Path-dependent mean-field game optimal planning

Junjian YANG

FAM, TU Wien

based on joint works with Zhenjie REN, Xiaolu TAN and Nizar TOUZI
9th Colloquium on Backward Stochastic Differential Equations and Mean Field Systems

Annecy France, June 30, 2022

Junjian YANG (FAM, TU Wien) Path-dependent MFG planning April 27, 2022 1/37



Table of Contents

© Recall MFG, introduce MFG Planning

Junjian YANG (FAM, TU Wien) Path-dependent MFG planning



MFG: Introduction

The Mean Field Game was introduced
@ by Lasry and Lions (2006,2007)
@ by Huang, Caines and Malhamé (2006)

to describe Nash equilibra in differential games with infinitely many players.

Features of the model:
@ Players act according to the same principles, i.e.,

> they are indistinguishable
> they have the same optimization criteria

o Players have individually an infinitesimal influence, but their strategies take into
account the mass of co-players.

Goal: introduce a macroscopic description as the number of players N — oo.
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MFG: Modelling
Finitely many players

o Each player controls its state X{ € R by taking an action a} € A C R*
dx} = b(t.X ol ) de+ o (eX ol )W,
where

» W' are independent
> Hi\:fl is the empirical distribution of other players:

1 n
—N—-1 __ .
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t
t
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@ Each player solves the control problem
sup Sa'a), o) =B | [ r(extalal ) (Xl )]
alcA 0 7
o We look for a Nash equilibrium: & € AV (o' € A for each i =1,...,N), s.t.
Ji(&) > Ji(ai,a_i).
NO player has interest to deviate unilaterally.
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MFG: Modelling

As N — oo, ﬁzi} converges to a deterministic distribution.
t

Nash equilibrium is described as follows (Carmona and Delarue 2017)
o The representative player controls its state X“ depending on the deterministic flow

{keto<e<T:
dX{ = b(t, X e e )dt + o (X e, e ) dW.

@ He solves the control problem

)
sup J" (), J“(a):E[/ F(£.XE ey )dt + g(XE 1)
acA 0

@ We look for a deterministic measure flow {i¢}o<:< 7, mean field equilibrium, such
that

a[u] € argmax J" () and L‘(Xta[“]) =, t€][0,T]
acA
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MFG: PDE Approach

@ The value function associated to the stochastic control problem is characterized as
the solution to a Hamilton-Jacobi-Bellman equation

—0¢U — sup {b(t,x,a,,ut) -Vu+ %JUT(t,X,a,,ut) V4 f(t,x,a,ut)} =0,

acA

with the terminal condition
U( T7X) = g(XnU/T)'
@ The optimal controlled process is given by

t

t
K= X+ [ bsKed(s Xe)i)ds + [ o(s,%edls.X0).pc) W,
0 0
and the flow of densities m(t,x) of E()?t) = ¢ solves the Fokker-Planck equation
Orm(t,x) — %V2 : [UJT (t,x,ﬁ(t,x),,ut) m(t.,x)] + V- [b(t,x,é\(t,x),ut)m(t,x)} =0,

with the initial condition m(0,-) = density of 1o, where 3 is the optimal feedback
control.

= a coupled system of a (backward) HJB and a (forward) FP equation.
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MFG Planning: PDE Approach

During his courses at Collége de France, Lions introduced the following planning problem
for a class MFG: Given two marginal distributions o and p1 on RY, find a solution (u, m)
of the following MFG system:

2
—0tu — %Au — H(x,Vu) — F(x,m) =0, in(0,1) x R?,

2
Oem — %Am + V- (mV.H(x,Vu)) =0, in(0,1) x RY,

m(0,-) = po, m(1,-) =1, inR.

Remark:

@ Unlike the MFG formulation, the HJB equation is not complemented with a terminal
condition for u(1,). Instead, the Fokker-Planck equation is equipped with a terminal
condition on m(1,-) in addition to the initial condition m(0,-).

@ The planning problem consists in finding a good terminal condition g := u(1,-) for
the HJB equation such the classical MFG problem has a solution satisfying the
marginal constraint m(0,-) = po and m(1,:) = pa.

@ For this reason, g is usually called the incentive function.
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MFG Planning: PDE Approach

References:

@ Lions proved an existence and uniqueness result in the quadratic Hamiltonian setting
for a large class of initial and target measures.

