A stochastic maximum principle for partially

observed general mean-field control problems
with only weak solution

Juan Li
School of Mathematics and Statistics,
Research Center for Mathematics and Interdisciplinary Sciences,
Shandong University, Weihai & Qingdao, China.
Email: juanli@sdu.edu.cn

Based on a joint work with
Hao Liang, Chao Mi (Shandong University, Weihai, China)

9th International Colloquium on BSDEs and Mean Field Systems (27/06-01/07, 2022). Annecy, France. 2022/06/28.



@ Objective of the talk
© Preliminaries
© Well-posedness of the state-observation dynamics

@ Stochastic Control Problem

2/57



© Objective of the talk

3/57



1. Objective of the talk

We consider:

+ (Q, F, P;F = {F;}+>0) a filtered P.S. satisfying the usual hypotheses:
—(Q, F) := (C2,B(C%)), where C2 = C([0, T]; R?);
—IF be the natural filtration generated by the coordinate process on §2;

+ (E,d) separable complete metric space, B(E) Borel o-field over (E,d);
+ P(FE) the space of all probability measures over (E, B(E));
+ Pp(E) the space of probability measures on (E, B(E)) with finite

p-th moment, p > 1, endowed with the metric:

Wy (p,v) = inf{ (fExE (d(z, z’))pp(dzdz’)) "lpe Pp(E x E)

with p(- X E) = p, p(E X -) = 1/}.
Note: (Pp(E), Wp(-,-)) is a complete metric space.
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Brief state of the art

Mean-field problems:

1) Mean-Field SDEs have been intensively studied for a longer time as
limit equ. for systems with a large number of particles (propagation of
chaos)(Bossy, Méléard, Sznitman, Talay,...);

2) Mean-Field Games and related topics, since 2006-2007 by J.M.Lasry
and P.L.Lions, Huang-Caines-Malhamé (2006);

3) +) Mean-Field BSDEs/FBSDEs and associated nonlocal PDEs:
e Preliminary works in: Buckdahn, Dijehiche, L. Peng (2009, AOP),
Buckdahn, L. Peng (2009, SPA);

e Classical solution of non-linear PDE related with the mean-field SDE:
Buckdahn, L., Peng, Rainer (2017, AOP (2014, Arxiv));

e For the case with jumps: L., Hao (2016, NODEA);

e For the case with the mean-field forward and backward SDE jumps:
L. (2017, SPA);

e For the case with continuous coefficients:
L., Liang, Zhang (2018, JMAA)
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Brief state of the art

e For derivative over Wasserstein spaces along curves of densities:
Buckdahn, L., Liang. Arxiv. 2020.

+) Controlled mean-field forward and backward SDEs:
e For Pontryagin's maximum principle: L. (2012, Automatica);
+ with partial observations: Buckdahn, L., Ma (2017, AAP);

e For Peng's maximum principle: Buckdahn, Djehiche, L. (2011, AMO);
~~Buckdahn, L., Ma (2016, AMO): Controlled mean-field stochastic system:
dXP = b(t, Pxy, X0, v)dt + o(t, Pxy, X2, v))dWy, t € [0,T]...
~~Buckdahn, Chen, L. (2021, SPA): Controlled mean-field stochastic system:
dXP = b(t, Pixounys X5 00)dt + 0(t, Pixo vy, X5 00)dWy, t € [0,T)...
+ with partial observations:
L., Liang, Mi (2021, arxiv)

e For Zero-sum stochastic differential games:
L., Min (2016 (SICON))

5/57



1. Objective of the talk

Investigate Peng’s maximum principle for a general type of mean-field
stochastic control problems with partial observations. Extends:
e Buckdahn, L. and Ma (AAP, 2017)

The novelties in our work:

e The coefficients of the systems depend in a nonlinear way not only
on the paths but also on the law of the conditional expectation of the
state with respect to the observation process up to date;

e In spite of the use of reference probability measure, having only a
weak solution of our controlled system, we need to work with the law
under different probability measures depending on the solution, which
makes the computations very hard and technical;

e The first order variational equation we obtain is of a new type of
coupled mean-field SDE to the best of our knowledge.

e The SMP we obtain is of a new type too.
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2. Preliminaries

Spaces we work with: For any sub-o-field G of F and any subfiltration
G of F, p > 1, we denote

e LP(G, P;R¥) is the set of R¥-valued, G-measurable random variables ¢
with EF[|€|P] < co. Here ET[-] denotes the expectation w.r.t. P.
o SZ.([0,T7, P;RF) denotes the set of R¥-valued, G-adapted continuous
stochastic processes X on [0, 7], with Ep[supte[oﬂ | X¢[P] < oo

e L7.([0,T], P;IR¥) is the set of R*-valued, G-progressively measurable

ya
stochastic processes X on [0, 7], with EPKfOT ]Xt]2dt> 2} < 00.
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2. Preliminaries

Derivative of a function with respect to a probability measure

(see: Course at Institut de France by P.-L. Lions, 2013; notes by
Cardaliaguet, 2013, but also: Cargaliaguet, Delarue, Lasry, Lions
(Princeton University Press, 2019) for an equivalent approach)

+ Given any function b : P2(R%) — R :

