McKean–Vlasov equation with rough common noise and propagation of chaos

Khoa Lê Technische Universität Berlin

Joint work with Peter Friz and Antoine Hocquet

BSDE 2022 - Annecy

29.06.2022

Introduction

pagation of chaos

Reference

Equations

MKV with common noise

$$\begin{cases} dY = b_t(Y_t, \mu_t)dt + \sigma_t(Y_t, \mu_t)dB_t + f_t(Y_t, \mu_t)dW_t, \\ \mu_t = \text{Law}(Y_t|W), \quad Y_0 = \xi \end{cases}$$

rough MKV

$$\begin{cases} dY_t(\omega) = b_t(\omega, Y_t(\omega), \mu_t)dt + \sigma_t(\omega, Y_t(\omega), \mu_t)dB_t(\omega) \\ + (f_t, f'_t)(\omega, Y_t(\omega), \mu_t)dX_t \\ \mu_t = \text{Law}(Y_t), \quad Y_0(\omega) = \xi(\omega). \end{cases}$$

where X = (X, X) is a rough path modeling $(W, \int \delta W dW)$. *Particle approximation*

$$\begin{aligned} \left(dY_t^{N,i}(\omega) &= b_t(\omega, Y_t^{N,i}(\omega), \mu_t^N(\omega)) dt + \sigma_t(\omega, Y_t^{N,i}(\omega), \mu_t^N(\omega)) dB_t^i(\omega) \right. \\ &+ (f_t, f_t')(\omega, Y_t^{N,i}(\omega), \mu_t^N(\omega)) dX_t, \\ \left(\mu_t^N(\omega) &= \frac{1}{N} \sum_{j=1}^N \delta_{Y_t^{N,j}(\omega)}, \quad Y_0^{N,i}(\omega) = \xi^i(\omega), \end{aligned} \right. \end{aligned}$$

References

Previous works

- ► MKV with common Brownian noise: Coghi–Flandoli'16 ($\sigma = 0, f = f(y)$), Carmona–Delarue'2 volumes
- Rough MKV: Cass–Lyons'15, Bailleul'15, Bailleul–Catellier–Delarue'20'21, Delarue–Salkeld'21+

Current work

- adopt a different method from Bailleul–Catellier–Delarue'20'21
- allow progressive measurable coefficients: required for controlled MKV dynamics, mean field games with common noise
- allow sharp regularity conditions

Rough MKV Rough MKV – Assumption

$$\begin{cases} dY_t(\omega) = b_t(\omega, Y_t(\omega), \mu_t)dt + \sigma_t(\omega, Y_t(\omega), \mu_t)dB_t(\omega) \\ + (f_t, f_t')(\omega, Y_t(\omega), \mu_t)dX_t \\ \mu_t = \text{Law}(Y_t), \quad Y_0(\omega) = \xi(\omega). \end{cases}$$

- $\xi \in \mathcal{L}_q(\mathcal{F}_0), X = (X, \mathbb{X}): \alpha$ -Hölder rough path, $\alpha \in (1/3, 1/2).$
- ▶ b, σ, f, f' are defined on $\Omega \times \mathbb{R}_+ \times W \times \mathcal{P}_q(W)$, for some fixed $q \ge 0$
- ▶ b, σ are $C^1_{b,m,q}$ w.r.t. (y, μ) for some fixed $m \ge \max(2, q)$
- (f, f') is a measure-dependent stochastic controlled vector field in $\mathbf{D}_{\mathbf{X}}^{2\alpha}L_{m,\infty}C_{h,m,\alpha}^{\gamma}$:
 - f is $C_{h,m,\alpha}^{\gamma}$, f' is $C_{h,m,\alpha}^{\gamma-1}$ w.r.t. (y,μ) for some $\gamma > 1/\alpha$. Both are L_m -integrable w.r.t. ω in some precise sense

• "
$$f' = df/dX$$
":

$$\mathbb{E}_s R^f_{s,t}(\omega,y,\mu) = O(t-s)^{2\alpha}, \quad R^f_{s,t} = \delta f_{s,t} - f'_s \delta X_{s,t}$$

¹Simple examples without measure dependence: (a) $f_t(y) = h(B_t, y), f'_t(y) = 0;$ $(b)f_t(y) = h(X_t, y), f'_t(y) = D_1h(X_t, y)$

References

Rough MKV – Results

Rough MKV

[Friz-Hocquet-L. 22+]

Under the above conditions, the *roughMKV* has a unique solution which is Lipschitz continuous w.r.t. the input data ξ , b, σ , f, f', X. Likewise, the particle system has a unique solution.

