Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime

James-Michael Leahy, Bekzhan Kerimkulov, David Siska & Lukasz Szpruch

Imperial College London and University of Edinburgh

9th International Colloquium on BSDEs and MF Systems
Entropy regularized Markov decision processes (MDPs)

Value function:

\[
\pi \in \mathcal{P}_\mu(A|S) \mapsto V^\pi_\tau(\rho) = \mathbb{E}^\pi_\rho \sum_{t=0}^{\infty} \gamma^t \left[r(s_t, a_t) - \tau \ln \frac{d\pi}{d\mu}(a_t|s_t) \right]
\]

- \(S \) and \(A \): polish state and action spaces
- \(P \in \mathcal{P}(S|S \times A) \): stochastic transition kernel
- \(\rho \in \mathcal{P}(S) \): arbitrary initial state distribution
- \(r \in B_b(S \times A) \): bounded measurable reward
- \(\gamma \in [0, 1) \): discount factor
- \(\mu \): finite reference measure on \(\mathcal{B}(A) \)
- \(\tau \): reward-based entropy regularization
Soft Bellman equation

Denoting $V^\pi_\tau(s) = V^\pi_\tau(\delta_s)$ for $s \in S$, we define

$$Q^\pi_\tau(s, a) = r(s, a) + \gamma \int_S V^\pi_\tau(s') P(ds'|s, a).$$

Let $V^*(s) = \sup_{\pi} V^\pi(s)$ and define Q^* analogously.

Theorem (τ-entropy regularized DPP)

If $\tau = 0$, the usual Bellman equation holds. If $\tau > 0$, then for all $s \in S$,

$$V^*_\tau(s) = \tau \ln \int_A \exp \left(\frac{Q^*_\tau(s, a)}{\tau} \right) \mu(da)$$

*and $V^*_\tau(\rho) = \int_S V^*(s) \rho(ds)$. Moreover, there is a unique optimal policy*

$$\pi^*_\tau(da|s) = \exp \left(\frac{(Q^*_\tau(s, a) - V^*_\tau(s))/\tau}{\mu(da)} \right).$$
Unknown dynamics or high dimension

What do you do if you don’t know the dynamics or the dimension too large?

- Direct: learn the dynamics and solve Bellman if dimension is low
- Indirect: Q-learning i.e., swap superscript \mathbb{E} to \mathbb{E}^{\sup} and use stochastic approx
- Indirect: policy gradient i.e., parameterize policy
- Indirect: hybrid e.g., actor-critic
- All other approximate dynamic programming [Bertsekas et al., 2011]

If you don’t know the dynamics, you can compare algorithms by their performance on a finite number of “plays or samples” (i.e., regret)
Parameterize policy:

\[J^\tau(\theta) = V_{\tau}^{\pi_{\theta}}(\rho), \quad \text{where} \quad \pi_{\theta}(da|s) \sim \exp(f(s, a, \theta))\mu(da) \]

Policy gradient:

\[\nabla_{\theta} J^\tau(\theta) = \mathbb{E}_{d_{\pi_{\theta}}} \left[\left(Q_{\tau}^{\pi} - \tau \ln \frac{d\pi_{\theta}}{d\mu} \right) \nabla_{\theta} \ln \pi_{\theta} \right] \]

\[d_{\rho}^{\pi_{\theta}}(ds) = \mathbb{E}_{\rho}[(id - \gamma P_{\pi})^{-1}]: \text{occupancy measure} \]

Estimate gradient using rollouts or stochastic approximation of \(Q_{\tau}^{\pi} \)

Policy gradient flow:

\[\dot{\theta}_t = \nabla_{\theta} \hat{J}^\tau(\theta) \]

\(\tau = \tau_t \) helps with exploring AND convergence
Softmax mean-field parameterized policy:

\[\nu \in \mathcal{P}(\mathbb{R}^d) \mapsto \pi_\nu(da|s) \sim \exp \left(\int_{\mathbb{R}^d} f(s, a, \theta) \nu(d\theta) \right) \mu(da) \]

\[f \in L^\infty(S \times A; C^2_b(\mathbb{R}^d)) : \text{smooth parametric family} \]

Neural network mean-field approximation

Let \(S = \mathbb{R}^{d_S}, A = \mathbb{R}^{d_A}, \psi : \mathbb{R} \to [-1, 1] \) smooth,

\[f(s, a, (c, w, b)) = \sum_{k=1}^{K} \psi(c_k) \tanh(\langle w_k, (s, a) \rangle + b_k). \]