+ Its “lifted” function: h : L2(F;R?%) — R defined by h(€) = h(P%),
¢ € L*(F;R%) (advantage: L?(F;R%) is a Hilbert space);

+ Differentiablility: If for € P2 (RY), there exists ¢ € L?(F;RY) s.t.
(= Pe and h(-) : L2(F;R?%) — R is Fréchet differentiable at ¢,
then h : P2(R?) — R is said to be differentiable at .
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2. Preliminaries

Remark 2.1. Let ¢ € L*(F;RY) st. h(-) : L*(F;RY) — R is Fréchet
differentiable at &; there exists Dh(¢) € L(L*(F;R%),R%) s.t., for every
n € L2(F;R),

R(& +n) — h(€) = DR(E)(n) + ol|nlz2), as |n|zz — 0. (2.1)

Due to the Riesz Representation Theorem, there exists 6 € L?*(F;R9) s.t.,

Dh(€)(n) = E[f - ), n € L*(F;RY).
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2. Preliminaries

As shown by P.-L. Lions (2013), there exists a Borel function g : R? — RY

s.t. 0 =g(§), P-a.s., and g depends on £ only through its law P%.
Thus, we can write (2.1) as

h(Pety) — h(Pe) = Elg(€) - 0] + ol|n|2), n € L*(F:RY).

The function g(-) is called the derivative of h : Po(RY) — R at u(= ),

and it is denoted by 9,h(1,y) = g(y),y € R% Hence, we have, for every
n € L*(F;RY),

Dh(€)(n) = Elg(€) - n] = E[0uh(Pe.€) - . |

That is, if h: Po(R?) — R is differentiable at u with = P, we also have

h(Peyn) — h(Pe) = E[0,h(Pe,€) -] + ol|nlr2), n € L*(F;RY). J

~» Buckdahn, L., Peng, Rainer (2017)
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3. Well-posedness of the state-observation dynamics.

The dynamics of the state and the observation processes

o X is the state process and Y is the observation process defined on
(Q,F,P):

{ dX; = o(t, Yo, Xo iy " VAB}, Xo =z € R; (3.1)
dY; = h(t, Y., X, i )dt + dB2, Yo = 0, t € 0,7, '
where (B!, B?) is an (IF, P)-Brownian motion.
+ UtX‘Y = EP[X, | FY], t € ]0,T], denotes the “filtered” state process
and ,utxly its law under P, i.e., u;xly = PUX\Y.

t

+ FY is the filtration generated by process Y.

e Note: The state process X can not be observed directly but only
through Y, so it is natural to consider the control u as F¥ -adapted.
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3. Well-posedness of the state-observation dynamics.

We will consider the well-posedness of (3.1) under the following
Assumptions (H1).

Assumption (H1)

(i) The functions o,h : [0,T] x C7 x R x P2(R) — R are Borel
measurable and bounded;

(i) For all (t,y) € [0,T] x Cr, z,2' € R, 7,7 € Pa(R) :

|¢(t7y~/\ta .’E,"}/) - ¢(t7y~/\t7$/7’7,)‘ < C(‘JJ - 33/’ + Wl(’%’yl))?
for ¢ = o, h.

Remark 3.1. In (3.1) we have assumed that the drift coefficient b = 0.

Indeed, the extension of our discussion to the case of a drift does not add
additional difficulties.
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3. Well-posedness of the state-observation dynamics.

e We use a reference probability measure argument. This allows to
transform system (3.1) into the form

{ dXy = o(t, Yorr, Xp, i ¥ )dBE, Xo = a0 € R; (32)
dLy = h(t, Yo, Xos iy )LedYy, Lo = 1. '
e For this we assume
+ (BY,Y) is the coordinate process on 2 = CZ,
(B (@), Yi(w)) = (@1(0),w2(t)), w = (wr,2) € Q, L € 0,7,
+ Q is the Wiener measure over (Q, F) = (C2, B(C%)).
+ F is considered to be completed w.r.t. Q.
+ Denote by F = FB"Y the filtration generated by (B!,Y) and

augmented by all Q-null sets. In particular, (B,Y) is an (F, Q)-
Brownian motion.

+ Note that P = L( is a probability.
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3. Well-posedness of the state-observation dynamics.

Under (H1) equation (3.2) possesses a unique strong solution.

Sketch of the proof. Given any V € S2([0,7],Q), and K € K2([0,T],Q) :=
{K € S3(10,T),Q)| Kz >0, E?[K7] =1, Ky = E[Kr|F], t € [0,T]}.
e Putting P := K7Q, and p; := Pgry, zyy, t € [0,T], we consider the following
SDE:

dX, =o(t, Y., X¢, pe)dBf, Xo =z €R;

dLy = h(t,Y.at, X¢, pe) LedYy, Lo = 1.
e SDEs that (3.3) 3 unique (X, L) € S2([0,T],Q) x K2([0,T], Q).
e Putting ®(V, K) := (X, L) : S2([0,T],Q) x K2([0,T],Q) — itself......

Remark 3.2. The existence of a strong solution (X, L) of SDE (3.2)
implies, in particular, that of a weak solution of (3.1).

(3.3)
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3. Well-posedness of the state-observation dynamics.

Definition 3.1.