Propagation of chaos – Assumption

Assume additionally that for some $p \in [\max(q, 1), m]$ such that

- $||\xi||_p < \infty$
- ► for $g \in \{b, \sigma, f, D_1 f, D_1^2 f, f', D_1 f'\}$, there is a modulus of continuity λ_g such that

 $\sup_{t\leq T} \|\sup_{y\in W} |g_t(y,v) - g_t(y,\bar{v})|\|_{\infty} \leq \lambda_g(\mathcal{W}_p(v,\bar{v})), \quad \forall v,\bar{v}\in \mathcal{P}_p(W).$

For every $\xi_1, \xi_2 \in L_q(W)$ and every $\eta \in L_{\infty}(W)$, we have

 $\sup_{t \le T} \|\sup_{y \in W} |(D_2 \hat{f}_t(y, \xi_1)[\eta] - D_2 \hat{f}_t(y, \xi_2)[\eta]| \|_{\infty} \lesssim \|\xi_1 - \xi_2\|_p \|\eta\|_{\infty}.$

Propagation of chaos

FHL22+ The *N*-particle system converges to *roughMKV* in the following senses: (i) $\lim_{N \to \infty} \sup_{i < N} || \sup_{t \in [0,T]} |Y_t^{N,i} - Y_t^i||_m = 0.$ (ii) For every $\beta \in (0, \alpha)$, $\lim_{N\to\infty}\sup_{i\in\mathcal{M}}\left(\|Y^{N,i}-Y^{i}\|_{C^{\alpha}L_{m}}+\|\mathbb{E}.R^{Y^{N,i}}-\mathbb{E}.R^{Y^{i}}\|_{C_{\alpha}^{\alpha+\beta}L_{m}}\right)=0.$ (iii) With probability one, for any fixed integer $k \ge 1$, we have the convergence $\lim_{N \to \infty} (Y^{N,1}, \cdots, Y^{N,k}) = (Y^1, \cdots, Y^k) \text{ in } [C([0,T];W)]^k.$ (iv) $\lim_{N\to\infty} \|\mathcal{W}_{C([0,T],W),p}(\mu^N,\mu)\|_p = 0$ and $\lim_{N \to \infty} \| \mathcal{W}_{C([0,T],W),m}(\mathring{\mu}^{N},\mathring{\mu}) \|_{m} = 0.$ where $\mu^N = \frac{1}{N} \sum_{i=1}^N \delta_{Y^{N,i}}$ and $\mathring{\mu}^N = \frac{1}{N} \sum_{i=1}^N \delta_{Y^{N,i}-Y^{N,i}}$.

Regularity w.r.t. random variables

Previously, we say "f is $C_{b,m,q}^{\gamma}$, f' is $C_{b,m,q}^{\gamma-1}$ w.r.t. (y,μ) "

Propaga

Propagation of chaos

Reference

Lions lift

 $\mathcal{L}_q(W)$: topological space of *W*-valued random variables ξ such that $\mathbb{E}|\xi|^q < \infty$. When $q \ge 1$, \mathcal{L}_q becomes the Banach space L_q . Given $g: \mathcal{P}_q(W) \to \overline{W}$, *Lions lift* of g is the function

 $\hat{g} : \mathcal{L}_q(W) \to \bar{W}, \quad \hat{g}(\xi) = g(\text{Law}(\xi))$

Advantage of \mathcal{L}_q over \mathcal{P}_q : the former is a vector space.

