Mean field approximations via log-concavity, and a non-asymptotic perspective on mean field control

Daniel Lacker

Industrial Engineering and Operations Research, Columbia University

June 29, 2022

Joint work with:

Sumit Mukherjee (Columbia Statistics)

Lane Chun Yeung (Columbia IEOR)

High-dimensional stochastic control

Players
$$i=1,\ldots,n$$
 have state processes $X=(X^1,\ldots,X^n)$,
$$dX_t^i=\alpha_i(t,X_t)dt+dW_t^i,\quad X_0^i=0$$

 $(\alpha_1,\ldots,\alpha_n)$ = Markovian, full-information controls.

High-dimensional stochastic control

Players i = 1, ..., n have state processes $X = (X^1, ..., X^n)$,

$$dX_t^i = \alpha_i(t, X_t)dt + dW_t^i, \quad X_0^i = 0$$

 $(\alpha_1, \ldots, \alpha_n)$ = Markovian, full-information controls.

Collectively optimize:

$$V = \sup_{\alpha} J(\alpha) = \sup_{\alpha} \mathbb{E} \left[g(X_T) - \frac{1}{2n} \sum_{i=1}^{n} \int_{0}^{T} |\alpha_i(t, X_t)|^2 dt \right]$$

Here $g: \mathbb{R}^n \to \mathbb{R}$ is arbitrary, say bounded from above.

"Mean field control" case: g takes the form

$$g(x) = G(L_n(x)), \qquad L_n(x) := \frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \qquad G : \mathcal{P}(\mathbb{R}) \to \mathbb{R}.$$

"Mean field control" case: g takes the form

$$g(x) = G(L_n(x)), \qquad L_n(x) := \frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \qquad G : \mathcal{P}(\mathbb{R}) \to \mathbb{R}.$$

Mean field limit as $n \to \infty$,

$$V \to \overline{V} := \sup_{\alpha} G(\operatorname{Law}(\overline{X}_{T})) - \frac{1}{2} \mathbb{E} \int_{0}^{T} |\overline{\alpha}(t, \overline{X}_{t})|^{2} dt,$$
$$d\overline{X}_{t} = \overline{\alpha}(t, \overline{X}_{t}) dt + d\overline{W}_{t}, \quad \overline{X}_{0} = 0.$$

"Mean field control" case: g takes the form

$$g(x) = G(L_n(x)), \qquad L_n(x) := \frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \qquad G : \mathcal{P}(\mathbb{R}) \to \mathbb{R}.$$

Mean field limit as $n \to \infty$,

$$V \to \overline{V} := \sup_{\alpha} G(\operatorname{Law}(\overline{X}_{T})) - \frac{1}{2} \mathbb{E} \int_{0}^{T} |\overline{\alpha}(t, \overline{X}_{t})|^{2} dt,$$
$$d\overline{X}_{t} = \overline{\alpha}(t, \overline{X}_{t}) dt + d\overline{W}_{t}, \quad \overline{X}_{0} = 0.$$

Approximate optimizers for V:

$$\alpha_i(t,x) = \overline{\alpha}_*(t,x_i)$$
, where $\overline{\alpha}_*$ optimal for \overline{V}

"Mean field control" case: g takes the form

$$g(x) = G(L_n(x)), \qquad L_n(x) := \frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \qquad G : \mathcal{P}(\mathbb{R}) \to \mathbb{R}.$$

Mean field limit as $n \to \infty$,

$$V \to \overline{V} := \sup_{\alpha} G(\operatorname{Law}(\overline{X}_{T})) - \frac{1}{2} \mathbb{E} \int_{0}^{T} |\overline{\alpha}(t, \overline{X}_{t})|^{2} dt,$$
$$d\overline{X}_{t} = \overline{\alpha}(t, \overline{X}_{t}) dt + d\overline{W}_{t}, \quad \overline{X}_{0} = 0.$$

Approximate optimizers for V:

$$\alpha_i(t,x) = \overline{\alpha}_*(t,x_i)$$
, where $\overline{\alpha}_*$ optimal for \overline{V}

These approximate optimizers are distributed/decentralized!