A six-tuple (2, F,F, P, (B!, B?),(X,Y)) is called a weak solution of (3.1)
if:

i) (Q,F,F, P) is a filtered P.S. satisfying the usual hypotheses;

ii) (B!, B?) is an (T, P)-Brownian motion;

iii) All terms in (3.1) are well-defined, (X,Y) is an F-adapted process and
equation (3.1) holds true, for all t € [0,7T], P-a.s.

e Note:
From the Girsanov theorem, we know that, given a strong solution
(X, L) of (3.2) with driving (F, Q)-Brownian motion (B!,Y),
(Q,F,F,P,(B',B?),(X,Y)) is a weak solution of (3.1), where P = LQ
¢
and Bf =Y —/ h(s,Y.As,Xs,ufw)ds, t €10, T]. As a conclusion,

0
under Assumptions (H1), the dynamic (3.1) admits at least one solution in

the sense of Definition 3.1.
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3. Well-posedness of the state-observation dynamics.

Remark 3.3.

Note that

EC[L:X: | FY]

-a.s., t € 1(0,7].

U = BPIX | FY) =
Furthermore, as L; and X; are both ffl’y—measurable and thus
independent of o{Ys; — Y;,s € [t,T]}, we also have

xly _ E9LiXe | F)] _ E9[LX:| Ft]
' EQ[L¢ | FY] EQ[L¢| F7]

, Q-as., t€[0,T].

From (3.2), it follows that

EC[L: | FY] = 1+/ EQ[Lh(s,Yps, Xo, uX VY| FY]dYs, t € [0,T7,
0

v
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3. Well-posedness of the state-observation dynamics.

Remark 3.3. (continued.)
From (3.2), it follows that

EC[L, | FY] = 1+/ E@|[Loh(s,Yps, X, uX¥) | FY1dYs, t € [0,T),
0

and applying 1t6's formula in (3.2) before taking conditional expectation
gives that

t
EQ[X,L; | FY] = zo + / EC[X,Loh(s,Yops, Xo, pi V) | FY1dY5, t € [0,T).
0
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3. Well-posedness of the state-observation dynamics.

Remark 3.3. (continued.)

ER[L X, | FY
Thus, applying 1t6’s formula to UtX‘Y = W
1

so-called Fujisaki-Kallianpur-Kunita (FKK) equation: for ¢t € [0,T], Q-a.s.,

we deduce the

du}" = dEP X, | FY
={EP[Xoh(t, Yope, X, i) | FY
— BP[X, | FY1EP[A(t, Yons, Xoo iy ) | FY 1},
+ {EP[Xt |]:tY](EP[h<taY/\t7Xt7uiﬂy> |]:ty])2
— BPIXuh(t Yons, Xeo 1) | FY VBT It Yoo, Koo 1™ ) | FY 1 .
(3.4)

UX\Y

Equation (3.4) shows in particular that admits a continuous version

with which we identify UXY",
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3. Well-posedness of the state-observation dynamics.

Under Assumption (H1), let (¢, F¢,F!, Pt (BY, B%%) (X% YY),
i = 1,2, be two weak solutions of (3.1). Then it holds that

P(l(B1,17B2,1)’(X17y1)) S P(2(Bl,27B2,2)7(X2’Y2))- (3-5)

~> o L., Min. Weak solutions of mean-field stochastic differential equations
and application to zero-sum stochastic differential games. SICON, 54,
1826-1858, 2017.
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@ Stochastic Control Problem
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4. Stochastic Control Problem

Let @ be the reference probability measure on (€2, F), under which
the coordinate process (B',Y) is a Brownian motion.

eRecall:

+ F:=TFB"Y is the filtration generated by (B, Y).
+ F and F are considered as complete under Q.

The dynamics of the controlled stochastic system:

dX{ = o(t, X}, p, w)dB}, Xy = x; (4.1)
dL} = LEh(t, X}, pi', u)dYs, Ly =1, t € [0,T, '

where P = L%Q, and E"[] := EF"[] is the expectation under P,
oy = Mif“IY = Pgu[XﬂftY]; oy € U,q: an admissible control.
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4. Stochastic Control Problem

e For an arbitrary fixed nonempty subset U C R¥ (the control state space)
the control u runs the set of admissible controls

Usa = Lyy ([0, 7], Q; U),

where Loy ([0,T],Q;U) := {v ‘ v = (Vt)sejo,1), U-valued, FY—adapted}.
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4. Stochastic Control Problem

Cost functional:

T
Iy i= B[ (X gi) + [ F0 X w0 € U
0

Control problem: A control u* € U, satisfying

J(u*) = inf J(v)

VEUL
is said to be optimal.
Objective: A necessary condition for the optimality of the control w.

Remark 4.1. We suppose the existence of an optimal control u* € U,q,
we want to get Peng's stochastic maximum principle, i.e., to derive a
necessary optimality condition for w.
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4. Stochastic Control Problem

We shall make the following standard assumptions.

