) \in Y \in \mathscr{L}_{\mathbb{F}}^{2}\left([0, T] \times \Omega, \mathscr{K}\left(\mathbb{R}^{d}\right)\right) \times \mathbb{R}_{0}$ can be defined as the solution, if $Y_{0}=\pi_{\xi}[\mathcal{Z}]$ and one can argue that such solution (Y, \mathcal{Z}) exists and is unique.

The Main Issues

- The representation is only defined "a.s." for each $t \in \mathbb{T}$.
- No "path-regularity" for the (indefinite) integral $t \mapsto I_{0}^{t}(\mathcal{R})$
- "Temporal additivity"? $\left(M_{t} \neq " I_{s-}^{t}\left(\mathcal{R}^{M}\right) "+M_{s}\right)$

Indefinite Integrals - A "Path" View

- Recall : for $\mathcal{R} \subset \mathbb{R}_{0}, \mathcal{J}^{0}[\mathcal{R}] \subset \mathbb{L}_{\mathcal{F}_{T}}^{2}\left(\Omega, \mathbb{C}_{T}^{d}\right)$.
- $I^{\mathcal{R}}=I_{0}^{T}(\mathcal{R}) \in \mathscr{M}\left(\Omega ; \mathcal{C}\left(\mathbb{C}_{T}^{d}\right)\right)$, s.t. $S_{\mathcal{F}_{T}}^{2}\left(I^{\mathcal{R}}\right)=\overline{\operatorname{dec}}_{\mathcal{F}_{T}}\left(\mathcal{J}^{0}[\mathcal{R}]\right)$.
- Define, for $t \in \mathbb{T}, I_{t}^{\mathcal{R}}(\omega):=\overline{P_{t}\left[I^{\mathcal{R}}(\omega)\right]}, \quad \omega \in \Omega$.
- Note that $I^{\mathcal{R}}(\omega) \subset \mathbb{C}_{T}^{d}$ is closed, bdd, but not necessarily weakly compact, thus $P_{t}\left[I^{\mathcal{R}}(\omega)\right]$ is not necessarily closed(!).

Proposition (Ararat-M. (2022))

- For each $t \in \mathbb{T}, I_{t}^{\mathcal{R}}$ is an \mathcal{F}_{T}-measurable SV random variable.
- The set-valued mapping $(t, \omega) \mapsto I_{t}^{\mathcal{R}}(\omega)$ on $\mathbb{T} \times \Omega$ is $\mathscr{B}(\mathbb{T}) \otimes \mathcal{F}_{T}$-measurable.
- $S_{\mathcal{F}_{T}}^{2}\left(I_{t}^{\mathcal{R}}\right)=\operatorname{cl}_{\mathbb{L}^{2}(\Omega)}\left\{y_{t}: y \in S_{\mathcal{F}_{T}}^{2}\left(I^{\mathcal{R}}\right)\right\}$.

Moreover ...

- For $t \in \mathbb{T}$, define the $\mathbb{E}\left[\mathcal{l}_{t}^{\mathcal{R}} \mid \mathcal{F}_{t}\right]: \Omega \rightarrow \mathcal{C}\left(\mathbb{R}^{d}\right)$ s.t.

$$
\begin{aligned}
S_{\mathcal{F}_{t}}^{2}\left(\mathbb{E}\left[l_{t}^{\mathcal{R}} \mid \mathcal{F}_{t}\right]\right) & =\overline{\operatorname{dec}}_{\mathcal{F}_{t}}\left\{\mathbb{E}\left[\xi \mid \mathcal{F}_{t}\right]: \xi \in S_{\mathcal{F}_{T}}^{2}\left(I_{t}^{\mathcal{R}}\right)\right\} \\
& =\operatorname{cl}_{\mathbb{L}^{2}}\left\{\mathbb{E}\left[\xi \mid \mathcal{F}_{t}\right]: \xi \in S_{\mathcal{F}_{T}}^{2}\left(I_{t}^{\mathcal{R}}\right)\right\} .
\end{aligned}
$$

- (R. Wang (2001)) \exists ! optional set-valued process $\left({ }^{\circ} I_{t}^{\mathcal{R}}\right)_{t \in[0, T]}$ s.t. $\mathbb{E}\left[I_{\tau}^{\mathcal{R}} \mid \mathcal{F}_{\tau}\right]={ }^{\circ} I_{\tau}^{\mathcal{R}}$, a.s., for every \mathbb{F}-stopping time τ.,