Beyond the usual case

For general $g: \mathbb{R}^n \to \mathbb{R}$, no mean field limit available

Beyond the usual case

For general $g: \mathbb{R}^n \to \mathbb{R}$, no mean field limit available

Guiding example: Heterogeneous interactions:

$$g(x) = \frac{1}{n} \sum_{i=1}^{n} U(x_i) + \frac{1}{n} \sum_{1 \le i < j \le n} J_{ij} K(x_i - x_j)$$

Ex A: Usual case is $J_{ij} = 1/n$

Ex B: J =scaled adjacency matrix of a graph

Can anything be done?

The distributed optimal control problem

Recall:

$$V = \sup_{\alpha} J(\alpha) = \sup_{\alpha} \mathbb{E} \left[g(X_T) - \frac{1}{2n} \sum_{i=1}^n \int_0^T |\alpha_i(t, X_t)|^2 dt \right]$$

Define:

$$V_{
m dstr} = \sup_{lpha \
m dstr} J(lpha)$$

where sup is over controls of the form $\alpha_i(t, X_t) = \tilde{\alpha}_i(t, X_t^i)$.

The distributed optimal control problem

Recall:

$$V = \sup_{\alpha} J(\alpha) = \sup_{\alpha} \mathbb{E} \left[g(X_T) - \frac{1}{2n} \sum_{i=1}^n \int_0^T |\alpha_i(t, X_t)|^2 dt \right]$$

Define:

$$V_{
m dstr} = \sup_{lpha \
m dstr} J(lpha)$$

where sup is over controls of the form $\alpha_i(t, X_t) = \tilde{\alpha}_i(t, X_t^i)$.

Question: When are V and V_{dstr} close?

The distributed optimal control problem

Recall:

$$V = \sup_{\alpha} J(\alpha) = \sup_{\alpha} \mathbb{E} \left[g(X_T) - \frac{1}{2n} \sum_{i=1}^n \int_0^T |\alpha_i(t, X_t)|^2 dt \right]$$

Define:

$$V_{
m dstr} = \sup_{lpha \
m dstr} J(lpha)$$

where sup is over controls of the form $\alpha_i(t, X_t) = \tilde{\alpha}_i(t, X_t^i)$.

Question: When are V and V_{dstr} close?

Related (independent) idea: Seguret-Alasseur-Bonnans-De Paola-Oudjane-Trovato

Theorem

Let $g: \mathbb{R}^n \to \mathbb{R}$ be C^2 concave, $|g(x)| \le c_1 e^{c_2|x|^2}$, $c_2 < 1/2\tau$. Then

$$0 \leq V - V_{\mathrm{dstr}} \leq nT^2 \sum_{1 \leq i \leq j \leq n} \|\partial_{ij} g\|_{\infty}^2.$$

Theorem

Let $g: \mathbb{R}^n \to \mathbb{R}$ be C^2 concave, $|g(x)| \le c_1 e^{c_2|x|^2}$, $c_2 < 1/2\tau$. Then

$$0 \leq V - V_{\mathrm{dstr}} \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij} g\|_{\infty}^2.$$

Sanity check 1:
$$g(x) = \frac{1}{n} \sum_{i=1}^{n} U_i(x_i) \rightsquigarrow \mathsf{RHS} = 0$$

Theorem

Let $g: \mathbb{R}^n \to \mathbb{R}$ be C^2 concave, $|g(x)| \le c_1 e^{c_2|x|^2}$, $c_2 < 1/2\tau$. Then

$$0 \leq V - V_{\mathrm{dstr}} \leq n T^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij} g\|_{\infty}^2.$$

Sanity check 1:
$$g(x) = \frac{1}{n} \sum_{i=1}^{n} U_i(x_i) \rightsquigarrow \mathsf{RHS} = 0$$

Sanity check 2: $g(x) = G(L_n(x)), G : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ smooth,

Theorem

Let $g: \mathbb{R}^n \to \mathbb{R}$ be C^2 concave, $|g(x)| \le c_1 e^{c_2|x|^2}$, $c_2 < 1/2\tau$. Then

$$0 \le V - V_{\text{dstr}} \le nT^2 \left\| \sum_{1 \le i \le n} \partial_{ij} g \right\|_{\infty}^2.$$

Heterogeneous interactions: U, K concave, K even, $J_{ij} \geq 0$,

Theorem

Let $g: \mathbb{R}^n \to \mathbb{R}$ be C^2 concave, $|g(x)| \le c_1 e^{c_2|x|^2}$, $c_2 < 1/2\tau$. Then

$$0 \le V - V_{\text{dstr}} \le nT^2 \left\| \sum_{1 \le i \le n} \partial_{ij} g \right\|_{\infty}^2.$$

Heterogeneous interactions: U, K concave, K even, $J_{ij} \geq 0$,

Key condition: $tr(J^2) = o(n)$.