Assumption (H2)

For the function ¢ := o, h, f, ®, we suppose

(i) The function ¢ : [0,7] x R x P2(R) x R — R is Borel measurable, and
to simplify the computations, we also suppose the boundedness;

(i) For all t € [0, T], p € P2(R) and v € U, the function ¢(t,-, i, v) is in
Cy(R);

(iii) For all t € [0,T], x € R and v € U, the function ¢(¢,x,-,v) is
differentiable on P2(R); 0,¢(t, x, i1, v;y) is bounded and also differentiable
w.rt. u € P2(R) and z, y € R, and the derivatives, denoted by

0u(0u0), 0:(0u¢) and 0,(0,¢), respectively, are bounded.
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4. Stochastic Control Problem

(Continued)

Moreover, we have the following continuity conditions: For ¢ € [0, 7],
veU, up € P2(R) and z, 2, y,y/,2,2" €R,

i) [p(t, @, p,v) = (t, @, 1, 0)| < CWi(p, 1');
i) 10,(0u) (t, T, 1, 03y, 2) — Bp(Bud) (8, 2, 1,039/, 2)|
S C(Wip, i) + |z =o' + ly — o' | + |2 = 2]);
i) [ (t, 2, p,vsy) — (2’ 1 v;9)|
< C(Walp, i) + |z — /| + [y — ¢/]),
Y = 0up, 0:(0up)and 0,(0,0), resp.
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4. Stochastic Control Problem

Remark 4.2. 1) Under the Assumption (H2), for all v € U,q4, (4.1) admits
a unique solution (X%, L¥) € S2([0,7],Q) x S2([0,T], Q). Moreover,
Xu L*, U* are in all SE([0,T],Q), for p > 1.

2) For all p > 1, we have uf € P,(R), t € [0,T]. Indeed,
/Rlﬂfl”/#(dﬂﬁ) = E*[|US] < oc.
Remark 4.3. In Buckdahn, L., Ma (AAP, 2017), the setting for ¢ = o, f is
o(t,x,y,u) = /qﬁ(t,x,z,u)'y(dz), (t,z,v,u) € [0,T] x R X P2(R) X Uyq,
h(t,x,v,u) = h(t,x), O(x,y) = /‘b(m, 2)v(dz).

Moreover, the SMP studied there is the Pontryagin one.
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4. Stochastic Control Problem

The control state set U is not supposed to be convex, we shall
consider Peng's stochastic maximum principle.

4+ u := u* - the optimal control;
+ v € Uyq - an arbitrary but fixed control.

Spike variational method. For ¢ > 0, let E. € B([0,T]) with |E;| = ¢,

u® i=ulpge(t) +v1g.(t), t €[0,T].
The process u® € U,q is a so-called spike variation of the optimal control .

Remark 4.4. Let~(£~2,.7?, @) be a copy of (2, F,Q). Furthermore, for each
e L%Q,]—", Q), ¢ € LO(Q,]-"LQ) denotes an independent copy of &, i.e.,
€ and ¢ are independent, and ¢ under @ has the same law as § under Q.
In the same spirit we can consider another copy (2, F,Q)......
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4. Stochastic Control Problem

Furthermore, for simplicity we also introduce the following notations:
For ¢ =0, h, f and ® we set

o(t) == o(t, X, pi', ue), 6p(t) == (t, X', i ve) — o8, X, ity ue),
G (t) := Oup(t, X{', pt', ), bua(t) = OFad(t, X', i ue),

@L(t,y) = u¢(t X, pit ues y), Pu(t) := dult, Ut ) = O0uo(t, X¢', it 7ut7Ut ),
¢Z(t) =0, d’(t Xt st s s Ugt), ?/ﬁ(t y) = 0u(t, Xt S Bt Ues Y) _

¢zu(t Y 9:( u¢)(t Xt pi ,ut,y), ¢zu(t) = 8z((9u¢)(t,Xg,Mf,ut;Uf),

8 ( N¢)(t Xt s Mt 7utaUt )
and (X, L) := (X% L"), P:= LyQ(= P%), U, = U* := EP[X, | FY],
pt = py = P
similarly we define (X, L?) := (X*",L*"), P° := P*, uf := p* and
Ug .= EP"[X: | FY], t€0,T).
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4. Stochastic Control Problem

For € > 0, the state-observation dynamics is as follows:
AX = o(t, X7, 5, u5)dBY, X =
dL; = L{h(t, Xi, pi,uf)dYy, Ly=1, t €[0,T];
. ER[L;Xf | FY]
— H — _ P Y1 t<*t t
pi = Pge, with P© = L7.Q, U = B [X} | F }—W

For e =0, we put (X°, L U u° u°, P%) := (X, L,U, u,u, P).
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4. Stochastic Control Problem

e Note:

Formally, we should derive (4.2) with respect to € at £ = 0, but as
¢ = o, h, is not differentiable in the control variable, we take
5¢(t> = d)(t, Xt, ot ’Ut) - d)(t, Xt, ot Ut) instead of 85 [¢(t, Xt, ot U%)] le=0"
In order to give an idea about how to handle the uf-variable, we recall
that, if f: Py(R) — R is continuously differentiable and ¢ — (X¢, L¢, U*®)
were differentiable in € = 0, we have due to
Theorem 3.2 in (Buckdahn, L., Liang, 2020)

Oc f (1) e= o—a[ ((L7Q)ug)] .=
=0 [f(L7Q)u )]\5 0+8€[f((LTQ)Uf)]\s:O

U
=B9[ [ 0, (LrQ)u,,v)dy - 017 ]

0
+ ELTQ [8Mf((LTQ)Ut7 Ut) : 8EUt€|5:0] '
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4. Stochastic Control Problem

