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Question 2

FBSDE formulation
Does a solution exists for the following equation when
b, σ, g, f, h have discontinuities in x?

dXt = g̃(t,Xt, Yt, Zt)dt+ σ(t,Xt)dBt; X0 = x

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdBt; YT = h(XT )

PDE formulation
Does a solution exists for the following PDE?

Lu+ (∇ug̃)(t, x, u,∇uσ) + f(t, x, u,∇uσ) = 0;

u(T, x) = h(x)

Lu = ∂t +
1

2

∑
i,j

aij(t, x)∂xixju

where a = σσᵀ.



Previous Literature 3

I g̃(x, y, z) does not depend on (y, z) and all coefficients are
smooth with bounded derivatives:
Pardoux and Peng (1990) and Pardoux and Peng (1992)

I g̃(x, y, z) does not depend on (y, z) and f(t, x, y, z) is
Lipschitz in (y, z):
El Karoui et al. (1997)

I g̃(x, y, z) does not depend on (y, z) and f(t, x, y, z) is
continuous in (y, z):
Hamadène et al. (1997)

I All coefficients are Lipschitz with respect to (x, y, z) and
σσᵀ is uniformly non-degenerate:
Delarue (2002)

I σ is a constant, h bounded, and (f, g̃) has linear growth in
(y, z):
Luo et al. (2022)

I PDE literature when f(t, x, y, z), g(t, x, y, z) are linear with
respect to y, z:
Kim and Krylov (2007) and so on.



Basic Assumptions 4

dXt = (b(t,Xt) + σ(t,Xt)g(t,Xt, Yt, Zt)) dt+ σ(t,Xt)dBt; X0 = x

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdBt; YT = h(XT )

I σσᵀ is uniformly non-degnerate, that is, there exists a
constant ε > 0 such that

ε−1|x′|2 ≤ (x′)ᵀ(σσᵀ)(t, x)x′ ≤ ε|x′|2

for all x′ ∈ Rm and (t, x) ∈ [0, T ]× Rm.

I There exists a positive constant κ such that,

|b(t, 0)|+ sup
|x−x′|≤1

|b(t, x)− b(t, x′)| ≤ κ

for all t ∈ [0, T ], x, x′ ∈ Rm.



Idea 5

We first solve the following decoupled FBSDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt; X0 = x

dYt = − (f(t,Xt, Yt, Zt) + Ztg(t,Xt, Yt, Zt)) dt+ ZtdWt; YT = h(XT )

then use Girsanov transform dBt = dWt − g(t,Xt, Yt, Zt)dt to
obtain the original FBSDE.
We need to check...

I When does the decoupled FBSDE has a solution (when the
coefficients are not continuous in x)?

I When can we perform the Girsanov transform?

I (X,Y, Z) ∈ FB?



Remark 6

I Meta Theorem A: If the forward SDE is well-posed, then
its solution is a strong Markov process.

I Meta Theorem B: Assuming the BSDE is well-posed, if the
“x” component of the BSDE is a strong Markov process,
then there are measurable functions u, d such that the
solution of BSDE is (u(t,Xt), d(t,Xt)): see Çinlar et al.
(1980), El Karoui et al. (1997), and Hamadène et al. (1997).

Remark We don’t need the continuity of
b(t, x), σ(t, x), f(t, x, y, z), g(t, x, y, z) with respect to x to
guarantee the well-posedness of the decoupled system.



Lemma
Assume the decoupled FBSDE is well-posed with solution
(X,Y = u(·, X.), Z = d(·, X.)) and the Girsanov theorem works.
If

dPt = (b(t, Pt) + σ(t, Pt)g(t, Pt, u(t, Pt), d(t, Pt))) dt+ σ(t, Pt)dBt

satisfies pathwise uniqueness, then (X,Y, Z) ∈ FB.
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The coupled FBSDE has a strong solution if there are
nonnegative constants C and r, a strictly increasing function
θ : R→ R+, and a nondecreasing function ρr : R+ → R+

satisfying ρr ≡ C for r > 0 such that either Condition (A) or
Condition (B) hold.
Condition (A)

I b and σ satisfies one of the followings:

(F1) |b(t, x)| ≤ C and σ(t, x) is locally Lipschitz with respect to
x.

(F2) |b(t, x)| ≤ C, m = n = 1, and either

(i)
∫

du
θ(u)

=∞ and |σ(t, x)− σ(t, y)|2 ≤ θ(|x− y|), or
(ii) θ is bounded and |σ(t, x)− σ(t, y)|2 ≤ |θ(x)− θ(y)| .

(F3) σ(t, x) is a constant matrix.



I f, g, h and f̄ = f + zg satisfy one of the followings:

(B1) |h(x)| ≤ C(1 + |x|r), f̄(t, x, y, z) is continuous in (y, z), and

|f(t, x, y, z)| ≤ C(1 + |x|r + |y|+ |z|)
|g(t, x, y, z)| ≤ ρr(|y|).

