Large ranking games

Julian Wendt
Friedrich Schiller University Jena

9th International Colloquium on BSDEs and Mean Field Systems
June 27 - July 1, 2022

Based on joint work with

S. Ankirchner, N. Kazi-Tani and C. Zhou

Outline

1. Model
2. Two player game
3. Mean field game
4. Approximate Nash equilibrium for the n-player game

Model

- symmetric game of n players
- state processes X^{1}, \ldots, X^{n}

$$
d X_{t}^{i, a}=a_{i}\left(X_{t}^{1, a}, \ldots, X_{t}^{n, a}\right) d W_{t}^{i}, X_{0}^{i, a}=0
$$

- $\left(W^{1}, \ldots, W^{n}\right) \ldots$ Brownian motion
- $a_{i}: \mathbb{R}^{n} \rightarrow\left[\sigma_{1}, \sigma_{2}\right]$ measurable...control of player i
- $0<\sigma_{1}<\sigma_{2}$
- \mathcal{A}_{n} set of controls available to a single player

Model continued

- rank-based reward: player receives a reward if her state is under the best $\alpha \in(0,1)$ percent at final time T

- $q\left(\mu^{n, a}, 1-\alpha\right) \ldots$ empirical $(1-\alpha)$-quantile at time T

$$
\text { reward of player } i= \begin{cases}1, & \text { if } X_{T}^{i, a}>q\left(\mu^{n, a}, 1-\alpha\right) \\ 0, & \text { else. }\end{cases}
$$

- player i aims at maximizing

$$
P\left(X_{T}^{i, a}>q\left(\mu^{n, a}, 1-\alpha\right)\right)
$$

Motivation

- risk management: bonus if the own company is among the best performing companies
- research competition among many research and developer teams
- sports: tournament with many teams
- card games: e.g. Skat (best third shares the pot)
- political science: elections with many candidates
- biology: e.g. animal behavior

Two player game

- $n=2$ and $\alpha=\frac{1}{2}$
- players aim at maximizing the probability of being ahead at time T
- player 1: $P\left(X_{T}>Y_{T}\right) \rightarrow \max$
- player 2: $P\left(Y_{T}>X_{T}\right) \rightarrow \max$

Two player game

- $n=2$ and $\alpha=\frac{1}{2}$
- players aim at maximizing the probability of being ahead at time T
- player 1: $P\left(X_{T}>Y_{T}\right) \rightarrow \max$
- player 2: $P\left(Y_{T}>X_{T}\right) \rightarrow \max$
- zero-sum game: for player 2 equivalent $P\left(X_{T}>Y_{T}\right) \rightarrow$ min
- consider the upper value and lower value of the game
- goal: Find a tuple $\left(a_{1}^{*}, a_{2}^{*}\right)$ that are mutually best responses, i.e.

$$
\begin{aligned}
& P\left(X_{T}^{a_{1}^{*}, a_{2}^{*}}>Y_{T}^{a_{1}^{*}, a_{2}^{*}}\right)=\sup _{a} P\left(X_{T}^{a, a_{2}^{*}}>Y_{T}^{a, a_{2}^{*}}\right) \\
& P\left(X_{T}^{a_{1}^{*}, a_{2}^{*}}>Y_{T}^{a_{1}^{*}, a_{2}^{*}}\right)=\inf _{b} P\left(X_{T}^{a_{1}^{*}, b}>Y_{T}^{a_{1}^{*}, b}\right)
\end{aligned}
$$

$\left(\left(a_{1}^{*}, a_{2}^{*}\right)\right.$ is saddle point/Nash equilibrium)

Two player game continued

Theorem

Let

$$
a_{1}^{*}(x, y)= \begin{cases}\sigma_{2}, & \text { if } x \leq y \\ \sigma_{1}, & \text { if } x>y\end{cases}
$$

and

$$
a_{2}^{*}(x, y)=a_{1}^{*}(y, x)
$$

Then $\left(a_{1}^{*}, a_{2}^{*}\right)$ is a saddle point of the two player game, i.e.

