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Players i = 1,..., n have state processes X = (X1,... X"),
dX! = a;(t, Xe)dt +dWi, Xi=0
(ai,...,a,) = Markovian, full-information controls.

Collectively optimize:

V =supJ(a) =supE

nooeT
g(Xt) - 21”2/0 |ai(t7Xt))|2dt]
i=1

Here g : R” — R is arbitrary, say bounded from above.
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“Mean field control” case: g takes the form

g(x) = G(Ln(x),  Ln(x):= %Z‘an G:P(R) — R.
i=1



The usual case

“Mean field control” case: g takes the form
1 n
= G(L,(x)), Lo(x) := - Ox; s G: PR R.
g(x) = G(La(x)) (x) = ; j P(R) —

Mean field limit as n — oo,

_ _ 1 T _
V o Ve=sup G(Law(XT))—2E/ (e, Xo)[2dt,
a 0

dyt - @(t,yt)dt + th, YO - O



The usual case

“Mean field control” case: g takes the form
1 n
= G(L,(x)), Lo(x) := - Ox; s G: PR R.
g(x) = G(La(x)) (x) = Zl j P(R) —

Mean field limit as n — oo,

_ — e -
V. — V:=sup G(Law(X7T)) — 2E/ a(t, Xe) | dt,
e 0

dyt - @(t,yt)dt + th, YO - O

Approximate optimizers for V:
aj(t,x) = @.(t, x;), where @, optimal for V



The usual case

“Mean field control” case: g takes the form
1 n
= G(L, ) Lp(x) = — Ox; s G: PR R.
g(x) = G(La(x)) (x) = ; j P(R) —
Mean field limit as n — oo,
— — 1 LA

V. — V:=sup G(Law(X7))— EE la(t, X¢)|“dt,

« 0

dyt - @(t,yt)dt + th, YO - O

Approximate optimizers for V:
aj(t,x) = @.(t, x;), where @, optimal for V

These approximate optimizers are distributed /decentralized!
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Beyond the usual case

For general g : R” — R, no mean field limit available

Guiding example: Heterogeneous interactions:

g(x) = Z U(xi) Z JiiK(xi

1§i<j§n

Ex A: Usual case is Jj =1/n
Ex B: J = scaled adjacency matrix of a graph

Can anything be done?

Xj)
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The distributed optimal control problem
Recall:

V =supJ(a) =supE |g
« (6%

(X7) —Z/ i, Xe) \2dt]

Define:

Vistr = sup J(a)

« dstr

where sup is over controls of the form a;(t, X;) = &;(t, X}).
Question: When are V and Vg, close?

Related (independent) idea: Seguret-Alasseur-Bonnans-De
Paola-Oudjane-Trovato
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Comparing the distributed and original problems

Theorem
Let g :R" — R be C? concave, |g(x) < a2, ¢, < 1727. Then

0< V= Var <nT? > 0582

1<i<j<n
Sanity check 1: g(x) = 237 | U;(x;) ~ RHS=0
Sanity check 2: g(x) = G(L,(x)), G : P(R) — R smooth,
~ 0jig(x) = %D?,?G(Ln(x),x,-,xj), for i #j

T2 2 2
2n



Comparing the distributed and original problems

Theorem
Let g : R" — R be C? concave, g < a2, ¢ < 127. Then
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2
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Comparing the distributed and original problems

Theorem
Let g : R" — R be C? concave, g < a2, ¢ < 127. Then

Y. g

1<i<j<n

OS vV — VdstrS”T2

2
00

Heterogeneous interactions: U, K concave, K even, J; > 0,

1 < 1
gx) =~ > UGa) + . > K06 = x)
i=1 1<i<j<n
1
~ [ 0jjglloe = ;JUHK”Hoo
T2
~ RHS < Z||K”||§otr(J2)

Key condition: tr(J?) = o(n).
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The bigger picture: a static problem

Proof step 0: With f = ng, v = N,(0, T/),

V= sup ()~ Hiulor) Dlog [ v
neP(R") Rn

nVaser = sup  ({u, f) — H(p|y7))
HEPprod (R")

where Pp,;q(R") = {product measures}

Static problem: When is Gibbs variational formula (x) “nearly”
saturated by product measures?

cf. nonlinear large deviations theory, Chatterjee-Dembo '16,
also Basak-Mukherjee '17, Eldan '18, Austin '19, Augeri '20...



The bigger picture: a static problem

Proof step 0: With f = ng, v = N,(0, T/),

W= sup ((uf)— H(u| 7)) = log / e dyr
HEP(R") R

n\/dstr = sup (<M7 f> - H(M ‘ ’YT))
ﬂepprod(Rn)
where P,,.,q(R") = {product measures}

Easy identity: Let P(dx) = (1/7)e )51 (dx). Then

n(V — Vager) = inf {H(i| P) : 1 € Pproa(R")}
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Proof outline

n(V — Vgstr) = inf {H(u\ P):pe Ppmd(R”)}
Step 1: First-order condition for an optimizer p*:

du*
dyr

=(1/2)) epoE JF(X) ] X

i=1

Concavity of f = uniqueness of optimizer!
Proof by displacement convexity a la McCann '97.

Step 2: p* is log-concave: V? log d“ <0



Proof outline
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Proof outline

Step 3, the main calculation:
P log-concave = log-Sobolev inequality:

du* 2

dP

. T
n(V — Vgstr) = H(u" | P) < EEM*

V log

T n
=..=7 > By Vary- (9f(X) | X))
i=1
w* log-concave = Poincaré inequality:
< Vary (0 (X) | Xi) < T By [|05£(X) | X]
J#i
Combine with tower property:

n(V = Var) T2 > Eue05F(X))?
1<i<j<n
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Approximate independence

More can be said using ;* about P(dx) = (1/2)e’ )+ (dx):
» Empirical measure is similar under P and p*:

n n 2
p [(1 PCLIEED PR [so(x,-n)
i=1 i=1

> LS W2(P,up) < (2T /n)RHS

%(1+\/2RH )2




Back to the control problem

The optimal controls for V and Vg, can be characterized in terms
of P(dx) = (1/2)ef™~1(dx) and p*:

» V: optimal X = (X1,...,X") is Brownian bridge 0 — P

» Vg optimal X = (X1,..., X") is Brownian bridge 0 — *:

Brownian bridge 0 — Q < v7: The process X with X1 ~ Q,
and (X| X1 = x) ~ (Brownian bridge from 0 to x over [0, T]).

Corresponding control:

oz,-(t,x) = 8,' IogE[(dQ/d’yr)(WT) ’ Wt = X]
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