@ Various extensions have been achieved essentially allowing for Hamiltonians with
quadratic growth in the gradient, and using weak solutions for the MFG equation

> Achdou, Camilli, and Capuzzo-Dolcetta (2012)
Porretta (2014)

Graber, Mészéros, Silva, and Tonon (2019)
Orrieri, Porretta, and Savaré (2019)

Benamou, Carlier, Di Marino, and Nenna (2019)
etc.

vyvyYyVvYyy

Objective: extend the formulation of the planning problem to the path-dependent
setting.

@ HJB equation is replaced by a possibly path-dependent stochastic control problem.

@ FP equation is replaced by the path-dependent SDE characterizing the dynamics of
the underlying state under the optimal action induced by the control problem.

@ We allow for the control of diffusion coefficient. HJB in the corresponding
Markovian setting is allowed to be fully nonlinear.
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Weak formulation of the control problem

Let
@ Py := the Wiener measure on the canonical space Q with initial distribution o, i.e.,

> Pgo XO_1 = Ko
> (Xt — Xo)tepo, 1] is @ Brownian motion independent of Xo under Po.

o Puo) = {P~Py:PoX;" = o} and

Palio) = {u» € Pluo) (:EED) € L}(Py) and % E ]LZ(PO)},

We have

@ by the representation theorem that for P € P(uo) we may find a unique process
BF € HE . (Po) such that

dP e g 1 [ ep
= e x), e ([ a0 ax -3 [ |aifas).

@ by the Girsanov theorem that the canonical process X satisfies the dynamics
t
Xe = Xo +/ BFds + WP, P-as.
0

o Lemma: For each P € P(uo), we have 57 € H?(Po).
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Weak formulation of the control problem

Let f:[0,T] x Q x P(RY) — R be such that
o (t,w,u) — fi(w, ) is F-progressively measurable for every fixed 1 € P(RY),
@ for each P € P2(uo) and m € M (flows of probability measures)

E” [/01|r’t(mt)|dt] < oo.

Define the set of all admissible (path-dependent and measurable) reward function
Z={¢: Q> RE[ET] < 00, VP € Pa(o) }.
Control problem: For £ € = and m € M with mg = pp,

Vo(§,m) := sup J(&m,P),
PePa(u0)

where

semp) =5 |6~ [ 1 (31527 + o) o).
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Mean field game and MFG planning

Definition (Mean field game)
A probability measure P € P2(10) is a solution of the MFG with reward function & € = if
Vo(€,m) = J(&,mP) €R and m,:=PoX, ", forall t€[0,1].

Denote by MFG(&,10) the collection of solutions of the MFG problem.

Our main focus here is on the following mean field game planning problem.
Definition (MFG planning)

An admissible reward function £ € = is a solution to the MFG planning problem with
starting and target distributions o, 1 € P(Rd) if

Po X7 =, for some Pe MFG(&,10)-

Denote by MEP(po,u1) the collection of solutions of the MFG planning problem.
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Characterization of the solutions of mean field planning problem

Denote

Pa(po, 1) := {P € Pa(o) : Po Xy ' =}, puo, i € P(RY),

Theorem (Ren, Tan, Touzi, Y., 2022)
For all pair of starting and target measures (o, 1) € P(R?) x P(R?), we have:

MFP (o, p11) = L' (Fo, Po)

+ {/Olﬁf - dX; — /01(%’53”|2 - f;:(]POXt_l))dt | Pe 732(%,#1)}.

Proof: “D": For Y, € L}(Fo,Po) and P € Pa(po, p11), denote
LS L1 g2 D
€= Y0+/ ,Bfodth/ (E]BIH ff;(mt))dt, me =Po X L.
0 0

Aim: verify that Vo(¢£,m) = J(¢&,m.P). This would show that P € MFG(&,u0) and
therefore £ € MFP(po, p11).
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Characterization of the solutions of mean field planning problem

Compute directly for all P € P2(uo) that

P Ll e

JemP) =E" [~ [ (|8 +£(m.))ds
0
Py P ! 3 P P Vi1, 52 1m0
=E®[Yy] + E BE - (dWE + Bds) — (—|Bs\ + 2|87 )ds .
0 0 \2 2

As BF € H?(Po) for each P € Pa(iu0), the stochastic integral is a true martingale under P,

ie.,
1
EF [/ 5£’~de] —o,
0

"N e[ [ e B2
J(&,mP) =E [Yo]—EE [/0 Iﬂs—ﬁslds],

and therefore

so that

J(E,mP) < E™[Yo], forall P € Pa(uo),
T =ER (Y], forP=P.
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Characterization of the solutions of mean field planning problem
“C": Let £ € MEFP(uo, p1), with a corresponding Pe MFG(&, o), i.e.,

