Large ranking games

Julian Wendt Friedrich Schiller University Jena

9th International Colloquium on BSDEs and Mean Field Systems

June 27 - July 1, 2022

Based on joint work with

S. Ankirchner, N. Kazi-Tani and C. Zhou

Outline

- 1. Model
- 2. Two player game
- 3. Mean field game
- 4. Approximate Nash equilibrium for the n-player game

Model

- symmetric game of *n* players
- state processes X^1, \ldots, X^n

$$dX_t^{i,a} = a_i(X_t^{1,a}, \dots, X_t^{n,a})dW_t^i, \ X_0^{i,a} = 0,$$

- (W^1, \ldots, W^n) ...Brownian motion
- $a_i: \mathbb{R}^n \to [\sigma_1, \sigma_2]$ measurable...control of player i
- 0 < σ₁ < σ₂
- \mathcal{A}_n set of controls available to a single player

Model continued

- rank-based reward: player receives a reward if her state is under the best α ∈ (0, 1) percent at final time T
- $\mu^{n,a} = \frac{1}{n} \sum_{j=1}^{n} \delta_{\chi_{T}^{j,a}}$...empirical distribution at time T
- $q(\mu^{n,a}, 1-\alpha)$...empirical $(1-\alpha)$ -quantile at time T

reward of player
$$i = \begin{cases} 1, & \text{if } X_T^{i,a} > q(\mu^{n,a}, 1 - \alpha), \\ 0, & \text{else.} \end{cases}$$

• player *i* aims at maximizing

$$P(X_T^{i,a} > q(\mu^{n,a}, 1 - \alpha))$$

- risk management: bonus if the own company is among the best performing companies
- research competition among many research and developer teams
- sports: tournament with many teams
- card games: e.g. Skat (best third shares the pot)
- political science: elections with many candidates
- biology: e.g. animal behavior

Two player game

- n=2 and $\alpha=\frac{1}{2}$
- players aim at maximizing the probability of being ahead at time \mathcal{T}
- player 1: $P(X_T > Y_T) \rightarrow \max$
- player 2: $P(Y_T > X_T) \rightarrow \max$

Two player game

- n = 2 and $\alpha = \frac{1}{2}$
- players aim at maximizing the probability of being ahead at time T
- player 1: $P(X_T > Y_T) \to \max$
- player 2: $P(Y_T > X_T) \rightarrow \max$
- zero-sum game: for player 2 equivalent $P(X_T > Y_T) \rightarrow \min$
- consider the upper value and lower value of the game
- goal: Find a tuple (a_1^*, a_2^*) that are mutually best responses, i.e.

$$P(X_T^{a_1^*,a_2^*} > Y_T^{a_1^*,a_2^*}) = \sup_{a} P(X_T^{a,a_2^*} > Y_T^{a,a_2^*})$$
$$P(X_T^{a_1^*,a_2^*} > Y_T^{a_1^*,a_2^*}) = \inf_{b} P(X_T^{a_1^*,b} > Y_T^{a_1^*,b})$$

 $((a_1^*, a_2^*)$ is saddle point/Nash equilibrium)

Two player game continued

Theorem

Let

$$\boldsymbol{\sigma}_1^*(x,y) = \begin{cases} \sigma_2, & \text{if } x \leq y, \\ \sigma_1, & \text{if } x > y, \end{cases}$$

and

$$a_2^*(x,y) = a_1^*(y,x).$$

Then (a_1^*, a_2^*) is a saddle point of the two player game, i.e.

$$P(X_{T}^{a_{1}^{*},a_{2}^{*}} > Y_{T}^{a_{1}^{*},a_{2}^{*}}) = \sup_{a} P(X_{T}^{a,a_{2}^{*}} > Y_{T}^{a,a_{2}^{*}}) = \inf_{b} P(X_{T}^{a_{1}^{*},b} > Y_{T}^{a_{1}^{*},b})$$

(and hence also a Nash equilibrium).

Do Nash equilibria exist?

- What happens if n > 2?
- Difficulty: payoff is discontinuous
- **Our solution**: consider mean field limit to find an approximate Nash equilibrium for large *n*

Mean field game

- reduce problem to one generic player
- state is given by

$$dX_t = \beta_t dW_t, \ X_0 = 0$$

with $\beta : \Omega \times [0, T] \rightarrow [\sigma_1, \sigma_2]$ progr. mb.

- reward depends on the distribution of the single player's state
- classical mean field game approach:
 - 1. For any probability measure μ find a control $\beta^*(\mu)$ s.t.

$$P(X_T^{\beta^*(\mu)} > q(\mu, 1-\alpha)) = \sup_{\beta} P(X_T^{\beta} > q(\mu, 1-\alpha)).$$

- 2. Determine fixed point μ^* of $\mu \mapsto \text{Law}(X_T^{\beta^*(\mu)})$.
- our approach:
 - 1. consider $\sup_{\beta} P(X_T^{\beta} > b)$ and find optimal control $\beta^*(b)$
 - 2. find fixed point of $b \mapsto q(X_T^{\beta^*(b)}, 1-\alpha)$

Control problem

- diffusion control problem with discontinuous criterion
- McNamara (1983): optimal response is threshold control with threshold *b*, i.e.

