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Optimal trade execution

Task: From an initial position of size x ∈ R, reach a target position
at terminal time T > 0 by trading during the time interval
[0,T ] with minimal execution costs.

We extend the framework of [Obizhaeva,Wang JFinancMark'13] to
stochastic order book parameters.
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Underlying order book model

� symmetric block-shaped order book model

� zero bid-ask spread

� price of a share = una�ected price S0 + deviation DX ,
where S0 is assumed to be a martingale (wlog S0 ≡ 0)

� strategy X (càdlàg, �nite variation) describes position
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Underlying order book model

DX
t− DX
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∆Xt

� buy ∆Xt = Xt − Xt− > 0 shares

� deviation jumps to DX
t = DX

t− + γt∆Xt

� deviation at s > t, if no trades in between: DX
s = DX

t e−
∫ s
t ρrdr
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Setting

T > 0, x ∈ R, d ∈ R

(Ω,FT , (Fs)s∈[0,T ],P) �ltered probability space with a Brownian
motion (Ws)s∈[0,T ]

ρ, µ, σ, λ progressively measurable, dP×ds|[0,T ]-a.e. bounded pro-
cesses

ξ FT -measurable, ζ progressively measurable

resilience coe�cient ρ = (ρs)s∈[0,T ]

price impact process γ = (γs)s∈[0,T ]:

dγs = γs (µs ds + σsdWs), γ0 > 0



Finite variation stochastic control problem

Afv set of all adapted, càdlàg, �nite variation processes
X = (Xs)s∈[0−,T ] satisfying X0− = x , XT = ξ, and suitable
integrability conditions

deviation process DX = (DX
s )s∈[0−,T ] associated to X ∈ Afv :

dDX
s = −ρsDX

s ds + γsdXs , DX
0− = d

cost functional J fv , for X ∈ Afv :

J fv (X ) = E

[∫
[0,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs

]
+E

[∫ T

0

λsγs(Xs − ζs)2ds

]

optimal strategy: X ∗ ∈ Afv s.t. J fv (X ∗) = infX∈Afv J fv (X )

for this talk: ξ = 0, λ ≡ 0



On the class of strategies

� in most of the literature, strategies have �nite variation; few
exceptions, e.g., [Lorenz,Schied FinancStoch'13]

� in�nite variation strategies emerge in a limiting case in
[Horst,Kivman arXiv'21]

� empirical evidence for trading with in�nite variation in a
related situation in [Carmona,Webster FinancStoch'19]

� in our setting, the price impact typically has in�nite variation,
and it is natural to expect the optimal strategy to react to
these oscillations

� optimal strategies with in�nite variation can come out in the
optimization over semimartingales in [Ackermann,Kruse,Urusov
FinancStoch'21]

� there are situations where an optimal strategy within the
semimartingale strategies does not exist



Towards progressively measurable strategies

Aim: Extend the �nite variation stochastic control problem to pro-
gressively measurable strategies and solve this extended pro-
blem

1. Rewrite deviation and cost functional to get rid of the strategy
in the integrator

2. Establish a continuous extension of J fv to progressively
measurable strategies

3. Reduce the extended problem to a standard LQ stochastic
control problem

4. Apply stochastic control literature to solve the LQ problem

5. Recover the solution of the extended problem
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Alternative representations for deviation and costs

Let νs = e
∫ s
0
ρrdr , s ∈ [0,T ]. It holds for all X ∈ Afv that

DX
s = γsXs + ν−1s

(
d − γ0x −

∫ s

0

Xrd (νrγr )

)
, s ∈ [0,T ],

and∫
[0,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs

=
1

2

(
γ−1T (DX

T )2 −
∫ T

0

(DX
s )2ν2s d

(
ν−2s γ−1s

))
− d2

2γ0
.



Extended problem

Apm set of all progressively measurable processes X = (Xs)s∈[0−,T ]

satisfying X0− = x , XT = 0, and suitable integrability condi-
tions

deviation process DX = (DX
s )s∈[0−,T ] associated to X ∈ Apm:

DX
s = γsXs+ν−1s

(
d − γ0x −

∫ s

0

Xrd(νrγr )

)
, s ∈ [0,T ], DX

0− = d

cost functional Jpm, for X ∈ Apm:

Jpm(X ) =
1

2
E

[
γ−1T (DX

T )2 +

∫ T

0

(DX
s )2γ−1s (2ρs + µs − σ2s )ds

]
− d2

2γ0

note: Afv ⊆ Apm and J fv (X ) = Jpm(X ) for X ∈ Afv



Continuous extension of the cost functional

Let d(X ,Y ) = (E [
∫ T
0

(DX
s −DY

s )2γ−1s ds])
1

2 for X ,Y ∈Apm.

(i) Suppose that X ∈ Apm. For every sequence (X n)n∈N
in Apm with limn→∞ d(X n,X ) = 0 it holds that
limn→∞|Jpm(X n)− Jpm(X )| = 0.

(ii) For any X ∈ Apm there exists a sequence (X n)n∈N in Afv

such that limn→∞ d(X n,X ) = 0.