Differentiability w.r.t. random variables

Definition

Take $m \geq \max(q, 1)$. The space $C_m^{\gamma}(\mathcal{L}_q(W), \overline{W})$ is the topological subspace of the Lipschitz space $C_b^{\gamma}(L_m(W), \overline{W})$ containing functions g in $C_b^{\gamma}(L_m(W), \overline{W})$ such that for each integer $0 \leq k < \gamma$ and for every $\eta_1, \ldots, \eta_k \in L_m(W)$, the map

$$L_m(W) \ni \xi \mapsto D^k g(\xi)[\eta_1, \dots, \eta_k] \in \overline{W}$$

is uniformly bounded on $L_m(W)$ and can be extended continuously to $\mathcal{L}_q(W)$ with respect to the topology of convergence in probability.

That is

$$\sup_{\xi \in L_m(W)} D^k g(\xi)[\eta_1, \dots, \eta_k] < \infty$$
(4.1)

and for every $\bar{\xi} \in \mathcal{L}_q(W), D^k g(\bar{\xi})[\eta_1, \dots, \eta_k]$ exists as the unique limit

$$D^{k}g(\bar{\xi})[\eta_{1},\ldots,\eta_{k}] \coloneqq \lim_{\xi \to \bar{\xi}} D^{k}g(\xi)[\eta_{1},\ldots,\eta_{k}]$$
(4.2)

where $\xi \in L_m(W)$ and $\xi \to \overline{\xi}$ in probability.

Basic properties of $C_{m,q}^{\gamma}$ -regularity

- $\blacktriangleright \ C^{\gamma}_m(\mathcal{L}_q(W),\bar{W}) \text{ is a closed topological subspace of } C^{\gamma}_b(L_m(W),\bar{W}).$
- $\blacktriangleright \ C_m^{\gamma}(\mathcal{L}_m(W), \bar{W}) = C_b^{\gamma}(L_m(W), \bar{W})$
- (trivial) continuous inclusions

$$C_m^{\gamma}(\mathcal{L}_q(W), \bar{W}) \hookrightarrow C_b^{\gamma}(L_m(W), \bar{W}), \quad m \ge \max(q, 1),$$
(4.3)

$$C_b^{\gamma}(L_q(W), \bar{W}) \hookrightarrow C_m^{\gamma}(\mathcal{L}_q(W), \bar{W}), \quad m \ge q \ge 1.$$
(4.4)

Example

Let $h : \mathbb{R} \to \mathbb{R}$ be a bounded smooth function with bounded derivatives and define the function $g : L_2(\mathbb{R}) \to \mathbb{R}$ by $g(\xi) = \mathbb{E}h(\xi)$. Then

- g belongs to $C_3^3(\mathcal{L}_2(\mathbb{R}))$.
- On the other hand, it is known from Carmona–Delarue's book: there exists a compactly supported smooth function *h* such that *g* does not belong to C^γ_h(L₂(ℝ)) for any γ > 2.

Being in $C_{m,q}^{\gamma}$

- If g has $C_{m,q}^{\gamma}$ -regularity then
 - For each integer $0 \le k < \gamma$ and $\xi \in \mathcal{L}_q$, the Fréchet derivative $D^k g(\xi)$ exists as a bounded multilinear map on $[L_m]^k$

$$\sup_{\xi \in \mathcal{L}_q(W)} |D^k g(\xi)[\eta_1, \dots, \eta_k]| \le C_k \|\eta_1\|_m \dots \|\eta_k\|_m$$

• $D^{\lfloor \gamma \rfloor}g$ is Hölder continuous:

$$\begin{split} |D^{\lfloor \gamma \rfloor} g(\xi) [\eta_1, \dots, \eta_k] - D^{\lfloor \gamma \rfloor} g(\bar{\xi}) [\eta_1, \dots, \eta_k]| \\ &\leq \bar{C}_{\gamma} \|\xi - \bar{\xi}\|_m^{\gamma - \lfloor \gamma \rfloor} \|\eta_1\|_m \dots \|\eta_{\lfloor \gamma \rfloor}\|_m. \end{split}$$