The bigger picture: a static problem

Proof step 0: With
$$f = ng$$
, $\gamma_T = N_n(0, TI)$,
$$nV = \sup_{\mu \in \mathcal{P}(\mathbb{R}^n)} (\langle \mu, f \rangle - H(\mu \mid \gamma_T)) \stackrel{(*)}{=} \log \int_{\mathbb{R}^n} e^f \, d\gamma_T$$
$$nV_{\text{dstr}} = \sup_{\mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n)} (\langle \mu, f \rangle - H(\mu \mid \gamma_T))$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n) = \{\text{product measures}\}$

The bigger picture: a static problem

Proof step 0: With f = ng, $\gamma_T = N_n(0, TI)$,

$$\begin{split} nV &= \sup_{\mu \in \mathcal{P}(\mathbb{R}^n)} \left(\langle \mu, f \rangle - H(\mu \,|\, \gamma_T) \right) \stackrel{(*)}{=} \log \int_{\mathbb{R}^n} e^f \, d\gamma_T \\ nV_{\text{dstr}} &= \sup_{\mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n)} \left(\langle \mu, f \rangle - H(\mu \,|\, \gamma_T) \right) \end{split}$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n) = \{\text{product measures}\}$

Static problem: When is Gibbs variational formula (*) "nearly" saturated by product measures?

cf. nonlinear large deviations theory, Chatterjee-Dembo '16, also Basak-Mukherjee '17, Eldan '18, Austin '19, Augeri '20...

The bigger picture: a static problem

Proof step 0: With
$$f = ng$$
, $\gamma_T = N_n(0, TI)$,

$$\begin{split} nV &= \sup_{\mu \in \mathcal{P}(\mathbb{R}^n)} \left(\langle \mu, f \rangle - H(\mu \,|\, \gamma_T) \right) = \log \int_{\mathbb{R}^n} \mathrm{e}^f \, d\gamma_T \\ nV_{\mathrm{dstr}} &= \sup_{\mu \in \mathcal{P}_{\mathrm{prod}}(\mathbb{R}^n)} \left(\langle \mu, f \rangle - H(\mu \,|\, \gamma_T) \right) \end{split}$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n) = \{\text{product measures}\}$

Easy identity: Let
$$P(dx) = (1/Z)e^{f(x)}\gamma_T(dx)$$
. Then

$$n(V - V_{\text{dstr}}) = \inf \left\{ H(\mu \mid P) : \mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n) \right\}$$

$$n(V - V_{\text{dstr}}) = \inf \left\{ H(\mu \mid P) : \mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n) \right\}$$

Step 1: First-order condition for an optimizer μ^* :

$$\frac{d\mu^*}{d\gamma_T} = (1/Z') \exp \sum_{i=1}^n \mathbb{E}_{\mu^*}[f(X) \mid X_i]$$

$$n(V - V_{\text{dstr}}) = \inf \left\{ H(\mu \mid P) : \mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n) \right\}$$

Step 1: First-order condition for an optimizer μ^* :

$$rac{d\mu^*}{d\gamma_T} = (1/Z') \exp \sum_{i=1}^n \mathbb{E}_{\mu^*}[f(X) \mid X_i]$$

Concavity of $f \Rightarrow$ uniqueness of optimizer! Proof by displacement convexity a la McCann '97.

$$n(V - V_{\text{dstr}}) = \inf \left\{ H(\mu \mid P) : \mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n) \right\}$$

Step 1: First-order condition for an optimizer μ^* :

$$rac{d\mu^*}{d\gamma_T} = (1/Z') \exp \sum_{i=1}^n \mathbb{E}_{\mu^*}[f(X) \mid X_i]$$

Concavity of $f \Rightarrow$ uniqueness of optimizer! Proof by displacement convexity a la McCann '97.