Ut
As / Ouf ((LTQ)u,,y)dy is Fy-measurable and L¢ is an
0
(F, Q)-martingale, this would give

Uy
Oc f(1g) =0 :EQ[ ; Opf (e, y)dy - 85L§|E:0} + E° [0 f (¢, U) Ly - antE|5:O]

( =90, (L; /OUf S e )l |e:o} ) ’

with
0:Uf .o
EQ[X0-L§ .o + Li0: X5 o | FY] EQ[LX, | FY)
EQ[L: | Y] - (BRQ[L | FY])?
= E"[X;0. I Lf]je=o | F)] + EV[0:X7 .o | 7]
— EPIX | FY1EP [0 Lf]je—o | FY )

E[0eL) . | 7]

30/57



4. Stochastic Control Problem

But the derivatives 0: X¢|._o and 9:L|._( don't exist. They will be
replaced by the solution of the first order variational equation
yhe = (Ylvs)te[o,ﬂ and K¢ = (Klvg)te[oj], respectively. Together with
the classical dependence of the coefficients ¢ = o, h on X¢ this suggests
the following first order variational equations whose choice will have to be
confirmed by the fact that X¢ — (X; + ¥;"¥) = O(e) and
L — (L; + K"°) = O(e), uniformly in t € [0,T7], in L2([0,T],Q), as
e\ 0.
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4. Stochastic Control Problem

The first-order variational equation: For ¢ > 0,

o o
2y} = {ou) 4 B [ outndy- R] + B0 LT, ] + ott)15, (0} B,
Yol’5 =0
1 1 1 B o Kl
ar}* = {BOKY + (e + B[ [ ey 717
+ By (0 LaV] + 6h(t) 1. (1)) L hYs,
Ky© =05

_ BRILY," + Xe K| FY] BQLeX: | FYERIK, S | Y]
EQ[Ly | FY ] (BQL | FY))?

Ve , te 0,7,

(4.3)
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4. Stochastic Control Problem

Proposition 4.1.

Under Assumption (H2), (4.3) has a unique solution (Y15, K1)
€ S3([0,7), Q) x SE(0, T, Q).

Moreover, Y1 K€ V1 e SB([0,T],Q) for all p > 1.

° ‘/;51:5 = Ht(y;l,f’[(tl’s)' where, for ¢ € S%([(]’T]’Q), ne S%([O,T],Q) we
define
0:(Ce,me) = EC[LiG + Xome | FY] B EC[L Xy | FY1EQ I | F)]
7 EQ[L | ] (EQ[L: | F¥)?
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4. Stochastic Control Problem

Proposition 4.2.
For all £ > 1, there exists C € R, such that,

(i) B9[ sup (IXFP* +|L1**)] < Cw;
te[0,T]
(il) E9[ sup (X7 — X¢|** + |L§ — Ly|**)] < Cue®, > 0;
te[0,T
(i) E9[ sup (|71 + K, °|*%)] < Cie®, e > 0;
te[0,T]

(iv) E9 [tes[%pﬂ (15 — (Xe + Y,5%) % + | L — (Ls + K °)|*%)] < Cre®, e > 0.
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4. Stochastic Control Problem

Remark: The proof of (iv) is very technical. For its proof, we introduce, in
particular,

(XA LS USN) = (1 — N)(X,L,U) + A(X®, L8, U%), A e 0,1],

and we remark that, due to Theorem 3.2 in Buckdahn, L., Liang (2020),
for ps™ = (Lf’)‘Q)Uts,A,

e ~
i ) =B9[ [ 90 )y 0]

+ E9[0u0 (g u§; UM LD - 00

e o
B[ [ 0 ui)ay(Ef — )

+ B9[Bu0 (i us U LN T - 0]
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4. Stochastic Control Problem

In the proof of the above proposition we also have proven the
following important estimates.

Corollary 4.1.

For all k£ > 1, there exists C € R, such that,

(i) EQ[ sup |Uf|*] < Cy;
t€[0,T]

(ii) EQ[ sup |Up — Ut|2k] < Cre®, e > 0;

te(0,7)

(iii) E9[ sup [V;"°|*] < Cie®, e > 0;
t€[0,T]

(iv) E9[ sup |Uf — (Uy + V;"%)[*] < Cre?, e > 0.
t€(0,7T)]
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4. Stochastic Control Problem

Now we present a very subtle and useful estimate, whose proof
applies and extends in a non-trivial way an idea first introduced in
Buckdahn, Chen, L. (2021, SPA).

Proposition 4.3.

For all 6 = (81, 6%) € L2([0, T], Q; R?) with
T
EQ[/ (16} + | L6 P) ] < oo,
0

and (0}, L:07) € L*(F;, Q;R?) for all t € [0,T], there exists
p:[0,T] x Ry — Ry such that

|EQ10Y; + 07K, )| < pu(e)VE, € € (0,1], t € [0,T],

with pt(e) — 0(e \(0), t € [0,T7], and

pr(e) < CEC[|0}? + |L67?], € € (0,1], t € [0,T).