Law invariance of Lions lifts

- Let $g: \mathcal{P}_q(W) \to \overline{W}$.
 - ► say g is $C_{m,q}^{\gamma}$ iff \hat{g} is.
 - ▶ $\hat{g}, D\hat{g}, \ldots$ are law invariance:
 - $D\hat{g}(\xi)[\eta] = D\hat{g}(\bar{\xi})[\bar{\eta}] \text{ for every } (\bar{\xi},\bar{\eta}) \in \mathcal{L}_q(W) \times L_m(W) \text{ satisfying } Law(\xi,\eta) = Law(\bar{\xi},\bar{\eta});$
 - $\blacktriangleright \ D\hat{g}(\xi)[\eta] = D\hat{g}(\xi)[\mathbb{E}(\eta|\mathcal{F})] \text{ if } \xi \in \mathcal{F}.$

Khoa Lê

References

General strategy in a nutshell

For (classical) MKV (Sznitman'91 or Lacker's lecture note)

- 1. view the dependence on the marginal law as temporal dependence
- 2. apply stability of SDE (Itô theory)
- this yields uniqueness of MKV as well as propagation of chaos (with help of LLN)

Solving roughMKV (similar to the one above)

- 1. view the dependence on the marginal law as temporal dependence
- 2. apply stability results of *rough SDEs* (Friz-Hocquet-L.'21)
- 3. yield uniqueness of *roughMKV* as well as propagation of chaos

References

General strategy in a nutshell

For (classical) MKV (Sznitman'91 or Lacker's lecture note)

- 1. view the dependence on the marginal law as temporal dependence
- 2. apply stability of SDE (Itô theory)
- this yields uniqueness of MKV as well as propagation of chaos (with help of LLN)

Solving roughMKV (similar to the one above)

- 1. view the dependence on the marginal law as temporal dependence
- 2. apply stability results of *rough SDEs* (Friz-Hocquet-L.'21)
- 3. yield uniqueness of *roughMKV* as well as propagation of chaos

Sounds simple! Why didn't it work before?

lack of direct approach to hybrid rough SDE

A very brief overview of rough SDEs

 $dY_t(\omega) = b_t(\omega,Y_t(\omega))dt + \sigma_t(\omega,Y_t(\omega))dB_t(\omega) + (f_t,f_t')(\omega,Y_t(\omega))dX_t.$

A very brief overview of rough SDEs

$$dY_t(\omega) = b_t(\omega, Y_t(\omega))dt + \sigma_t(\omega, Y_t(\omega))dB_t(\omega) + (f_t, f'_t)(\omega, Y_t(\omega))dX_t.$$

Previous methods use rough path theory and flow transformation to deduce to a rough DE or an Itô DE:

- rules out progressive measurable coefficients
- high cost of regularity assumption

In Friz–Hocquet–L.'21, by building around stochastic sewing lemma (L.'18), we show that

- roughSDE has unique solution
- solution has stochastic control structure:

$$\mathbb{E}_s R_{s,t}^Y = O(t-s)^{2\alpha}, \quad R_{s,t}^Y = \delta Y_{s,t} - f_s(Y_s) \delta X_{s,t}.$$

solution is Lipschitz continuous w.r.t. to the input data ξ, b, σ, f, f', X .

Solving roughMKV: A bit more detail

For each stochastic controlled rough path (η, η') , define

 $f_t^{\eta}(\omega, y) = \hat{f}_t(\omega, y, \eta_t) \quad \text{and} \quad (f_t^{\eta})'(\omega, y) = D_2 \hat{f}_t(\omega, y, \eta_t) [\eta_t'] + \hat{f}_t'(\omega, y, \eta_t).$

roughMKV then can be written in the following way

$$\begin{cases} dY_t(\omega) = b_t^{\eta}(\omega, Y_t(\omega))dt + \sigma_t^{\eta}(\omega, Y_t(\omega))dB_t(\omega) + (f_t^{\eta}, (f_t^{\eta})')(\omega, Y_t(\omega))dX_t \\ (\eta(\omega), \eta'(\omega)) = (Y(\omega), \hat{f}(\omega, Y(\omega), Y)), \quad Y_0(\omega) = \xi(\omega). \end{cases}$$
(5.1)

Given (η, η') Eq. (5.1) is a rough SDE which has unique solution Y^{η} So that solving (5.1) is the same as finding fixed point of $\eta \mapsto Y^{\eta}$.