Vo(§,m) = J(&mP), m=PoX. ', PePaluo,m).
Aim: show that one can represent £ as
' Yl s !
E=Vo+ [ AL dX.— (§|5sy - fs(ms))ds, for some Vo € L (Fo, Po).
0 0

Introduce the process

1
Vi := esssup E” {f —/ cfds
t

PEP2(10)

Ft}, with ¢ := %’b’ff + f(ms).

o Clearly, E™[Vo] = Vo(&, m) < o0, so that Vo € L' (Fo, Po).

o For any P € Pa(puo), the process {V; — [ cfds}
By Doob-Meyer and representation theorem

tefo,1] 1S P-supermartingale.

t t
vt—/ cs“’Ods:vo+/ Z.-dX. — AP, Pp-as.,
0 0

for some Z € H .(Po) and non-decreasing process A™0 starting from zero.
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Characterization of the solutions of mean field planning problem

@ By the change of measure from Py to P, we have
t t
V. :/ s+ Vo +/ Zo-dWF — AT, Pas.,
0 0

with ,
A]f’:A]fU—f—/ (cf —c®—Z - 5;)ds
0

By uniqueness of the Doob-Meyer decomposition, AF is also non-decreasing.

o The process { Vi — fot c?ds}te[0 1 is a P-martingale, i.e.,

t
0=A =A% ¢ /(c“”—cs ~Z.-pl)ds
0

This implies that

dAY
dt

- (zt B c?) - (zt BF - cf”) >0, forall P e Pa(o).

In particular, 8% = Z is the maximizer of Z- 3% — ¥ = 7. g° — %‘BPF —
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Characterization of the solutions of mean field planning problem

Therefore,
1 ~ 1
=V, = vo+/ zs.de’Jr/ cfds—0
0

0
— Vot /Olgf’ CdX — /01 (%m;f”f — fi(m)) ds.
0

Summary: This provide a characterization of all solutions of the MFG planning problem
by means of the probability measures in P (10, 11).

Remark: The Hamiltonian of the control problem is
1 2 1 2
H(tw,z,m) = sup s b-z — ~[b]* = fi(w,m) b = =|z> — fi(w,m),
beU 2 2

with the optimal control R
b=2z=V,H(tw,z,m).
Therefore,

1 1
€= v0+/ Zs-dXs—/ Hy(Zs,ms)ds.
0 0
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Intermezzo: stochastic optimal control and BSDE
@ Consider the following stochastic control problem in weak formulation:

t
Xt=x0+/ BEds + WY, P-as.,
0

. 1
;ggIE {f—/o c(s,ﬁs)ds}.

H(t,z) := igz{b -z —c(t,b)}.

@ The control problem leads to the FBSDE

@ Hamiltonian:

t -~
X: = Xo +/ V.H(s,Z:)ds + W,
0

1 1
Yt:g+/ H(s,Zs)ds—/ Z, - dXs,
t t

and the optimal control: N
BelZ] = V. H(t,Zy).
o Dynamic programming representation: if we want that the agent chooses
V:H(t,Z;) as optimal control, we define the reward function

1 1
€= Yo—/ H(s,Zs)ds+/ Z. - dX..
0 0
AT



A constructive solution to the mean field planning problem

Aim: use the characterization above to derive an explicit construction of a particular
solution.

@ Introduce a reference measure
p:=Pyo (X, X1) " € P(RY x RY).

o Let m € M(puo, 11) be some coupling measure between po and p1, equivalent to p.
dn

o Consider the the corresponding density function g, on R? x RY and define the
following positive random variable on Q
= E’T’;(xo,xl).
Observe that
EP[¢] = EP {@(xo,xl)] - / 97 (o) dp(xoma) = 1.
dp RdxRd AP

By the martingale representation theorem, there exists a [F-progressively measurable
process /3 such that

~ t_ 1 [t ~
Mt::]E]PO t =M e X) = M s'dXsff S2d>-
[CIFe] = Mo&(B * X)), oexp(/0 B 2/0 |Bs|"ds

In particular, as 7(dx, Rd) = p(dx, Rd) = po(dx), we have My = 1, Po-a.s.
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A constructive solution to the mean field planning problem

Proposition (Ren, Tan, Touzi, Y., 2022)

Assume ™ [[In¢| 4 ¢*] < oc. Then, the probability measure P defined by d‘% =(isan
element in Pa(o,41).