4. Stochastic Control Problem

The second-order variational equation:

£ £ 1 5 o Ut -2, 54 ~ T 172,
av? = {a ¥ + Jona @7 + B[ [ out. gy B27] + B a0 L]
~ ~ .~ 1~y ~ ~
+ B9 Gu (VK] + S BO[Fau() L (V,05)?]
_ _ _ .
+ (soay 4 BO[ [ doutt )y K]+ B33, (02T, ] ) 1e. (1) B,
0
1
A} = {ROKP +ho(OLeY) + ho()Y; K]+ Shaa(DLe(Y,)?
= Ut ~2 =0T )
+LtEQ[/O hy(t,y)dy - K ] + Lo B[Ry ()L V2
-~ o~ 1 o~ ~ ~ o~
+LeER R (VK] + SLE? (o (Lo (ViH9)?] + (éh(t)Ktl‘s
1 = Ut ~1 ~ o~ ~ ~
+ 8ho () LeY, DT + LeE2| /O Shuu(t,y)dy - KEF| +LeE? [k, (6) LV, ) ) 1. (1) by,
Yy =Ko =0,

EQIK; Y| FY) QLK 7]
EQ[L: | FY'] ER[Lt | F]

VO =0 (Y KD + v}e teo,T].

(4.4)
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4. Stochastic Control Problem

(lenmadl

Under Assumption (H2), the equation (4.4) has a unique solution

(Y2, K2) € S§([0,T],Q) x S§([0, 7], Q).

Moreover, Y%, K¢, ¢ > 0, are bounded in SE([0, T], Q), for all p > 2.

Proposition 4.4.
For all p > 1, there is a constant C}, € R} such that for t € [0,77], ¢ > 0,

| N\

(B[ (UF - U+ Vi + V%)) = 6,(X5 = (X + 1 +12),

L5 — (Lo + KD+ KP9)P]) < Gpet




4. Stochastic Control Problem

Proposition 4.5.
For all p > 2, there exists C, € R, such that,

(i) E9[ sup |X§— (X + Y, +Y2)|"] < CpePpp(e);

te[0,T]
(ii) B9 [tes[%pﬂ |L§ — (Lo + K ° + K7°)|F] < CpePpple);
(i) B[ sup_ |UF ~ (U + V2 + V)] < e ple),

with p,(g) = 0, as € \, 0. Moreover,

(iv) EC[ sup |Y2°|P+|K7°|P] < CpeP, ECQ[[VPFP] < CpeP, e > 0, t € [0,T).
t€[0,T]
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4. Stochastic Control Problem

The first-order adjoint BSDE:

dp, = —ou(q;, ¢7)dt + q;dBy + ¢y dYs, t € [0, 71,
ph = —®,(T) — Ly EQ[EF[5(T) | F¥1];
A} = ~Bulal )t + B+ 2aYi, ¢ € [0,7), (“2)

~ ~ ~ UT
p7 = —(Xp — Up)E?[EP[®;(T) | Fr]] — E9 [ /0 o (T, yﬂy]

where

af(af,4f) =0 (t)al + LeEP[q EP[57,(6) | F)']] + ha(t)Leaf + LeE? [G; LB [y, (1) | 7))
ai(at,af) =af(at,af) = fo(t) — LeEC [EV (£ (6) | 7 ]);

- - Uy
Rlab i) =%~ 0O @B 501 2 + B9 [ e
~ ~ - - . Ut
+h(6)g? + (Xo — U)BR[@ L EP [ (1) | FY ] + BR3P E /0 Bt y)dy]
- - . Uy
Bilat,a?) =B (at,q7) — (Xe — U)EC[EF[fi(t) | FY]] - EQ[/O fa@t y)dy], te[0,T].
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4. Stochastic Control Problem

Recall that U; = EY[X;| FY]. Using the definition of ay and 3;, we
get the following duality relation

EQppYy* + ph K]
T le P Y
=20 [ {0 + LB (0| 7))
1 ~ = ~ Ut
+ K4 (X = U)ER[EPF () | 5] + EQ[/ filt.y)dy))
0

+ (gt 00 (t) + g7 Ledh(t)) 15, (t)}dt] .
(4.6)
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4. Stochastic Control Problem

As the mean-field BSDE (4.5) does not have Lipschitz coefficients, to
the best of our knowledge, it is new, so we need the following result.

Proposition 4.6.

Under Assumption (H2), BSDE (4.5) has a unique strong solution

(' (@' d"), (0*, (@% 4%))-

Furthermore, for any p > 2, it holds that ((p', (¢', ")), (P%, (¢*,¢%))) €
(SE(0, 71, Q) x (LE([0,T], @))?) x (S2([0,T), Q) x (L ([0, T, @))?)-
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4. Stochastic Control Problem

We introduce the Hamiltonian H:
H(t,z,l,v,v,q1,q2) = o(t,z,v,v)q1 + h(t,z,7,v)lqa — f(t,2,7,v),

for (t737717’YaU7QI7QQ) € [O7T] X R x R'f’ X PQ(R) xU xR x R' and
notations for the Hamiltonian H:

SH(t) := da(t)g; + 6h(t)Legi — 01 (1),
Hyy(t) = 0ga(t )Qtl +h x(t)Ltqt faa(t),
Ho(t) = 04 (t)g; + ha(t) Log; — ac( );
H;(t) = () G + by () Led; — Fi(1),
H2, (1) := 62, (0@ + h2,(0Lug; — F2,(0),
where ((p', (¢',d")), (p?, (4%, ¢%))) is the solution of the first adjoint

