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1. BSDEs and the Initiation of FBSDEs

• 1972, Bismut introduced linear BSDEs.

• 1990, Pardoux–Peng initiated nonlinear BSDEs.

Y (t) = ξ +

∫ T

t
g(s,Y (s),Z (s))ds −

∫ T

t
Z (s)dW (s),

t ∈ [0,T ],

(1)

Theorem (Pardoux–Peng) Under proper conditions,
ξ ∈ Lp

FT
(Ω;Rm), BSDE (1) admits a unique adapted solution

(Y (·),Z (·)).

• Many further development, ...
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• Early 1990s, Fabio Antonelli started to investigate following:
Ut = Jt +

∫ t

0
fs(Us ,Vs)dAs ,

Vt = E
[ ∫ T

t
gs(Us ,Vs)dCs + Y

∣∣ Ft

]
.

(2)

A,C — finite variation processes
(U,V ) — unknown

Theorem (Antonelli) (i) Let (U,V ) 7→ (f (U,V ), g(U,V )) be
Lipschitz continuous with the Lipschitz constant or time duration
T being small enough. Then, (2) admits a unique adapted
solution.

(ii) If the Lipschitz constant or the time duration T is not small
enough, system (2) might not have an adapted solution on [0,T ].

Completed in 1991, published in 1993.
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2. Stochastic Optimal Control Method

• 1992, Jin invited me to join the research,

X (t) = x +

∫ t

0
b(X (s),Y (s),Z (s))ds

+

∫ t

0
σ(X (s),Y (s),Z (s))dW (s),

Y (t) = g(X (T )) +

∫ T

t
b̂(X (s),Y (s),Z (s))ds

+

∫ T

t
σ̂(X (s),Y (s),Z (s))dW (s),

(3)

No restriction on the size of T and the Lipschitz constant.

• FBSDE (3) is a two-point boundary value problem for SDEs.
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For ODE case: shooting method. Consider:
ẋ(t) = b(x(t), y(t)),

ẏ(t) = b̂(x(t), y(t)),

x(0) = x0, y(T ) = g(x(T )).

(4)

Instead, consider: 
ẋ(t) = b(x(t), y(t)),

ẏ(t) = b̂(x(t), y(t)),

x(0) = x0, y(0) = y0,

(5)

with y0 being a parameter to be chosen.

(i) For any (x0, y0), solve (5) to get (x(· ; x0, y0), y(· ; x0, y0)),
indicating the dependence on (x0, y0).

(ii) Select a “bullet” y0 so that the “target” is hit:

y(T ; x0, y0) = g(x(T ; x0, y0)).
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For FBSDE (3), consider

X (r) = x +

∫ r

t
b(X (s),Y (s), u(s))ds

+

∫ r

t
σ(X (s),Y (s), u(s))dW (s),

Y (r) = y −
∫ r

t
b̂(X (s),Y (s), u(s))ds

−
∫ r

t
σ̂(X (s),Y (s), u(s))dW (s),

(6)

with the cost functional

J(t, x , y ; u(·)) = E|Y (T )− g(X (T ))|2. (7)

Problem (C). Find u(·) ∈ U [t,T ], such that

J(t, x , y ; ū(·)) = inf
u(·)∈U [t,T ]

J(t, x , y ; u(·)) ≡ V (t, x , y). (8)

V (· , · , ·) — value function of Problem (C).
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• If FBSDE (3) admits an adapted solution (X ,Y ,Z ), then by
choosing y = Y (0) and ū(·) = Z (·),

J(0, x ,Y (0); ū(·)) = |Y (T )− g(X (T ))|2 = V (0, x , y) = 0.

• If Problem (C) admits an optimal triple (X̄ (·), Ȳ (·), ū(·)) for
some (0, x , y) with

V (0, x , y) = 0, (9)

then (X̄ (·), Ȳ (·), ū(·)) is an adapted solution of FBSDE (3).