Proof: It is clear by its definition Po X5 = 1o and by the transformation formula

d d
ﬂ—(X07X1)1{X1€A}:| = / s
R

Po X '(A) = E [Lixea] = EP [d T (x0,x1)dp(x0,x1)
- / dr(xox) = 7(R% A) = u(A),  for A B(RY).
R x A

dp

By the integrability assumption ¢, we have

o ™\ 2
IEPO[ In (%)‘Jr (%) ] =E°[|In¢|+¢?] < oo,

and therefore P € Po(po, p1)- O

Solution: With P € P>(po,p1), a solution to the MFG planning problem is

€= Yo+/01,8f.dXs—/ol (%\5?]242(%))(/5.
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Entropic MFG planning
Entropy of a probability Q1 with respect to a reference probability Qo:

o dQi\ ] _ dQ,
H(QIQs) = { {' (on)] / i (d@0>dQ1’ whenever Q1 << Qo,

00, otherwise.

Proposition (Ren, Tan, Touzi, Y., 2022)

Assume E™[[In¢| 4 ¢*] < oc. Then, the probability measure P defined by < d@ = ( is the
unique minimizer of H(:|Po) on Pr := {P € Pa(po, 1) : Po (Xo, X1) "' = 7r}

Proof: Observe from the definition of P and Bayes formula that
K@(~;xo,x1) = K"(x0,x1), for mae. (xo0,x)€R? xR

Further, for any P € Px, one has P(dw) = K (dw; xo, x1)7(dxo, dx1) and

H (P[Po) = /]Rded H(KP(~:X0,X1) ‘KPD ( Xo,Xl)) 7(dxo, dx1) + H(m|p).

>0, =0 for P=P

It follows that H(P|Po) = H(x|p) < H(P|Po) for all P € P. O
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Formulation of the problem

Control set: Let U be a given closed subset of R, and we denote by P¢(j10) the subset
of all measures P € P»(uo) such that 57 € U, Leb ® P-a.s.

Cost function: Let c:[0,1] x Q2 x U x P(RY) — R be an F-progressively measurable
map with

1
EF [/ |CS(B;P, m) ’ds} < oo, forallmeM, Pe Py ().
0

Introduce the subset =Y of all measurable reward functions & € = such that E” [5*] < o0
for all P € P (o).

Control problem: For all m € M and ¢ € =Y, we consider the control problem

Vo(¢,m) == sup J(&,m,P), where J(&m,P):=E" [5—/1cs(ﬂf,ms)ds}.
0

PePY (o)

The notions of MFG and MFG planning are defined as above, up to the substitution of
P> and = by PY and =Y.
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Characterization of the solutions of the MFG planning problem
Introduce the Hamiltonian

Hs(z,m) := Hs(w,z,m) := i:B {b-z— cs(w,b,m)}.

Assumption: H satisfies the quadratic growth condition: for some C;,C; > 0

essinf min |82H5(z, m)’ > Gi|z| = G, forall ze RY.
(s,m)€[0,1]x P(RY)

Consider the controlled McKean-Vlasov SDE (MKVSDE)

t
X, = x0+/ b(Z.Po X, )ds + W, P-as.,
0

for some measurable selection b € 8, H, Leb®P-a.s. with control process Z € H?(IPo).

Denote
MKV (10, 111) = {(z, P) € H2(Po) x P4 (uo, i) : P solution of MKVSDE},
=(po, ) := L' (Fo, Po) + {le 1 (Z,P) € MKV(Mo,Ml)},
with

t t
Y¢ ::/ Zs'dXsf/ He(Z.Po X, ')ds, te[0,1].
0 0
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Characterization of the solutions of the MFG planning problem

Theorem (Ren, Tan, Touzi, Y., 2022)
For all pairs of starting and target measures (jio, 11) € P(RY) x P(R?), we have
=(po, p1) € MFP(pto, p1).-

Moreover, under the quadratic growth condition

=(po, pa) = MFP(pio, pia)-

Meaning;:
o With Yy € L}(Fo,P) and (Z,P) € MKV (u0, 1),

1 1
- vo+/ zs-dxsf/ He(ZoP o X V) ds
0 0

is a solution of the MFG planning problem. Under technical conditions, each
solution of MFG planning can be represented as above.