Theorem (Ararat-M. (2022))

- For $t \in \mathbb{T}, S_{\mathcal{F}_{t}}^{2}\left({ }^{0}{ }_{t}^{\mathcal{R}}\right)=\overline{\operatorname{dec}}_{\mathcal{F}_{t}}\left(\mathcal{J}_{t}^{0}[\mathcal{R}]\right)$.
- ${ }^{\circ} I_{t}^{\mathcal{R}}=\mathbb{E}\left[I_{t}^{\mathcal{R}} \mid \mathcal{F}_{t}\right]=\int_{0-}^{t} \mathcal{R} \circ d B \quad \mathbb{P}$-a.s.
- Let M be a convex, \mathbb{L}^{2}-integrably bounded SV mg. Then $M_{t}=\mathbb{E}\left[l_{t}^{\mathcal{R}^{M}} \mid \mathcal{F}_{t}\right]={ }^{0} I_{t}^{\mathcal{R}^{M}}, \mathbb{P}$-a.s.

Temporal Additivity of Indefinite Integrals

- Let $\Pi_{n}=\left\{\pi=\left(t_{i}\right)_{i=0}^{n}\right\}$ be the set of partitions on \mathbb{T}.
- Let $\mathcal{Y} \subset \mathbb{L}^{0}\left(\mathbb{T}, \mathbb{R}^{d}\right)$. For $\pi \in \Pi_{n}$ and $\left\{y^{i}\right\}_{i=0}^{n} \subset \mathcal{Y}$, define

$$
y_{t}^{\pi}=y_{t}^{0} \mathbf{1}_{\{0\}}(t)+\sum_{i=1}^{n} y_{t}^{i} \mathbf{1}_{\left(t_{i-1}, t_{i}\right]}(t), t \in \mathbb{T} .
$$

- \mathcal{Y} is called temporally decomposable if $\forall n \in \mathbb{N}, \pi \in \Pi_{n}$, and $\left\{y^{i}\right\}_{i=0}^{n} \subset \mathcal{Y} \Longrightarrow y^{\pi} \in \mathcal{Y}$.
- Denote the "temporally decomposable hull" of \mathcal{Y} by temp (\mathcal{Y}).
- For $A \in \mathscr{B}(\mathbb{T}), \mathcal{Y} \subset \mathcal{Y} \mathbf{1}_{A}+\mathcal{Y} \mathbf{1}_{A^{c}}$ (" $=$ " if \mathcal{Y} is t-decomposable)
- $\operatorname{temp}(\mathcal{Y})=\operatorname{temp}\left(\mathcal{Y} \mathbf{1}_{[0, t]}\right)+\operatorname{temp}\left(\mathcal{Y} \mathbf{1}_{(t, T]}\right)$.

Hope

- Define $I^{\mathcal{R}} \in \mathscr{M}\left(\Omega, \mathcal{C}\left(\mathbb{D}_{T}^{-}\right)\right)$s.t. $S_{\mathcal{F}_{T}}^{2}\left(I^{\mathcal{R}}\right)=\overline{\operatorname{dec}}\left(\operatorname{temp}\left(\mathcal{J}_{0}[\mathcal{R}]\right)\right)$.
- $t \mapsto{ }^{\circ} I_{t}^{\mathcal{R}}:=\mathbb{E}_{t}\left[\overline{P_{t}\left(I^{\mathcal{R}}\right)}\right]$ is temp-additive, and $M_{t}={ }^{0} I_{t}^{\mathcal{R}^{M}}$, a.s.

Main Difficulties

- Observe: $I^{\mathcal{R}}$ will now be $\mathcal{C}\left(\mathbb{D}_{T}^{-}\right)$-valued, instead of $\mathcal{C}\left(\mathbb{C}_{T}^{d}\right)$-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology?
- \mathbb{D}_{T}^{-}with Skorohod topology is not a topological vector space - $\left(\mathbb{D}_{T}^{-},\|\cdot\|_{\infty}\right)$ is a Banach Space but not separable

Main Difficulties

- Observe : $I^{\mathcal{R}}$ will now be $\mathcal{C}\left(\mathbb{D}_{T}^{-}\right)$-valued, instead of $\mathcal{C}\left(\mathbb{C}_{T}^{d}\right)$-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology ?
- \mathbb{D}_{T}^{-}with Skorohod topology is not a topological vector space
- $\left(\mathbb{D}_{T}^{-},\|\cdot\|_{\infty}\right)$ is a Banach Space but not separable
- Why separable?
- needed for, e.g., measurability \Longleftrightarrow decomposibility