Particle system as roughSDE

Let g be a function on $\Omega \times \mathbb{R}_+ \times W \times \mathcal{P}_q$. *Finite projection* of g is the function $P^N g$ on $\Omega \times \mathbb{R}_+ \times W \times W^N$

$$P^N g_t(\omega, y, z) = \hat{g}_t(\omega, y, z^\vartheta), \quad \text{Law}(\vartheta) = \text{Unif}(1, \dots, d)$$

if g has C^γ_{b,m,q}-regularity then P^Ng has C^γ_b-regularity on W × W^N
 if W^N is equipped with metric

$$d_m^N(z) := ||z^\vartheta||_m = \left(\frac{1}{N}\sum_{i\leq N} |z^i|^m\right)^{\frac{1}{m}}, \quad z = (z^1, \dots, z^N) \in W^N.$$

then " $|P^N g|_{C_b^{\gamma}}$ " is bounded uniformly in N.

References

Propagation of chaos

Particle system becomes a (big) roughSDE

$$\begin{cases} dY^{N,i} = P^{N}b_{t}(Y_{t}^{N,i},Y_{t}^{[N]})dt + P^{N}\sigma_{t}(Y_{t}^{N,i},Y_{t}^{[N]})dB_{t}^{i} \\ + (P^{N}f_{t},(P^{N}f_{t}'))(Y_{t}^{N,i},Y_{t}^{[N]})dX, \end{cases}$$

$$\begin{cases} Y_{0}^{N,i} = \xi^{i}, \quad i = 1, \dots, N, \\ Y_{0}^{[N]} = (Y^{N,i})_{i=1}^{N}. \end{cases}$$
(5.2)

We then compare this with i.i.d. roughMKV

$$\begin{cases} dY_t^i = b_t(Y_t^i, \mu_t)dt + \sigma_t(Y_t^i, \mu_t)dB_t^i + (f_t, f_t')(Y_t^i, \mu_t)dX_t, \\ \mu_t = \text{Law}(Y_t^i), \quad Y_0^i = \xi^i. \end{cases}$$
(5.3)

By treating the dependence on $Y_t^{[N]}$ and μ_t as temporal dependence, we are able to apply stability results of rough SDEs.

Then by LLN and a Gronwall-argument, this yields convergence of the particle system to the i.i.d. roughMKV.

References

Propagation of chaos

Particle system becomes a (big) roughSDE

$$\begin{cases} dY^{N,i} = P^{N}b_{t}(Y_{t}^{N,i},Y_{t}^{[N]})dt + P^{N}\sigma_{t}(Y_{t}^{N,i},Y_{t}^{[N]})dB_{t}^{i} \\ + (P^{N}f_{t},(P^{N}f_{t}'))(Y_{t}^{N,i},Y_{t}^{[N]})d\boldsymbol{X}, \\ Y_{0}^{N,i} = \xi^{i}, \quad i = 1, \dots, N, \\ Y^{[N]}_{0} = (Y^{N,i})_{i=1}^{N}. \end{cases}$$
(5.2)

We then compare this with i.i.d. roughMKV

$$\begin{cases} dY_t^i = b_t(Y_t^i, \mu_t)dt + \sigma_t(Y_t^i, \mu_t)dB_t^i + (f_t, f_t')(Y_t^i, \mu_t)dX_t, \\ \mu_t = \text{Law}(Y_t^i), \quad Y_0^i = \xi^i. \end{cases}$$
(5.3)

By treating the dependence on $Y_t^{[N]}$ and μ_t as temporal dependence, we are able to apply stability results of rough SDEs.

Then by LLN and a Gronwall-argument, this yields convergence of the particle system to the i.i.d. roughMKV.

Thank you!

Khoa I ê

References I

Friz, Peter, Antoine Hocquet, and Khoa Lê (2021). "Rough stochastic differential equations". In: *arXiv preprint arXiv:2106.10340*.

Lê, Khoa (2020). "A stochastic sewing lemma and applications". In: *Electron. J. Probab.* 25, Paper No. 38, 55. URL: https://doi.org/10.1214/20-ejp442.