$$
P\left(X_{T}^{a_{1}^{*}, a_{2}^{*}}>Y_{T}^{a_{1}^{*}, a_{2}^{*}}\right)=\sup _{a} P\left(X_{T}^{a, a_{2}^{*}}>Y_{T}^{a, a_{2}^{*}}\right)=\inf _{b} P\left(X_{T}^{a_{1}^{*}, b}>Y_{T}^{a_{1}^{*}, b}\right)
$$

(and hence also a Nash equilibrium).

Do Nash equilibria exist?

- What happens if $n>2$?
- Difficulty: payoff is discontinuous
- Our solution: consider mean field limit to find an approximate Nash equilibrium for large n

Mean field game

- reduce problem to one generic player
- state is given by

$$
d X_{t}=\beta_{t} d W_{t}, X_{0}=0
$$

with $\beta: \Omega \times[0, T] \rightarrow\left[\sigma_{1}, \sigma_{2}\right]$ progr. mb.

- reward depends on the distribution of the single player's state
- classical mean field game approach:

1. For any probability measure μ find a control $\beta^{*}(\mu)$ s.t.

$$
P\left(X_{T}^{\beta^{*}(\mu)}>q(\mu, 1-\alpha)\right)=\sup _{\beta} P\left(X_{T}^{\beta}>q(\mu, 1-\alpha)\right) .
$$

2. Determine fixed point μ^{*} of $\mu \mapsto \operatorname{Law}\left(X_{T}^{\beta^{*}(\mu)}\right)$.

- our approach:

1. consider $\sup _{\beta} P\left(X_{T}^{\beta}>b\right)$ and find optimal control $\beta^{*}(b)$
2. find fixed point of $b \mapsto q\left(X_{T}^{\beta^{*}(b)}, 1-\alpha\right)$

Control problem

- diffusion control problem with discontinuous criterion
- McNamara (1983): optimal response is threshold control with threshold b, i.e.

$$
\sup _{\beta} P\left(X_{T}^{\beta}>b\right)=P\left(X_{T}^{m_{b}}>b\right)
$$

where

$$
m_{b}(x)= \begin{cases}\sigma_{2}, & \text { if } x \leq b \\ \sigma_{1}, & \text { if } x>b\end{cases}
$$

- $X^{m_{b}}$ is an oscillating Brownian motion (OBM)
- OBM has a probability density in closed form, see e.g. Keilson, Wellner (1978)

Path of an OBM

Mean field equilibrium

- find b such that $b=q\left(X_{T}^{m_{b}}, 1-\alpha\right)$
- equivalent to $P\left(X_{T}^{m_{b}}>b\right)=\alpha$

Mean field equilibrium

- find b such that $b=q\left(X_{T}^{m_{b}}, 1-\alpha\right)$
- equivalent to $P\left(X_{T}^{m_{b}}>b\right)=\alpha$

Theorem

The threshold strategy with threshold

$$
b^{*}:= \begin{cases}-\sigma_{2} \sqrt{T} \Phi^{-1}\left(\frac{\alpha\left(\sigma_{1}+\sigma_{2}\right)}{2 \sigma_{2}}\right), & \text { if } \alpha \leq \frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}}, \\ \sigma_{1} \sqrt{T} \Phi^{-1}\left(\frac{(1-\alpha)\left(\sigma_{1}+\sigma_{2}\right)}{2 \sigma_{1}}\right), & \text { if } \alpha>\frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}} .\end{cases}
$$

is an equilibrium strategy for the mean field game, i.e.

$$
P\left(X_{T}^{m_{b^{*}}}>q\left(X_{T}^{m_{b^{*}}}, 1-\alpha\right)\right)=\sup _{\beta} P\left(X_{T}^{\beta}>q\left(X_{T}^{m_{b^{*}}}, 1-\alpha\right)\right) .
$$

Moreover, it is the unique equilibrium strategy in the set of threshold strategies.