Main Difficulties

- Observe : $I^{\mathcal{R}}$ will now be $\mathcal{C}\left(\mathbb{D}_{T}^{-}\right)$-valued, instead of $\mathcal{C}\left(\mathbb{C}_{T}^{d}\right)$-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology?
- \mathbb{D}_{T}^{-}with Skorohod topology is not a topological vector space
- $\left(\mathbb{D}_{T}^{-},\|\cdot\|_{\infty}\right)$ is a Banach Space but not separable
- Why separable?
- needed for, e.g., measurability \Longleftrightarrow decomposibility

Some Discoveries

\square

Main Difficulties

- Observe : $I^{\mathcal{R}}$ will now be $\mathcal{C}\left(\mathbb{D}_{T}^{-}\right)$-valued, instead of $\mathcal{C}\left(\mathbb{C}_{T}^{d}\right)$-valued, to suit the temporal decomposability.
- Uniform topology or Skorokhod topology?
- \mathbb{D}_{T}^{-}with Skorohod topology is not a topological vector space
- $\left(\mathbb{D}_{T}^{-},\|\cdot\|_{\infty}\right)$ is a Banach Space but not separable
- Why separable?
- needed for, e.g., measurability \Longleftrightarrow decomposibility

Some Discoveries

- $\left(\mathbb{D}_{T}^{-},\|\cdot\|_{\infty}\right)^{*}$ is weak*-separable(!)
- Scalar measurability, Aumann-Pettis integration theory , ..., etc., for multi-functions on non-separable Banach spaces

Pettis Integration

- Let \mathbb{X} be a Banach space. A function $f:(\Omega, \mathcal{F}, \mu) \mapsto \mathbb{X}$ is called scalarly measurable/integrable if $\omega \mapsto\left\langle x^{*}, f(\omega)\right\rangle$ is measurable/integrable for each $x^{*} \in \mathbb{X}^{*}$.
- f is called Pettis integrable if it is scalarly integrable \oplus $\forall A \in \mathcal{F}, \exists \int_{A} f d \mu \in \mathbb{X}$ such that

$$
\left\langle x^{*}, \int_{A} f d \mu\right\rangle=\int_{A}\left\langle x^{*}, f\right\rangle d \mu, \quad x^{*} \in \mathbb{X}^{*}
$$

- Note: If \mathbb{X} is separable, then f is Pettis integrable $\left\{\left\langle x^{*}, f\right\rangle: x^{*} \in \mathbb{B}_{\mathbb{X}^{*}}\right\}$ is uniformly integrable. But If \mathbb{X} is nonseparable, then the equivalence holds only when \mathbb{X} has the μ-Pettis Integral Property (μ-PIP) (i.e., every scalarly bounded and measurable function is Pettis integrable).

The space $X=\mathbb{D}=$, while non-separable, is μ-PIP(!)

Pettis Integration

- Let \mathbb{X} be a Banach space. A function $f:(\Omega, \mathcal{F}, \mu) \mapsto \mathbb{X}$ is called scalarly measurable/integrable if $\omega \mapsto\left\langle x^{*}, f(\omega)\right\rangle$ is measurable/integrable for each $x^{*} \in \mathbb{X}^{*}$.
- f is called Pettis integrable if it is scalarly integrable \oplus $\forall A \in \mathcal{F}, \exists \int_{A} f d \mu \in \mathbb{X}$ such that

$$
\left\langle x^{*}, \int_{A} f d \mu\right\rangle=\int_{A}\left\langle x^{*}, f\right\rangle d \mu, \quad x^{*} \in \mathbb{X}^{*}
$$

- Note: If \mathbb{X} is separable, then f is Pettis integrable $\left\{\left\langle x^{*}, f\right\rangle: x^{*} \in \mathbb{B}_{\mathbb{X}^{*}}\right\}$ is uniformly integrable. But If \mathbb{X} is nonseparable, then the equivalence holds only when \mathbb{X} has the μ-Pettis Integral Property (μ-PIP) (i.e., every scalarly bounded and measurable function is Pettis integrable).