Step 2: μ^* is log-concave: $\nabla^2 \log \frac{d\mu^*}{d\gamma_T} \leq 0$

Step 3, the main calculation:

 $P \log - \text{concave} \Rightarrow \log - \text{Sobolev inequality}$:

$$n(V - V_{\text{dstr}}) = H(\mu^* \mid P) \le \frac{T}{2} \mathbb{E}_{\mu^*} \left| \nabla \log \frac{d\mu^*}{dP} \right|^2$$

= ... = $\frac{T}{2} \sum_{i=1}^n \mathbb{E}_{\mu^*} \operatorname{Var}_{\mu^*}(\partial_i f(X) \mid X_i)$

Step 3, the main calculation:

 $P \log - \text{concave} \Rightarrow \log - \text{Sobolev inequality}$:

$$n(V - V_{\text{dstr}}) = H(\mu^* \mid P) \le \frac{T}{2} \mathbb{E}_{\mu^*} \left| \nabla \log \frac{d\mu^*}{dP} \right|^2$$
$$= \dots = \frac{T}{2} \sum_{i=1}^n \mathbb{E}_{\mu^*} \operatorname{Var}_{\mu^*} (\partial_i f(X) \mid X_i)$$

 μ^* log-concave \Rightarrow Poincaré inequality:

$$\leq \operatorname{Var}_{\mu^*}(\partial_i f(X) | X_i) \leq T \sum_{i \neq i} \mathbb{E}_{\mu^*} [|\partial_{ij} f(X)|^2 | X_i]$$

Step 3, the main calculation:

 $P \log$ -concave $\Rightarrow \log$ -Sobolev inequality:

$$n(V - V_{\text{dstr}}) = H(\mu^* \mid P) \le \frac{T}{2} \mathbb{E}_{\mu^*} \left| \nabla \log \frac{d\mu^*}{dP} \right|^2$$

= ... = $\frac{T}{2} \sum_{i=1}^n \mathbb{E}_{\mu^*} \operatorname{Var}_{\mu^*}(\partial_i f(X) \mid X_i)$

 μ^* log-concave \Rightarrow Poincaré inequality:

$$\leq \operatorname{Var}_{\mu^*}(\partial_i f(X) \,|\, X_i) \leq T \sum_{i \neq i} \mathbb{E}_{\mu^*} \big[|\partial_{ij} f(X)|^2 \,|\, X_i \big]$$

Combine with tower property:

$$n(V - V_{\mathrm{dstr}}) \leq T^2 \sum_{1 \leq i < j \leq n} \mathbb{E}_{\mu^*} |\partial_{ij} f(X)|^2$$

Approximate independence

More can be said using μ^* about $P(dx) = (1/Z)e^{f(x)}\gamma_T(dx)$:

▶ Empirical measure is similar under P and μ^* :

$$\mathbb{E}_{\mathbf{P}}\left|\left(\frac{1}{n}\sum_{i=1}^{n}\varphi(X_{i})-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{\mu^{*}}[\varphi(X_{i})]\right)^{2}\right|\leq\frac{T}{n}(1+\sqrt{2RHS})^{2}$$

Approximate independence

More can be said using μ^* about $P(dx) = (1/Z)e^{f(x)}\gamma_T(dx)$:

▶ Empirical measure is similar under P and μ^* :

$$\mathbb{E}_{P}\left[\left(\frac{1}{n}\sum_{i=1}^{n}\varphi(X_{i})-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{\mu^{*}}[\varphi(X_{i})]\right)^{2}\right]\leq\frac{T}{n}(1+\sqrt{2RHS})^{2}$$

$$ightharpoonup rac{1}{n} \sum_{i=1}^{n} \mathcal{W}_{2}^{2}(P_{i}, \mu_{i}^{*}) \leq (2T/n)RHS$$

Back to the control problem

The optimal controls for V and $V_{\rm dstr}$ can be characterized in terms of $P(dx) = (1/Z)e^{f(x)}\gamma_T(dx)$ and μ^* :

- ▶ V: optimal $X = (X^1, ..., X^n)$ is Brownian bridge $0 \to P$
- lacksquare $V_{
 m dstr}$: optimal $X=(X^1,\ldots,X^n)$ is Brownian bridge $0 o\mu^*$:

Brownian bridge $0 \to Q \ll \gamma_T$: The process X with $X_T \sim Q$, and $(X|X_T = x) \sim$ (Brownian bridge from 0 to x over [0, T]).

Corresponding control:

$$\alpha_i(t, x) = \partial_i \log \mathbb{E}[(dQ/d\gamma_T)(W_T) | W_t = x]$$