Proposition (Ma-Y). FBSDE (3) is globally solvable if and only
if Problem (C) admits an optimal control at some (0, x , y) which is
a nodal point of V (· , · , ·).
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For Problem (C), V (· , · , ·) satisfies the HJB equation:
Vt(t, x , y) + H(t, x , y ,Vx ,Vy ,Vxx ,Vxy ,Vyy ) = 0,

(t, x , y) ∈ [0,T ]× Rn × Rm,

V (T , x , y) = |y − g(x)|2, (x , y) ∈ Rn × Rm,

(10)

where the Hamiltonian H is given by the following:

H(t, x , y ,Vx ,Vy ,Vxx ,Vxy ,Vyy )

= inf
u∈Rm×d

{
〈Vx , b(x , y , u) 〉+ 〈Vy , b̂(x , y , u) 〉

+
1

2
tr
[
σ(x , y , u)σ(x , y , u)>Vxx

]
+tr

[
σ(x , y , u)σ̂(x , y , u)>Vxy

]
+

1

2
tr
[
σ̂(x , y , u)σ̂(x , y , u)>Vyy

]}
.



Consider the following FBSDE:

X (t)=x +

∫ t

0
b(X (s),Y (s))ds +

∫ t

0
σ(X (s),Y (s))dW (s),

Y (t) = g(X (T )) +

∫ T

t
b̂(X (s),Y (s))ds

+

∫ T

t
σ̂(X (s),Y (s),Z (s))dW (s).

(11)

This is equivalent to the following:
X (t)=x +

∫ t

0
b(X (s),Y (s))ds +

∫ t

0
σ(X (s),Y (s))dW (s),

Y (t) = E
[
g(X (T )) +

∫ T

t
b̂(X (s),Y (s))ds

∣∣ Ft

]
.

(12)

This is comparable with the equation studied by Antonelli.



Theorem (Ma–Y). Under proper conditions, including

σ(x , y)σ(x , y)> > ν > 0, ∀(x , y) ∈ Rn+m,

and
σ̂(x , y ,Rm×d) = Rm×d , (13)

for any T > 0 and x ∈ R, FBSDE (11) is solvable.

Our paper was completed in the early 1993, which was listed as
#1117 in the IMA preprint series.
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3. The Four-Step Scheme

Invariant Embedding (Decoupling)

In solving LQ problem, one faces to the following:
˙̄x(t) = Ax̄(t) + Bū(t),

˙̄y(t) = −A>ȳ(t)− Qx̄(t),

x̄(0) = x0, ȳ(T ) = G x̄(T ),

with
Rū(t) + B>x̄(t) = 0.

Then, we obtain the following coupled system:
˙̄x(t) = Ax̄(t)− BR−1B>ȳ(t),
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To decouple, we set
ȳ(t) = P(t)x̄(t).

Then by assuming everything is fine, we have

−A>P(t)x̄(t)− Qx̄(t) = ˙̄y(t)

= Ṗ(t)x̄(t) + P(t)[Ax̄(t)− BR−1B>P(t)x̄(t)]

=
[
Ṗ(t) + P(t)A− P(t)BR−1B>P(t)

]
x̄(t).

Thus, P(·) should be the solution to the Riccati equation:
Ṗ(t) + P(t)A + A>P(t)− P(t)BR−1B>P(t) + Q = 0,

t ∈ [0,T ],

P(T ) = G .

(14)
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Ṗ(t) + P(t)A− P(t)BR−1B>P(t)

]
x̄(t).

Thus, P(·) should be the solution to the Riccati equation:
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Ṗ(t) + P(t)A + A>P(t)− P(t)BR−1B>P(t) + Q = 0,

t ∈ [0,T ],

P(T ) = G .

(14)



Consider the following general FBSDE:

dX (t) = b(t,X (t),Y (t),Z (t))dt

+σ(t,X (t),Y (t))dW (t),

dY (t) = −g(t,X (t),Y (t),Z (t))dt + Z (t)dW (t),

X (0) = x , Y (T ) = h(X (T )).

(15)

Let
Y (t) = θ(t,X (t)).

Then by Itô’s formula, for i = 1, 2, · · · ,m,

−g i (t,X (t), θ(t,X (t)),Z (t))dt + Z i (t)dW (t) = dY i (t)

=
[
θit(t,X (t)) + θix(t,X (t))b(t,X (t), θ(t,X (t)),Z (t))

+
1

2
tr [θixx(t,X (t))(σσ>)(t,X (t), θ(t,X (t)))

]
dt

+θix(t,X (t))σ(t,X (t), θ(t,X (t)))dW (t).
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Hence, if θ(· , ·) is a right choice, we should have

Z (t) = θx(t,X (t))σ(t,X (t), θ(t,X (t))),

which suggests:
z = pσ(t, x , θ). (16)

Here p will be the row vector, generically representing θx .