The space $\mathbb{X}=\mathbb{D}_{T}^{-}$, while non-separable, is μ - $\operatorname{PIP}(!)$

The Space $\operatorname{Pe}(\mu, \mathbb{X})$

- Let $\operatorname{Pe}(\mu, \mathbb{X})$ be the space of all Pettis integrable \mathbb{X}-valued functions, with the strong topology defined by the norm :

$$
\|f\|_{P e}:=\sup _{x^{*} \in \mathbb{B}_{X^{*}}} \int_{\Omega}\left|\left\langle x^{*}, f(\omega)\right\rangle\right| \mu(d \omega) .
$$

- We identify $(\operatorname{Pe}(\mu, \mathbb{X}))^{*} \simeq \mathbb{L}^{\infty}(\mu) \times \mathbb{X}^{*}$, in the sense that the dual product on $\operatorname{Pe}(\mu, \mathbb{X})$ is defined by the linear mapping :

$$
f \mapsto\left\langle h \otimes x^{*}, f\right\rangle_{P e}:=\int_{\Omega} h(\omega)\left\langle x^{*}, f(\omega)\right\rangle \mu(d \omega) .
$$

- For $M \subset \operatorname{Pe}(\mu, \mathbb{X})$, we denote by $\operatorname{cl}_{P e}(M)\left(\operatorname{cl}_{P e}^{w}(M)\right)$ the closure of M w.r.t. the strong (weak) topology on $\operatorname{Pe}(\mu, \mathbb{X})$.
- The space $\operatorname{Pe}(\mu, \mathbb{X})$ with its weak topology is a Hausdorff topological vector space.

Aumann-Pettis Set-Valued Integrals

- \mathbb{X} - a Banach space such that \mathbb{X}^{*} is weak* separable.
- $\mathscr{C}_{w}(\mathbb{X})$ - weakly closed subsets of \mathbb{X},
- $\mathscr{K}_{w}(\mathbb{X})$ - convex weakly compact subsets of \mathbb{X}.
- For $F:(\Omega, \mathcal{F}, \mu) \rightarrow \mathscr{C}_{w}(\mathbb{X})$, let $S_{P e}(F):=S(F) \cap \operatorname{Pe}(\mu, \mathbb{X})$, and $\omega \mapsto \delta^{*}\left(x^{*}, F(\omega)\right):=\sup \left\{\left\langle x^{*}, x\right\rangle: x \in F(\omega)\right\}, \omega \in \Omega$, be the support function of F.
- F is called scalarly measurable/integrable if the support function $\delta^{*}\left(x^{*}, F(\cdot)\right) \in \mathbb{L}^{0}(\Omega) / \mathbb{L}^{1}(\Omega), x^{*} \in \mathbb{X}^{*}$.
- F is called Aumann-Pettis integrable if $S_{P e}(F) \neq \emptyset$.
- F is called Pettis integrable if it is scalarly integrable and $\forall A \in \mathcal{F}, \exists \int_{A} F d \mu \in \mathscr{K}_{w}(\mathbb{X})$ such that

$$
\delta^{*}\left(x^{*}, \int_{A} F d \mu\right)=\int_{A} \delta^{*}\left(x^{*}, F\right) d \mu, \quad x^{*} \in \mathbb{X}^{*}
$$

Known Results (Cascales-Ladets-Rodríguez, '10)

Assume that \mathbb{X} in non-separable, but \mathbb{X}^{*} is weak* separable. Let $F: \Omega \rightarrow \mathscr{K}_{w}(\mathbb{X})$ be a set-valued function. (Think: $\mathbb{X}=\mathbb{D}_{T}^{-}$!)

- F is Pettis integrable \Longleftrightarrow every scalarly measurable selector of F is Pettis integrable.
- F is Pettis integrable $\Longrightarrow \exists\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset S_{P e}(F)$ such that

$$
F(\omega)=\operatorname{cl}_{\mathbb{X}}^{w}\left\{f_{n}(\omega): n \in \mathbb{N}\right\}, \quad \omega \in \Omega .
$$

- Such a property is known as Castaing Representation
- As a consequence, "Pettis" \Longrightarrow "Aumann-Pettis"!
- F is Pettis integrable $\Longrightarrow\left\{\delta^{*}\left(x^{*}, F\right): x^{*} \in \mathbb{B}_{\mathbb{X}^{*}}\right\}$ is uniformly integrable. The converse holds if \mathbb{X} has μ-PIP.

Moreover ...