$$\sup_{\beta} P(X_T^{\beta} > b) = P(X_T^{m_b} > b)$$

where

$$m_b(x) = egin{cases} \sigma_2, & ext{if } x \leq b, \ \sigma_1, & ext{if } x > b. \end{cases}$$

- X^{m_b} is an oscillating Brownian motion (OBM)
- OBM has a probability density in closed form, see e.g. Keilson, Wellner (1978)

Path of an OBM

Mean field equilibrium

- find b such that $b = q(X_T^{m_b}, 1 \alpha)$
- equivalent to $P(X_T^{m_b} > b) = \alpha$

Mean field equilibrium

- find b such that $b = q(X_T^{m_b}, 1 \alpha)$
- equivalent to $P(X_T^{m_b} > b) = \alpha$

Theorem

The threshold strategy with threshold

$$b^* := \begin{cases} -\sigma_2 \sqrt{T} \Phi^{-1} \left(\frac{\alpha(\sigma_1 + \sigma_2)}{2\sigma_2} \right), & \text{if } \alpha \le \frac{\sigma_2}{\sigma_1 + \sigma_2}, \\ \sigma_1 \sqrt{T} \Phi^{-1} \left(\frac{(1 - \alpha)(\sigma_1 + \sigma_2)}{2\sigma_1} \right), & \text{if } \alpha > \frac{\sigma_2}{\sigma_1 + \sigma_2}. \end{cases}$$

is an equilibrium strategy for the mean field game, i.e.

$$P(X_T^{m_{b^*}} > q(X_T^{m_{b^*}}, 1-\alpha)) = \sup_{\beta} P(X_T^{\beta} > q(X_T^{m_{b^*}}, 1-\alpha)).$$

Moreover, it is the unique equilibrium strategy in the set of threshold strategies.

$$b^* = \begin{cases} -\sigma_2 \sqrt{T} \Phi^{-1} \left(\frac{\alpha(\sigma_1 + \sigma_2)}{2\sigma_2} \right), & \text{if } \alpha \le \frac{\sigma_2}{\sigma_1 + \sigma_2}, \\ \sigma_1 \sqrt{T} \Phi^{-1} \left(\frac{(1 - \alpha)(\sigma_1 + \sigma_2)}{2\sigma_1} \right), & \text{if } \alpha > \frac{\sigma_2}{\sigma_1 + \sigma_2}. \end{cases}$$

- $b^* = 0$ if $\alpha = \frac{\sigma_2}{\sigma_1 + \sigma_2}$
- low α induces riskier strategy since $b^* > 0$ and $\lim_{\alpha \downarrow 0} b^* = \infty$
- high lpha induces safer strategy since $b^* < 0$ and $\lim_{lpha \uparrow 1} b^* = -\infty$

The smaller the cake...

Figure: $\sigma_1 = 1$, $\sigma_2 = 2$, T = 1

2 players	∞ players
only relative position counts	only absolute position counts
observability is crucial	observability is irrelevant

Approximate Nash equilibrium

Definition

Let $\varepsilon > 0$. A tuple $a = (a_1, \ldots, a_n) \in \mathcal{A}_n^n$ is called ε -Nash equilibrium of the *n*-player game if for all $i \in \{1, \ldots, n\}$, $c \in \mathcal{A}_n$ and all weak solutions $X^{i,(a_{-i},c)}$ and $X^{i,a}$ we have

$$\mathsf{P}(\mathsf{X}_T^{i,(\mathsf{a}_{-i},c)} > q(\mu^{n,(\mathsf{a}_{-i},c)},1-lpha)) - \mathsf{P}(\mathsf{X}_T^{i,a} > q(\mu^{n,a},1-lpha)) \leq arepsilon.$$

Mean field equilibrium yields approximate Nash equilibrium

Theorem

Let $a = (a_1, ..., a_n) \in \mathcal{A}_n^n$ be the tuple of mean field equilibrium strategies, i.e.

$$a_i(x) = egin{cases} \sigma_2, & x_i \leq b^*, \ \sigma_1, & x_i > b^*, \end{cases} \qquad x \in \mathbb{R}^n.$$

There exists a sequence $\varepsilon_n \ge 0$ with $\lim_n \varepsilon_n = 0$ such that a is an ε_n -Nash equilibrium of the n-player game. We can choose $\varepsilon_n \in \mathcal{O}(n^{-\frac{1}{2}})$.

Percentage of players choosing small volatility σ_1 on time horizon [0, T]

Percentage of players choosing small volatility σ_1 on time horizon [0, T]

- closed form equilibria for the limiting cases n = 2 and $n = \infty$.
- games with $n \ge 3$ players: the larger n...

...the less important the relative position

...the more important the absolute position

Thanks for listening!

References

- S. Ankirchner, N. Kazi-Tani, J. Wendt, and C. Zhou. "Large ranking games with diffusion control". working paper or preprint. Nov. 2021.
- J. Keilson and J. A. Wellner. "Oscillating Brownian motion". In: J. Appl. Probability 15.2 (1978), pp. 300–310. ISSN: 0021-9002. DOI: 10.2307/3213403.
- J. M. McNamara. "Optimal control of the diffusion coefficient of a simple diffusion process". In: *Mathematics of Operations Research* 8.3 (1983), pp. 373–380. ISSN: 0364-765X. DOI: 10.1287/moor.8.3.373.