BSDE (4.5).
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4. Stochastic Control Problem

e For simplicity, now let us suppose:

h(t,.’[7 Y ’LL) = hO(t7x7’7) + ¢(x)h1(t7 Y ’LL), (t7x>7> u) € [OvT] x R x PQ(R) X U»
O'(t7$,’)/7 u) = U(t”y’u)’ (t7x777 u) € [O7T] X R x PZ(R) X U7

(4.7)
The second-order adjoint equation:
1 1,1 ;1 1,2
dP, = — Hy,(t)dt + Q; dB; + Q,"dYy, (4.8)
Pl = — ®,.(T). '

Under Assumptions (H2), the classical linear BSDE (4.8) has a unique
solution (P, (Q%!, Q1?)) with

T T
B[ s PP+ [ IQU@P+ [ 10" 0P < +oc.

te[0,7)
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4. Stochastic Control Problem

Theorem 4.1. (Peng's SMP)

Under the assumptions (H2) and (4.7), let u € Uyq be optimal and (X, L)
be the associated solution of system (4.1). Then, for all v € U, it holds
that for dtdQ-a.e. (t,w) € [0,T] x £,

1
EQ |:H(t7XtaLt7U7Qt17qt2) - H(t»Xtthut»Qtl:qtz) + §Pt1(0_(t7/~“7v) - O—(t7ﬂt7ut))2
+Me (01 (8, e, 0) — 1 (t, pey ue))” + Re (ha (8, pre, v) — ha(t e, ue))? | ]-‘ty] <0,
(4.9)

where ((p*, (¢, ")
5)a

), (0%, (¢%,¢%))) and (P!, (Q"1, Q")) are the unique
solutions to (4.5) an

d (4.8), respectively,
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4. Stochastic Control Problem

Theorem 4.1. (Peng's SMP)(continued)

where,

h(s,t) := /: ha (7, X, pir, ur)dYr — /:(h < ha)(r, X, iy ur)dr,
My := —EQ[®}(T) Ly ET[h(t, T) | F¥ ]
+ /tT (B9 [Hy(5)] + BR[(Ha(5) + fa())L3 | FY]) Lo BP [n(t, )| FY ) ds,
Ry = —E9 B [(Xr — Ur)é(X0) | F¥]{ E?[E[@}(T)] Lro(X0) | F¥]
~BR BT LrBP [3(X0) | F¥] |+ 5 (B [(Xr - Un)g(xe) | FY]) B9 [81,()] Lr | 77 ]
+ B [/tT (EP [(Xs = Us)p(Xe) | FY] {EQ [EQ[H}(s)] Lag(Xe) | FY]
_E° [ﬁ;(s)]LsEP [¢(Xe) | FY] }+%(EP [(Xs — Us)p(X) | ]:SY])QEQ [ﬁz*#(s)]Ls)ds | ]:tY]7

t € [0,T].
v
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4. Stochastic Control Problem

Remark 4.5.

Comparing the result with the SMP got in previous works by different
authors, namely in the classical case (no mean field, no conditional
expectation), the terms with R = (Ry)¢cpo,r) and M = (My);ejo,) are new
here. Note that R = (R;)c[o,r)] depends in a nonlocal way on (X, L, U).
This comes from the fact that we have a mean-field control problem
involving the law of the conditional expectation of the controlled state
process.

| A

Remark 4.6

The SMP for the case (the full observation) U; = ¢(Xy,Y.A¢) instead of
U; = EY[X;| F)], where ¢ : R x C7 — R is a Borel measurable function
differentiable w.r.t. € R, and with bounded derivative ¢y ..............
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4. Stochastic Control Problem

Sketch of the proof of Theorem 4.1.:

From the definition of the cost functional and the optimality of u, we obtain
from Propositions 4.2, 4.3 and 4.4:

0 <J(w®)— J(u)

T

=EQ (X5 u5) — (Xr,ur)] + 29 [

(f(t,Xf,,ui,uf)—f(t,Xt,,ut,Ut))dt]
Q l,e 2,e =Q Ur 7ol 7o2,€
=B [cbx(T)(YT’ +Y2) 4 B [/0 @, (T, y)dy(Kx* + K2 )]

+ BEQ[&,(T) Ly (Vp* + V79)] |

T _ &, - B
+E? [/0 (fz(t)(ytlﬁ + Yf's) + E9 L/O fp(t,y)dy(Ktl’a n K?’S)]
+ BR[O E(T + V)] ) ]
+ B[S (T) (V) + B (8, (T3 K] + £ B (8. (1) Er (V7]

1

+EQ[/OT (3OO + BRILOV R + S B [FeuOL(T)?) ) ]

T
+ B9 [/ Sf(t)1g, (t)dt] +o(e), ase —0.
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4. Stochastic Control Problem

We also need to calculate some key terms in the above formula, using

: Ly 1 E9[X.Li | FY]
the notations I't :== ———* T, := X, — =
) " EQIL R T EQ[LtIFtY]( " BEQ[L | F] )
P Y
W(Xt*E [Xt|]:t ]),Wehave

i) B9 [Fi LV + V)
=EC[EC[Fi ()L | (DR 4+ Y7 4+ Dok + K7)|
+ B9 (O LB [Hot) | 7]
- E° [f;(t) / EQ[T6h(s) | FY | E? [T, Lish(s) | FY 1k, (s )ds] +epi(e),
i) B9[F (VK 7]
—E° /O BT, Lish(s) | FY | EQ[f5(#) Lioh(s)| Y |1k, (s )ds] +epi(e).
i) B[ f2, (0 Lo(V,>*)?]
|7