Consequently, we should set

θit(t, x) + θix(t, x)b(t, x , θ(t, x), θx(t, x)σ(t, x , θ(t, x)))

+
1

2
tr
[
θixx(t, x)σ(t, x , θ(t, x))σ(t, x , θ(t, x))>

]
+g i (t, x , θ(t, x), θx(t, x)σ(t, x , θ(t, x))) = 0,

(t, x) ∈ [0,T ]× Rn, 1 6 i 6 m,

θ(T , x) = g(x), x ∈ Rn.

(17)
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Let θ(· , ·) be the classical solution. Then we solve SDE:
dX (t) = b

(
t,X (t), θ(t,X (t)), θx(t,X (t))σ(t,X (t), θ(t,X (t)))

)
dt

+σ(t,X (t), θ(t,X (t)))dW (t),

X (0) = x .
(18)

Then by settingY (t) = θ(t,X (t)),

Z (t) = θx(t,X (t))σ(t,X (t), θ(t,X (t)), t ∈ [0,T ],
(19)

DONE!
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Theorem (Ma–Protter–Y). Under suitable conditions, including

σ(t, x , y)σ(t, x , y)> > δI , ∀(t, x , y) ∈ [0,T ]×Rn×Rm, (20)

for some δ > 0. Then FBSDE (15) can be solved by the following
Four-Step Scheme:

Step 1. Set z = pσ(t, x , θ).

Step 2. Solve parabolic system (17) to get θ(· , ·).
Step 3. Solve FSDE (18) to get X (·).
Step 4. SetY (t) = θ(t,X (t)),

Z (t) = θx(t,X (t))σ(t,X (t), θ(t,X (t)), t ∈ [0,T ],

A Punch Line: Jin named the method.

This paper was listed #1146 in the IMA preprint series,
published in 1994 in PTRF, earlier than our first paper in the
series.
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4. Black’s Conjecture.

June of 1992, IMA.

Black’s Conjecture: There should be an analytic relationship
between the consol rate and the short rate.

The mathematical formulation of infinite-horizon consol rate
problem:

Problem (IHCR) Find an adapted, locally square-integrable
process (X ,Y ) such that

X (t) =x +

∫ t

0
b(X (s),Y (s))ds +

∫ t

0
σ(X (s),Y (s)dW (s),

Y (t) = E
[ ∫ ∞

t
exp

(
−
∫ s

t
h(X (r))dr

)
ds
∣∣ Ft

]
,

t ∈ [0,∞).

(21)
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The above system is equivalent to the following FBSDE:
dX (t) = b(X (t),Y (t))dt + σ(X (t),Y (t))dW (t), t ∈ [0,∞),

dY (t) =
[
h(X (t))Y (t)− 1

]
dt + 〈Z (t), dW (t) 〉, t ∈ [0,∞),

X (0) = x , Y (t) is uniformly bounded.
(22)

This is an FBSDE in an infinite horizon.



Theorem (Duffie–Ma–Y). Under proper conditions. Problem
(IHCR) admits at least one nodal solution (X (·),Y (·)). In other
words, there is a C 2 bounded function θ(·) so that X (·),Y (·))
solves (21) and

Y (t) = θ(X (t)).

Moreover, nodal solution is unique.



5. BSPDEs



X (t) = x +

∫ t

0
b(s,X (s),Y (s),Z (s))ds

+

∫ t

0
σ(s,X (s),Y (s))dW (s),

Y (t) = h(X (T )) +

∫ T

t
g(s,X (s),Y (s),Z (s))ds

−
∫ T

t
Z (s)dW (s).

(23)

In the above, all the involved functions are random fields.

Try to write Y (t) = u(t,X (t)), for some random field u(· , ·).