(B2) |h(x)| ≤ C, f̄ i(t, x, y, z) = f̃ i(t, x, zi) + f̂ i(t, x, y, z) such that

|f̂(t, x, y, z)| ≤ C(1 + |y|), |f̃(t, x, z)| ≤ C|z|2, |g(t, x, y, z)| ≤ ρr(|y|)∣∣∣f̂(s, x, y, z)− f̂(s, x, y′, z′)
∣∣∣ ≤ C(|y − y′|+ |z − z′|)∣∣∣f̃(s, x, z1)− f̃(s, x, z2)

∣∣∣ ≤ C(1 + |z1|+ |z2|)|z1 − z2|.

(B3) d = 1, |h(x)| ≤ C, f̄(t, x, y, z) is continuous with respect to
(y, z), and

|f(t, x, y, z)| ≤ C(1 + |y|+ |z|2)

|g(t, x, y, z)| ≤ C(1 + ρr(|y|)).



Condition B

I (F3)

I |h(x)| ≤ C(1 + |x|r), f̄(t, x, y, z) is continuous in (y, z), and

|f i(t, x, y, z)| ≤ C(1 + |x|r + |yi|) for all i = 1, 2, ..., d

|g(t, x, y, z)| ≤ C(1 + |x|+ ρr(|y|)).

Remark While we require the continuity of f + zg in (y, z), the
continuity of (f, g) with respect to (y, z) is nonnecessary.
Remark (F3)+(B1) “generalizes” Hamadène et al. (1997) and
Luo et al. (2022).



Idea of the proof 11

For each set of conditions, verify/prove

I Wellposedness of decoupled FBSDE

I Meta Theorem A and Meta Theorem B

I Wellposedness of SDE F0 = x and

dFt = (b(t, Ft) + σ(t, Ft)g(t, Ft, u(t, Ft), d(t, Ft))) dt+ σ(t, Ft)dBt

I Girsanov transforms to couple/decouple FBSDE.

These verifications were done by weaving numerous results on
SDE and FBSDE including Aronson (1967); Le Gall (1984);
Hamadène et al. (1997); Kobylanski (2000); Gyöngy and
Mart́ınez (2001); Mu and Wu (2015); Hu and Tang (2016);
Menoukeu-Pamen and Mohammed (2019); Menozzi et al. (2021)



Main Theorem: Uniqueness 12

Moreover, the solution is unique if

dYt = −f(t, It, Yt, Zt)dt+ ZtdWt;YT = h(IT )

has a unique strong solution for any Itô process I. For example,

(U1) f(t, x, y, z) is globally Lipschitz continuous with respect to
(y, z) and |f(t, x, 0, 0)| is uniformly bounded.

(U2) d = 1, |h(x)| ≤ C, f(t, x, y, z) is differentiable with respect
to (y, z), and for any M, ε > 0, there exist
lM , lε ∈ L1([0, T ];R+), kM ∈ L2([0, T ];R+), and CM > 0
such that f satisfies

|f(t, x, y, z)| ≤ lM (t) + CM |z|2

|∂zf(t, x, y, z)| ≤ kM (t) + CM |z|
|∂yf(t, x, y, z)| ≤ lε(t) + ε|z|2

for all (t, x, y, z) ∈ [0, T ]× Rm × [−M,M ]× R1×n.

(U3) (B2) holds for f(t, x, y, z) instead of f̄(t, x, y, z)



Idea of the proof 13

If we have two strong solution for coupled FBSDE, they become
two weak solutions for decoupled FBSDE via Girsanov
transform. Since the decoupled FBSDE has pathwise
uniqueness unde our conditions, these two weak solutions
should coincide pathwise.
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Assume that there exist C > 0, r ≥ 1
2 and ε > 0 satisfying the

following conditions:

I σ : [0, T ]× R→ R1×n is a continuous function satisfying

|σ(t, x)− σ(t, y)| ≤ C
√
x− y, ε ≤ |σ(t, x)| ≤ C

I b : [0, T ]× R→ R, h : R→ Rd are measurable and

|b(t, x)| ≤ C, |h(x)| ≤ C(1 + |x|r).

I f : [0, T ]× R× Rd × Rd×n → Rd and
g : [0, T ]× R× Rd × Rd×n → Rn are measurable functions
such that, for f̄(t, x, y, z) = f(t, x, y, z) + zg(t, x, y, z), we
have
I f̄(t, x, ·, ·) is continuous for each (t, x) ∈ [0, T ]× R.
I |f(t, x, y, z)| ≤ C(1 + |x|r + |y|+ |z|) and |g(t, x, y, z)| ≤ C.

Then, there exists a unique strong solution.

Proof.
Zvonkin (1974) and Hamadène et al. (1997).



Relationship with PDE 15

The u satisfying Yt = u(t,Xt) is a “weak” solution of

Lu+ (∇ug̃)(t, x, u,∇uσ) + f(t, x, u,∇uσ) = 0;

Lu = ∂t +
1

2

∑
i,j

aij(t, x)∂xixju

where g̃ = b+ σg.

The function u is required to be in the domain of L so that
u(t,Xt) becomes an Itô process. This regularity is strictly
weaker than the Sobolev differentiability. The necessary and
sufficient condition is given in Mania and Tevzadae (2001).
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