Theorem (Ararat-M. (2022))

Assume that \mathbb{X} is non-separable, but \mathbb{X}^{*} is weak*-separable. Assume further that $B_{\mathbb{X}}{ }^{*}$ (unit ball in \mathbb{X}^{*}) is weak*-separable. Let $M \subset \operatorname{Pe}(\mu, \mathbb{X})$ be weakly closed decomposable set. Then

- If $M=\operatorname{cl}_{P e}^{w} \operatorname{dec}\left\{f_{n}: n \in \mathbb{N}\right\}$ for some sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Pe}(\mu, \mathbb{X})$, then there exists an Aumann-Pettis integrable SV function $F: \Omega \rightarrow \mathscr{C}_{w}(\mathbb{X})$ such that $M=\operatorname{cl}_{P e}^{w} S_{P e}(F)$.
- If $M=\operatorname{cl}_{P e}^{w} S_{P e}(F)$ for some Pettis integrable set-valued function $F: \Omega \rightarrow \mathscr{K}_{w}(\mathbb{X})$, then there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Pe}(\mu, \mathbb{X})$ such that $M=\operatorname{cl}_{P e}^{w} \operatorname{dec}\left\{f_{n}: n \in \mathbb{N}\right\}$ and $F(\omega)=\operatorname{cl}_{\mathbb{X}}^{w}\left\{f_{n}(\omega): n \in \mathbb{N}\right\}$ for every $\omega \in \Omega$.

Temporally Additive SV Stochastic Integral

Given $(\Omega, \mathcal{F}, \mathbb{P})$, consider $\mathcal{J}^{0}: \mathbb{R}_{0} \rightarrow \mathbb{L}_{\mathcal{F}_{T}}^{2}\left(\Omega, \mathbb{C}_{T}\right) \subset \operatorname{Pe}_{\mathcal{F}_{T}}\left(\mathbb{P}, \mathbb{D}_{T}^{-}\right)$.

- If $\mathcal{R} \subset \mathbb{R}_{0}$, then $\exists\left\{\left(x^{n}, z^{n}\right)\right\}_{n \in \mathbb{N}} \subset \mathcal{R}$, such that
- $\operatorname{cl\mathcal {R}}=\operatorname{cl}\left\{\left(x^{n}, z^{n}\right): n \in \mathbb{N}\right\}$
- $\operatorname{cl} \mathcal{J}^{0}[\mathcal{R}]=\operatorname{cl}\left\{\mathcal{J}^{0}\left(x^{n}, z^{n}\right): n \in \mathbb{N}\right\}$
- $\operatorname{cl}_{P e}^{w} \mathcal{J}^{0}[\mathcal{R}]=\operatorname{cl}_{P e}^{w}\left\{\mathcal{J}^{0}\left(x^{n}, z^{n}\right)\right\}_{n \in \mathbb{N}}$,
- $\operatorname{cl}_{P e}^{w} \operatorname{dec}_{\operatorname{temp}}^{\mathbb{Q}} \mathcal{J}^{0}[\mathcal{R}]=\operatorname{cl}_{P e}^{w} \operatorname{dec} \operatorname{temp}_{\mathbb{Q}}\left\{\mathcal{J}^{0}\left(x^{n}, z^{n}\right)\right\}_{n \in \mathbb{N}}$
- Since temp $\mathbb{Q}_{\mathbb{Q}}\left\{\mathcal{J}^{0}\left(x^{n}, z^{n}\right): n \in \mathbb{N}\right\}$ is countable, there exists an Aumann-Pettis integrable SV r.v. $\Phi^{\mathcal{R}}: \Omega \rightarrow \mathscr{C}_{w}\left(\mathbb{D}_{T}^{-}\right)$such that

$$
\operatorname{cl}_{P e}^{W} \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} \mathcal{J}^{0}[\mathcal{R}]=\operatorname{cl}_{P e}^{W} S_{P e}\left(\Phi^{\mathcal{R}}\right)
$$

- We call $\Phi^{\mathcal{R}}$ the stochastic Aumann-Pettis integral of \mathcal{R} and denote it by $\Phi^{\mathcal{R}}:=f_{0-}^{T} \mathcal{R} \circ d B$.