=E°|f2, t)Lt/ (E?[T,Lidh(s) | FY]) lEa(s)ds] +epi(e).
0
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4. Stochastic Control Problem

iv) B9 [&1(T) L (V* + V)]

_EQ[EQ[(b LT|]:T}{FT Y15+Y25)+1—\T(K16+K26)

- / Q[ sh(s)| FY | B2 [DrLroh(s) | F¥]1p. (s)ds} ]
0

+ E@[&}(T) Lr B” [H.(T) | F¥]] + 2pr ().

v) B9 [ig(T)VTLEK;E] = EQ[ / EQ[TrLréh(s) | F¥]
0

x EC[®)(T)Lroh(s)|F¥]1p. (s )ds] +epr(e).
vi) E? [rizu(T)LT(V;’E)Q] = E° [5§M(T)LT / (E?[Tr Lréh(s)| F¥X])? (s)ds]

+epr(e).

o pi(e) = 0(e \(0), |pe(e)] <C, e>0, t €0, T].
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4. Stochastic Control Problem

We substitute i)-vi) in the previous inequality, and for ¢ = ®, f; we
use the notation:

¢ (8h(s)) = EQ[TLioh(s) | FY J{EC[E(),(t)|LiSh(s) | FY]
- BRECIG 01| 72 )B° [rion(s)| 7))

1
+ 5 (B Lah(s) | FY1) B9, ()L, 0<s<t<T:
(4.10)
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4. Stochastic Control Problem

Then, from above we get
0 <J(u®) — J(u)
=B2[(@.(T) + E? [E@;,(T)| L | F¥ ITh) (V7° + Y7°) |

+EQ EQ[/ * (T, y)dy] + E}[EC[D(T LT|fT]FT)(K15+K25)]

[ 0+ BB w1z | 7 0 + v
T Uy -
+ B¢ / (B[ /O fity)dy] + BOIECFLO)Le| FVI0) (K] + K]

/T{EQ[ﬁ((sh(t))Jr/T L(Oh(t))ds | FY ]+ 6f(t)}1p. (tdt]

+o(e), ase\0. 53/57



4. Stochastic Control Problem

Recall the duality (4.6), we have to calculate:
B9 [ph (vA® + Y2%) 4 o (Y + K29)]
T ~ ~
= 5O[ [ {2 (1a0 + LEC B (70| 7))

~ ~ - U
+ (KD + K29) ((Xt — U)ER[B [fr @) | F)]] + E9] /0 fi(ty)y] ) Y]

+ EQ [/ Shaa (@ Le (Y;%)?dt]
+E9| / )+ BLk ()] + B2 [aFha () | FY ) Le BT [Ho () | 7Y dt]
+E° [/ a0 (t) + g2 LiSh(t)) +EC [/T (EP [(Xs — Us)oh(t) | FY]

t

[BQ[EC (@75 (5) + @ Lol ()] Leoh(t) | FY | = EQ[a255() + @ Lahiu(9)] L BT [3h(1)

+ ;EQ [~;&* (s) + qSLShZM(s)] Ls(EF [(Xs — Us)6h(t) |.7-'SY])2)ds | 7Y }1E5 (t)dt]
+o(g), ase \(O0. (4.12)
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4. Stochastic Control Problem

Recall that 0h(t) = ¢(X;)0h1(t), and 6hq(t) is F} -measurable, and
also recall the second-order adjoint BSDE (4.8).

Then, substituting the above formula, we deduce that:
of 1 1o 2
0<—E (BH (1) + 5P} (9(1)*) 1. (t)dt]
LJo

— E9 /OT M, (50(75))21& (t)dt}

T
— E¥ / Rt(dhl(t))QlEs(t)dt} +o(e), ase\,0,
LJo
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4. Stochastic Control Problem

Thus, we have:
0< —E@ [ / ! (6H(t)+%Pt1 (60(1)) >Ry (5ha (1)) +M; (50 (t))*) 1, (t)dt} +ole),

and, as v € U,q has been fixed arbitrarily, Lebesgue’'s differentiation theorem
combined with standard arguments implies:

EQ |:H(t7XtaLt7vtaqt17qt2) - H(taXt7Lt7ut7qt17Qt2)
1
+§Pt1’0(ta /Liavt) - G(t7 }Lt,Ut)|2 + Mt’U(ta Au‘iavt) - O(t7 H‘t?ut){Q
+Rt‘h1(t, }Lt,’l)t) — hl(t, ,ut,ut){Q |]:tyi| S O, dtdQ-a.s.,

for all v € Uyq. (The fact that we have to take in this formula EQ[ . |]~'ty]
stems from the fact the control processes are FY -adapted). So, now finally we
obtain our stochastic maximum principle.
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Thank you very much
for your attention!

57 /57



	Objective of the talk
	Preliminaries
	Well-posedness of the state-observation dynamics
	Stochastic Control Problem