Dependence on parameters

$$
b^{*}= \begin{cases}-\sigma_{2} \sqrt{T} \Phi^{-1}\left(\frac{\alpha\left(\sigma_{1}+\sigma_{2}\right)}{2 \sigma_{2}}\right), & \text { if } \alpha \leq \frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}} \\ \sigma_{1} \sqrt{T} \Phi^{-1}\left(\frac{(1-\alpha)\left(\sigma_{1}+\sigma_{2}\right)}{2 \sigma_{1}}\right), & \text { if } \alpha>\frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}}\end{cases}
$$

- $b^{*}=0$ if $\alpha=\frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}}$
- low α induces riskier strategy since $b^{*}>0$ and $\lim _{\alpha \downarrow 0} b^{*}=\infty$
- high α induces safer strategy since $b^{*}<0$ and $\lim _{\alpha \uparrow 1} b^{*}=-\infty$

The smaller the cake...

Figure: $\sigma_{1}=1, \sigma_{2}=2, T=1$

Comparison

2 players	∞ players
only relative position counts	only absolute position counts
observability is crucial	observability is irrelevant

Approximate Nash equilibrium

Definition

Let $\varepsilon>0$. A tuple $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}_{n}^{n}$ is called ε-Nash equilibrium of the n-player game if for all $i \in\{1, \ldots, n\}, c \in \mathcal{A}_{n}$ and all weak solutions $X^{i,\left(a_{-i}, c\right)}$ and $X^{i, a}$ we have

$$
P\left(X_{T}^{i,\left(a_{-i}, c\right)}>q\left(\mu^{n,(a-i, c)}, 1-\alpha\right)\right)-P\left(X_{T}^{i, a}>q\left(\mu^{n, a}, 1-\alpha\right)\right) \leq \varepsilon .
$$

Mean field equilibrium yields approximate Nash equilibrium

Theorem

Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}_{n}^{n}$ be the tuple of mean field equilibrium strategies, i.e.

$$
a_{i}(x)=\left\{\begin{array}{ll}
\sigma_{2}, & x_{i} \leq b^{*}, \\
\sigma_{1}, & x_{i}>b^{*},
\end{array} \quad x \in \mathbb{R}^{n}\right.
$$

There exists a sequence $\varepsilon_{n} \geq 0$ with $\lim _{n} \varepsilon_{n}=0$ such that a is an ε_{n}-Nash equilibrium of the n-player game. We can choose $\varepsilon_{n} \in \mathcal{O}\left(n^{-\frac{1}{2}}\right)$.

Percentage of players choosing small volatility σ_{1} on time horizon $[0, T]$

Figure: $\sigma_{1}=1, \sigma_{2}=2, T=1, \alpha=\frac{1}{2}<\frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}}$

Percentage of players choosing small volatility σ_{1} on time horizon $[0, T$]

Figure: $\sigma_{1}=1, \sigma_{2}=2, T=1, \alpha=0.8>\frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}}$

Conclusion

- closed form equilibria for the limiting cases $n=2$ and $n=\infty$.
- games with $n \geq 3$ players: the larger n...
...the less important the relative position
...the more important the absolute position

Thanks for listening!

References

[1] S. Ankirchner, N. Kazi-Tani, J. Wendt, and C. Zhou. "Large ranking games with diffusion control". working paper or preprint. Nov. 2021.
[2] J. Keilson and J. A. Wellner. "Oscillating Brownian motion". In: J. Appl. Probability 15.2 (1978), pp. 300-310. ISSN: 0021-9002. DOI: $10.2307 / 3213403$.
[3] J. M. McNamara. "Optimal control of the diffusion coefficient of a simple diffusion process". In: Mathematics of Operations Research 8.3 (1983), pp. 373-380. ISSN: 0364-765X. DOI: 10.1287/moor.8.3.373.