Temporally Additive Indefinite Integral

- For $t \in \mathbb{T}$, let $J^{t}(\mathcal{R}):=\mathcal{J}_{t \wedge .}^{0}(\mathcal{R}) ; J_{\mathbb{Q}}^{t}(\mathcal{R}):=\bigcup_{q \in \mathbb{Q}, q<t} J^{q}[\mathcal{R}]$
- $\operatorname{cl}_{P e}^{w} \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} J_{\mathbb{Q}}^{t}[\mathcal{R}]=\operatorname{cl}_{P e}^{w} \operatorname{dec}^{\operatorname{temp}} \mathbb{Q}_{\mathbb{Q}} \bigcup_{q \in \mathbb{Q}, q<t}\left\{J^{q}\left(x^{n}, z^{n}\right)\right\}_{n \in \mathbb{N}}$.
- \exists Aumann-Pettis integrable SV r.v. $\tilde{\Phi}^{t}(\mathcal{R}): \Omega \rightarrow \mathscr{C}_{w}\left(\mathbb{D}_{T}^{-}\right)$s.t. $\operatorname{cl}_{P e}^{w} S_{P e}\left(\tilde{\Phi}^{t}(\mathcal{R})\right)=\operatorname{cl}_{P e}^{w} \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} J_{\mathbb{Q}}^{t}[\mathcal{R}]$.
- Similarly, for $s<t$, define $J_{s}^{t}\left(\mathbb{R}_{s}\right):=\mathcal{J}_{t \wedge}^{0} . \circ F^{-s}\left(\mathbb{R}_{s}\right)$, where $F^{-s}: \mathbb{R}_{s} \ni(\xi, z) \mapsto\left(\mathbb{E}[\xi], z^{s} \oplus z\right) \in \mathbb{R}_{0}, \xi=\mathbb{E}[\xi]+\int_{0}^{s} z_{u}^{s} d B_{u}$.
- \exists Aumann-Pettis integrable $\tilde{\Phi}_{s}^{t}(\mathcal{R}): \Omega \rightarrow \mathscr{C}_{w}\left(\mathbb{D}_{T}^{-}\right)$s.t. $\operatorname{cl}_{P e}^{w} S_{P e}\left(\tilde{\Phi}_{s}^{t}(\mathcal{R})\right)=\operatorname{cl}_{P e}^{w} \operatorname{dec} \operatorname{temp}_{\mathbb{Q}} J_{s}^{t}[\mathcal{R}]$.
- Denote $\tilde{\Phi}_{s}^{t}(\mathcal{R})=f_{s-}^{t} \mathcal{R} \circ d B, 0 \leq s<t \leq T$, we expect

$$
f_{0-}^{t} \mathcal{R} \circ d B=f_{s-}^{t} \mathcal{R} \circ d B+f_{0-}^{s} \mathcal{R} \circ d B
$$

Important Facts

- \mathbb{D}_{T}^{-}is a Banach space (hence a topological vector space)
- $\left(\mathbb{D}_{T}^{-}\right)^{*}$ is weak* separable and \mathbb{P}-PIP for any $\mathbb{P} \in \mathcal{P}\left(\mathbb{D}_{T}^{-}\right)$
- $B_{\left(\mathbb{D}_{T}^{-}\right)^{*}}$ is weak* separable (not trivial!)
- $\operatorname{temp}(\mathcal{Y})=\operatorname{temp}\left(\mathcal{Y} 1_{[0, t)}\right)+\operatorname{temp}\left(\mathcal{Y} 1_{[t, T]}\right)$
- $\operatorname{dec}(A+B)=\operatorname{dec}(A)+\operatorname{dec}(B), \quad A, B \in \mathscr{C}_{w}\left(\mathbb{D}_{T}^{-}\right)$
- $\operatorname{cl}_{P e}^{w}(A+B)=\operatorname{cl}_{P e}^{w}(A)+\operatorname{cl}_{P e}^{w}(B), \quad A, B \in \mathscr{K}_{w}\left(\mathbb{D}_{T}^{-}\right)$
- $S_{P e}(X+Y)=S_{P e}(X)+S_{P e}(Y), \quad X, Y \in \mathscr{M}\left(\mathbb{T}, \mathbb{D}_{T}^{-}\right)$.
- (Time Consistency)
- $\mathcal{J}^{t} \circ F^{t}=\mathcal{J}^{s} \circ F^{s}=\mathcal{J}^{0}$ on $\mathbb{R}_{0}, s, t \in \mathbb{T}$.
- $F^{t}\left[\mathcal{R}_{0}\right]=\mathcal{R}_{t}, F^{-t}\left[\mathcal{R}_{t}\right]=\mathcal{R}_{0}$

A Story ...