@ It reduces the construction of a solution of the MFG planning problem to the
construction of a solution of the McKean-Vlasov SDE with given starting and target
marginals.
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Characterization of the solutions of the MFG planning problem

Proof: “C": Let € := Yy + Y¥ € =(uo, 1) with corresponding (Z, @) € MKV (uo, p11),
and denote m; := P o X. . We obtain

1
J(E,mP) = EFo [Yo] +EF [/ (ZS 8F — ¢ (ﬁf, ms) - Hs(Zs,ms)) ds} .
0
By the definition of the Hamiltonian H, it follows that
o J(&,mP) <E™[Yy] for all P € Py (1),
o J(&,mP) =EP [Yo] as P is solution to (MKVSDE),

,3? € 0,Hs(Zs,m;) — ,3? is an optimizer of H.
This implies Vo(¢,m) = J(¢,m,P) and therefore P € MFG(£,110) and &€ € MFP(po, j11).

w_mn

=": For £ € MFP(uo, 1), we have a Pe MFG(&, 10) such that
° @OXI_1 = 1,
o J(&,mP) = V(&,m), for me:=Po X!, s €[0,1].
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Characterization of the solutions of the MFG planning problem

Define 1
V; := esssup EX {.ﬁ —/ cs (s ,ms) ds
t

PEPY(uo)

ft], t €[0,1].

Then,
o E"[Vo] = Vo(&, m) € R, so that Vo € L' (Fo, Po).

@ By the martingale optimal principle, we show the existence of some Z € HZ, (PPo)
such that

t t P =~
Vt:VO+/ stXs_/ (Zs’ﬁsp_c]sp)ds,
0 0

and

Zofi—cl = max {ZB7— T} = H(Zmo).
PEPY (o)

o Since % € H?(IP,) by the definition of P# (1), it follows by the quadratic growth
condition that Z € H?(Py).

This concludes the proof that (Z,P) € MKV (o, 111), and hence & € =(puo, 111). O
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Existence of solution

The theorem above reduces the construction of a solution of the MFG planning problem

to the construction of a solution of the McKean-Vlasov SDE with given marginals.

Proposition (Ren, Tan, Touzi, Y., 2022)
Assumptions:

o H satisfies the quadratic growth condition and the full range condition, i.e.,

A, He(w,R?, m) = R?, for all (t,w, m) € [0,1] x Q x P(R?).

o There exists 7 € M(10,/41) equivalent to the reference measure p = Py o (Xo,X1) ™"

such that the density ¢ := Z—Z(Xg,Xl) satisfies E[| In ¢| + ¢*] < oo.

o Define the measure P equivalent to Py by ;'Ti =,

@ Let Z be any measurable selection of the solutions of
B € 8:Hs(Zs, ms), Leb ® Po-a.s., with 3 defined by ¢ = £( * X),.
Then,
e (Z,P) € MKV/(j0, y11), and consequently Y7 € MFP(y0, yu1).

o P is the unique minimizer of H(:|Py) on

Pr = {P € Pa(po, 1) : Po (Xo, X1) ' =7}
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Formulation of the control problem

Let P denote the collection of all probability measures P on the canonical space 2, under
which the canonical process X is a diffusion process with the following decomposition

t t
xtzxo+/ Efds+/ G.dWs, te[ol], P-as,
0 0

for some P-Brownian motion WF.

@ The quadratic variation process (X) can be defined independently of P € P, so that
G: can be defined as the unique square root matrix of 52, with

~2 li <X>t - <X>(t—s)v0
=IIm-—

t € [0,1].
Ot 0 c ) €[0,1]

o Let U be a closed convex subset of RY x S, with the given two marginal 1o and p1,
introduce

PY (o) == {]P’ eP:PoXy ' = poand (bs,as) € U, Leb® P-a.e. }
and

P o, i) = {P € PY(o) : Po X" = .
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Formulation of the control problem

Introduce the following control problem in weak formulation

1
Vo(&,m):= sup J(&m,P), with J(& mP):=E" [g—/ cs(Bf’,ai,ms)ds],
0

PEPY (uo)

where the reward function £ : @ — R U {—oc} is restricted to the set

=V .= {§ Q> R:EF [€7] < o0, for all P € Pu(uo)}.

o For ¢ € =V and po € P2(RY), we denote by
MFEG(E, j10) i= {@ € PY(uo) : J(€, m,P) = Vo(£, m) with m, = Po x;l}

the set of all solutions to the MFG problem with reward function &.