In particular, it holds that

inf
X∈Afv

J fv (X ) = inf
X∈Apm

Jpm(X ).



Scaled hidden deviation process

It holds for X ∈ Apm and HX
s = γ

− 1

2

s (DX
s −γsXs), s ∈ [0,T ],

that HX
0

= d√
γ0
−√γ0x ,

dHX
s =

1

2

((
µs −

1

4
σ2s

)
HX
s −

(
2(ρs + µs)− σ2s

)
γ
− 1

2

s DX
s

)
ds

+

(
1

2
σsH

X
s − σsγ

− 1

2

s DX
s

)
dWs , s ∈ [0,T ],

and

Jpm(X ) =
1

2
E

[(
HX
T

)2
+

∫ T

0

(
2ρs + µs − σ2s

)
(γ
− 1

2

s DX
s )2ds

]
− d2

2γ0
.



Standard LQ stochastic control problem

L2 set of all progressively measurable processes u = (us)s∈[0,T ]

such that E [
∫ T
0

u2s ds] <∞.

state process Hu = (Hu
s )s∈[0,T ] associated to u ∈ L2:

dHu
s =

1

2

((
µs −

1

4
σ2s

)
Hu
s −

(
2(ρs + µs)− σ2s

)
us

)
ds

+

(
1

2
σsH

u
s − σsus

)
dWs , s ∈ [0,T ],

Hu
0 =

d
√
γ0
−√γ0x

cost functional J, for u ∈ L2:

J(u) =
1

2
E

[(
Hu
T

)2
+

∫ T

0

(
2ρs + µs − σ2s

)
u2s ds

]



Link between the problems

inf
X∈Afv

J fv (X ) = inf
X∈Apm

Jpm(X ) = inf
u∈L2

J(u)− d2

2γ0

� if X ∗ ∈ Apm minimizes Jpm over Apm, then u∗ = γ−
1

2DX∗

minimizes J over L2

� if u∗ ∈ L2 minimizes J over L2, then X ∗s = γ
− 1

2

s (u∗s − Hu∗
s ),

s ∈ [0,T ), X ∗
0− = x , X ∗T = 0, minimizes Jpm over Apm



Solution

Assumptions:

(Fs)s∈[0,T ] is the augmented natural �ltration of an m-dimensional

Brownian motion (W 1, . . . ,Wm)>, where W 1 = W

2ρ+ µ− σ2 ≥ 0 dP × ds|[0,T ]-a.e.

∃ ε > 0 s.t. 2ρ+ µ− σ2 ≥ ε dP × ds|[0,T ]-a.e.
or σ2 ≥ ε dP × ds|[0,T ]-a.e.



Solution

Consider the Riccati-type BSDE

dKs = −

(
−
(
(ρs + µs)Ks + σsL

1
s

)2
1

2
(2ρs + µs − σ2s ) + σ2sKs

+ µsKs + σsL
1

s

)
ds

+
m∑
j=1

LjsdW
j
s , s ∈ [0,T ],

KT =
1

2
.

By [Kohlmann,Tang SPA'02], there exists a unique solution
(K , L) of this BSDE.

De�ne

θs =
(ρs + µs)Ks + σsL

1
s

1

2
(2ρs + µs − σ2s ) + σ2sKs

, s ∈ [0,T ].
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Solution

Let

dH∗s = H∗s
1

2

(
µs −

1

4
σ2s −

(
2(ρs + µs)− σ2s

)
θs

)
ds

+ H∗s

(
1

2
σs − σsθs

)
dW 1

s , s ∈ [0,T ],

H∗0 =
d
√
γ0
−√γ0x .

By [Kohlmann,Tang SPA'02],

u∗ = θH∗

is the unique optimal control in L2 for J. It holds Hu∗ = H∗

and
J(u∗) = K0H

∗
0 .



Solution

X ∗ = (X ∗s )s∈[0−,T ] de�ned by

X ∗0− = x , X ∗T = 0, X ∗s = γ
− 1

2

s (θs − 1)H∗s , s ∈ [0,T ),

is the unique (up to dP×ds|[0,T ]-null sets) optimal execution
strategy in Apm for Jpm. The associated costs are given by

Jpm(X ∗) =
K0

γ0
(d − γ0x)2 − d2

2γ0
.



Remarks

� We can demand an FT -measurable terminal position XT = ξ.
In this case, a further, linear BSDE enters the solution.

� We can add a risk term of the form E [
∫ T
0
λsγs(Xs − ζs)2ds]

(as in, e.g., [Bank,Voÿ SICON'18]) to the cost functional J fv .
In this case, we need an additional reformulation before
applying [Kohlmann,Tang SPA'02]. If the target process ζ is
not equivalent to 0, we have a further, linear BSDE.

� If ξ = 0 and ζ or λ vanish, we could also apply
[Sun,Xiong,Yong AAP'21].

� We can consider a di�usive resilience dRs = ρsds + ηsdW
R
s ,

where dW R
s = r sdW

1
s +

√
1− r2sdW

2
s .



Thank you!

Based on:
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