Weak* separability of dual unit ball of $\mathrm{D}[0,1]$

Asked 7 days ago Modified 4 days ago Viewed 95 times

Let $D[0,1]$ be the space of all right-continuous left-limited functions $f:[0,1] \rightarrow \mathbb{R}$ equipped with the supremum norm $f \mapsto\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)|$. This is a non-separable Banach space whose 5 dual $D[0,1]^{*}$ is known to be separable in the weak* topology; see, e.g., Chapter 41, p. 1756 of

Johnson, W. B. (ed.); Lindenstrauss, J. (ed.), Handbook of the geometry of Banach spaces. Volume 2, Amsterdam: North-Holland. xii, 1007-1866 (2003). ZBL1013,46001.
(1) Is the unit ball in $D[0,1]^{*}$ separable in the weak* topology?
functional-analysis banach-spaces weak-topology
[The question was posted on the website : Mathstackexchange.]

A Story ...

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 366, Number 9, September 2014, Pages 4733-4753
S 0002-9947(2014)05962-X
Article electronically published on May 5, 2014

A WEAK* SEPARABLE $C(K)^{*}$ SPACE WHOSE UNIT BALL IS NOT WEAK* SEPARABLE

A. AVILÉS, G. PLEBANEK, AND J. RODRÍGUEZ

Abstract. We provide a ZFC example of a compact space K such that $C(K)^{*}$ is w^{*}-separable but its closed unit ball $B_{C(K)^{*}}$ is not w^{*}-separable. All previous examples of such kind had been constructed under CH . We also discuss the measurability of the supremum norm on that $C(K)$ equipped with its weak Baire σ-algebra.

1. Introduction

Let K be a compact space (all our topological spaces are assumed to be Hausdorff) and let $C(K)$ be the Banach space of all continuous real-valued functions on K (equipped with the supremum norm). One can consider the following list of

A Story ...

1 Answer

$\left(D([0,1]),\|\cdot\|_{\infty}\right)$ is a commutative C^{*}-algebra, so it is isometrically isomorphic to $C(\Delta)$ by the Gelfand map, where Δ is the character space of $D([0,1])$.

Let $h_{1+} \in \Delta$ be defined by $h_{1+}(f)=f(1)$ for all $f \in\left(D([0,1])\right.$. Every $h \in \Delta \backslash\left\{h_{1+}\right\}$ is either of the form

$$
\forall f \in D([0,1]) \quad h_{c+}(f)=f(c+)=\lim _{x \rightarrow c+} f(x)
$$

for some $c \in[0,1)$ or of the form

$$
\forall f \in D([0,1]) \quad h_{c-}(f)=f(c-)=\lim _{x \rightarrow c} f(x)
$$

for some $c \in(0,1]$. Let $K=\{(c, 1): c \in[0,1]\} \cup\{(c,-1): c \in(0,1]\}$ with the weak parallel line topology. It is relatively straightforward to show that Δ is homeomorphic to $K . K$ is a separable, compact, Hausdorff space.

Since Δ and K are homeomorphic, $C(\Delta)$ and $C(K)$ are isometrically isomorphic as Banach spaces. Lastly, see the implications in the first page of the paper
https://doi.org/10.48550/arXiv.1112.5710 : since K is separable, the unit ball of $(C(K))^{*}$ is weak* separable.

Conclusion

- We argue that the current set-valued stochastic analysis may have fundamental difficulties in studying a set-valued BSDE.
- A successful remedy might have to contain a new notion of set-valued stochastic integrals that satisfies following requirements :
- It is a set-valued process (decomposable) allowing non-decomposable integrand;
- it is temporally additive; and
- It permits a (set-valued) martingale representation theorem.
- We proposed possible new definition of set-valued stochastic integral that meets the desired the properties.
- There is a long, but hopeful way ahead.

Conclusion

- We argue that the current set-valued stochastic analysis may have fundamental difficulties in studying a set-valued BSDE.
- A successful remedy might have to contain a new notion of set-valued stochastic integrals that satisfies following requirements :
- It is a set-valued process (decomposable) allowing non-decomposable integrand;
- it is temporally additive; and
- It permits a (set-valued) martingale representation theorem.
- We proposed possible new definition of set-valued stochastic integral that meets the desired the properties.
- There is a long, but hopeful way ahead...

THANK YOU VERY MUCH!