@ Given a pair (uo, 1) of starting and target marginals, we denote by
MFP (o, 1) := {5 €=V :PoX; ' =y for some P € MFG(&,MO)}

the collection of all reward functions & € =Y which induce some MFG solution P
with marginals P o X;7! = 1o, Po X; ! = pu1.
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Characterization of the solutions of the mean field planning problem

Define the Hamiltonian and its domain:

Hs(w, z,y,m) := sup {b~z+la:7—cs(w, b, a, m)},
(b,a)eU 2
Du(sw,m) :={(z,7) € RY x § : Ho(w, z,v,m) < oo}

Given F-progressively measurable processes (Z,T) on Q taking value in RY x S, we
introduce the McKean-Vlasov SDE

t t -
X: = Xo +/ bs(Z,Ts,Po X, ")ds +/ 7s(Z,Ts,Po X, 1) dW,, P-ass.
0 0
— 1
for some measurable selection (b57 Eﬁﬁ)(z,% m) € 9z, Hs(z, 7, m).

Let MKV (po, 1) be the collection of all triples (Z, r,@) such that
o (Z,1) € Du(-, m.) with s :=Po X},
o Pe PY(uo, p11) is a (weak) solution of the McKean-Vlasov SDE,
o Z € H*(mo) := e ru(uy) H?(P), where H?(P) denotes the collection of all
FF-prog. measurable processes Z : [0,1] x Q — RY such that IEP[fOI |G Zs|*ds| < oo.
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Characterization of the solutions of the mean field planning problem

Introduce for all (Z,T,P) € MKV (j0, 111) the Fi-measurable random variable
—~ 1 1 1 >
\ / Z. - dX. +/ (§r5 162 — Hy(Zs, FS,]P’oXS_l)>ds.
0 0
Define £5(k0) = Npept(ug) L (Fo ,P), and
=(po.u1) i= L8(10) + { ¥ (2,7, B) € MKV (juo, )}

Theorem (Ren, Tan, Touzi, Y., 2022)

o We have
E(/“L(h [.Ll) c MFP(/“‘Ov /1’1)'

o For & € MFP(uo, p1), ms = Po X! for some P € MFG(&,u0), under technical
conditions, we may find Yo + Y™ € =(po,111), such that

argmax J(¢,m,P) = argmax J(Yo + le’r’@,r’ﬁ,]P’).

PePY (o) PePY (o)
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Existence of solutions to the planning problem

Given po,u1, find Z,I" so that
@ There is a solution to the McKean-Vlasov SDE

t t PR
X; = Xo +/ bs(Z:,Ts,Po X, ")ds +/ 7s(Z;,Ts,Po X, )dW,, P-as.
0 0
— 1
for some measurable selection (bs, Eﬁi) (z,v,m) € 02,4 Hs(z,7, m).

° @OXO_1 = po and @oXl_1 = 1.
Then, define

- 1 1 R
€=y ook = Yo—i—/ Z- dXs—i—/ (%r Sd(X)s — HS(ZS7FS,POX;1)>ds.
0 0
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Optimal transport along controlled McKean-Vlasov dynamic

One can consider an optimal MFG planning problem, by choosing an optimal solution £
in the class =(o, 1) w.r.t. some criteria. The problem can be reduced to an optimal
transport problem along controlled McKean-Vlasov dynamic: for some reward
function W, one solves R
sup \IJ(Z7 I, ]P’).
(2,1, P)EMKV (ko,p1)

Recall that MKV (po, p1) is the set of all (Z, I',@) such that, with a version of

subgradient (Es, %ag)(z,% m) € Oz, Hs(z,7, m), P is weak solution to the
McKean-Vlasov equation:

t t e Y
Xt:Xo+/ Es(zs,rs,ﬁvoxgl)dﬁ/ 7e(Z:,Ts,Po X, 1)dW,, P-as,
0 0

under the marginal constraints:
@OXJ1 =po and @onl = p1.

This is an extension of the optimal semimartingale transport (Mikami and Thieullen, Tan
and Touzi, etc.)
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Summary

o PDE approach: a coupled system

Fokker-Planck equation with initial and terminal conditions for m,

Hamilton-Jacobi-Bellman equation without ternimal condition for wu.

Existence & uniqueness of u, m, especially u|:=1 = g.
o Problem: Given o and p1, we are looking for a terminal reward & = g(X), such
that there exists a mean-field equilibrium m with my = 1o and m1 = pa.

o Probabilistic approach: Reduce the construction of a solution of the MFG planning
problem to

> the construction of a solution (Z,I, ) € MKV (40, 1) of the McKean-Vlasov SDE
with given marginals po,u1,

> the dynamic programming representation £ = Yy + YIZ’F’P.
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Merci pour votre attention !

Thank you for your attention!
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