Suppose

du(t, x) = p(t, x)dt+〈 q(t, x), dW (t) 〉, (t, x)∈ [0,T ]×Rn, (24)

with p(· , ·) and q(· , ·) undetermined. Then by a generalized
Itô-Ventzell formula, we have

u(t,X (t)) = u(T ,X (T ))−
∫ T

t

{
p(s,X (s))

+ux(s,X (s))b(s,X (s),Y (s),Z (s))

+
1

2
tr
[
uxx(s,X (s))σ(s,X (s),Y (s))σ(s,X (s),Y (s))>

]
+tr

[
qx(s,X (s))σ(s,X (s))

]}
ds

−
∫ T

t

(
q(s,X (s))> + ux(s,X (s)))σ(s,X (s),Y (s))

)
dW (s).



We choose (u, q) so that

Y (t) = u(t,X (t)).

Then

Z (t) = q(t,X (t))> + ux(t,X (t))σ(t,X (t), u(t,X (t))),

g
(
t,X (t),Y (t),Z (t)))

= −
{

p(t,X (t)) + ux(t,X (t))b(t,X (t),Y (t),Z (s))

+
1

2
tr
[
uxx(s,X (s))σ(s,X (s),Y (s))σ(s,X (s),Y (s))>

]
+tr

[
qx(s,X (s))σ(s,X (s))

]}
.



Thus, we need to solve BSPDE:

du(t, x) +
{1

2
tr
[
uxx(t, x)σ(t, x , u(t, x))σ(t, x , u(t, x))>

]
+ux(t, x)b(t, x , u(t, x), q(t, x)>+ux(t, x)σ(t, x , u(t, x)))

+tr
[
qx(t, x)σ(t, x , u(t, x))

]
+g(t, x , u(t, x), q(t, x)>+ ux(t, x)σ(t, x , u(t, x)))

}
dt

−〈 q(t, x), dW (t) 〉 = 0,

u(T , x) = h(x).

(25)



If the above BSPDE admits a classical adapted solution (u, q),
then we can try to solve the following FSDE:

dX (t) = b
(
t,X (t), u(t,X (t)),

q(t,X (t)) + ux(t,X (t))σ(t,X (t), u(t,X (t)))
)
dt

+σ(t,X (t), u(t,X (t)))dW (t),

X (0) = x .
(26)

If this can also go through, we could finally setY (t) = u(t,X (t)),

Z (t) = q(t,X (t)) + ux(t,X (t))σ(t,X (t), u(t,X (t)).
(27)



Hence, at least formally, we still have the following Four-Step
Scheme:

Step 1. Define

z = q + pσ(t, x , y), ∀(t, x , p, q) ∈ [0,T ]× Rn × R1×d × R1×n.

Step 2. Solve BSPDE (25).

Step 3. Solve FSDE (26).

Step 4. Set Y (·) and Z (·) by (27).



This motivated us to study BSPDEs. As a first step, we consider

u(t, x) = h(x)+

∫ T

t

{
∇ ·
[
A(s, x)ux(s, x)

]
+ux(s, x)a(s, x)

+a0(s, x)u(s, x) + tr
[
B(s, x)qx(s, x)

]
+ 〈 b0(s, x), q(s, x) 〉+g0(s, x)

}
ds

−
∫ T

t
q(s, x)dW (s),

(28)

Theorem (Ma–Y). Under proper conditions, including

[
B(∂xi B

>)
]>

= B(∂xi B
>),

a.e. (t, x) ∈ [0,T ]× Rn, a.s. , 1 6 i 6 n.

(29)

BSPDE (28) is well-posed.



• 2000, Ying Hu (of Université de Rennes 1, Frances) joined Jin
and myself, working on one-dimensional semilinear BSPDEs.

• 2012, Ma–Yin–Zhang, established the equivalence of the
well-posedness of random coefficient FBSDEs and the existence of
the so-called random decoupling field, via the solution of BSPDEs.

• 2013, Du–Tang–Zhang removed the technical condition (29).

• 2013, Du–Zhang studied multi-dimensional semilinear case.

• 2014, Du–Chen studied BSPDEs, allowing quadratic growth of
(ux , q) in the semilinear term.

• For the general BSPDEs, it seems to be still open for the cases
that the differential operators L and M are nonlinear in u and/or
in q.



In about 1997, Jin and I decided to write a book summarizing the
updated theory of FBSDEs. The book was published in 1999.



6. Beyond

• FBSDEs with reflections.

• Numerical solutions of FBSDEs

• Weak solutions of FBSDEs

• Many, many more,...



Great Achievements, Jin!
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Thank You Very Much!
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