For an i.i.d. sample \(\{\theta^{(n)}\}_{n=1}^\infty = \{(c^{(n)}, w^{(n)}, b^{(n)})\}_{n=1}^\infty \) i.i.d. \(\sim \nu, \)

\[\int_{\mathbb{R}^d} f(s, a, \theta) \nu(d\theta) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \psi(c^{(n)}_k) \tanh(\langle w^{(n)}_k, (s, a) \rangle + b^{(n)}_k). \]
Convergence of softmax policy gradient

Tabular: $\pi_\theta(s|a) = \text{softmax}(\theta(s,a))$

- $O(1/\sqrt{t})$-convergence of policy gradient [Agarwal et al., 2021]
- $O(1/t)$-convergence of softmax policy gradient [Mei et al., 2020]
- $O(e^{-ct})$-convergence of entropy-regularized PG [Mei et al., 2020]

Continuous state and action: softmax mean-field π_ν

- if PG flow ν_t converges to ν^* with full support, then $\pi_{\nu^*} = \pi^*_\tau$
 [Agazzi and Lu, 2021]

But does it converge?
Parameter-based entropy regularization

Entropy regularized objective:

\[J_{\tau, \sigma}(\nu) = V_{\tau}^{\pi_{\nu}}(\rho) - \frac{\sigma^2}{2} \text{KL}(\nu|e^{-U}) \]

- **U**: potential on \(\mathbb{R}^d \)
 - bounded 2nd derivative
 - \(\kappa \)-strong convex
 - satisfies \(\int_{\mathbb{R}^d} e^{-U(\theta)} d\theta = 1 \)
 - e.g., \(U(\theta) = \frac{d}{2} \ln(2\pi) + \frac{1}{2} |\theta|^2 \)

- **\sigma**: strength of parameter-based entropy regularization

Goal: compute \(\nu^* \in \max_{\nu} J_{\tau, \sigma}(\nu) \)
Lemma (Lion’s derivative)

For all $\nu \in \mathcal{P}(\mathbb{R}^d)$ and $\theta \in \mathbb{R}^d$,

$$\nabla \frac{\delta J_{\tau,\sigma}}{\delta \nu}(\nu, \theta) = \nabla \frac{\delta V_{\tau}^{\pi_{\nu}}(\rho)}{\delta \nu}(\nu, \theta) - \frac{\sigma^2}{2} (\nabla U(\theta) + \nabla \ln \nu(\theta)),$$

where

$$\nabla \frac{\delta V_{\tau}^{\pi_{\nu}}(\rho)}{\delta \nu}(\nu, \theta) = \frac{1}{1 - \gamma} \mathbb{E}_{\nu} \text{cov}_{\pi_{\nu}} \left(Q_{\tau}^{\pi_{\nu}} - \tau \ln \frac{d\pi_{\nu}}{d\mu}, \nabla f(\theta) \right).$$
Properties of Lion’s derivative

Theorem (Boundedness and Lipschitzness)

There are constants C_k, $k \in \mathbb{N}$, L, and D such that for all $\tau, \tau' \geq 0$, $\theta \in \mathbb{R}^d$, $v, v' \in \mathcal{P}_1(\mathbb{R}^d)$,

$$\left| \nabla^k \frac{\delta J^{\tau,0}}{\delta v}(v, \theta) \right| \leq C_k,$$

$$|J^{\tau,0}(v') - J^{\tau,0}(v)| \leq C_1 W_1(v', v),$$

$$\left| \nabla \frac{\delta J^{\tau,0}}{\delta v}(v', \theta) - \nabla \frac{\delta J^{\tau,0}}{\delta v}(v, \theta) \right| \leq L W_1(v', v),$$

and

$$\left| \nabla \frac{\delta J^{\tau',0}}{\delta v}(v, \theta) - \nabla \frac{\delta J^{\tau,0}}{\delta v}(v, \theta) \right| \leq D |\tau' - \tau|.$$
Policy gradient flow

Theorem (Well-posedness, MKV representation, policy improvement)

For every $\nu_0 \in \mathcal{P}_1(\mathbb{R}^d)$, there exists a unique solution of the policy gradient flow

$$\partial_t \nu_t = -\nabla \cdot \left(\nabla \frac{\delta J^{\tau,\sigma}}{\delta \nu}(\nu_t) \nu_t \right) = -\nabla \cdot \left(\left(\nabla \frac{\delta V^{\tau}_{\nu}(\rho)}{\delta \nu}(\nu_t, \theta_t) - \frac{\sigma^2}{2} \nabla U \right) \nu_t \right) + \frac{\sigma^2}{2} \Delta \nu_t .$$

The solution has a representation $\nu = \text{Law}(\theta)$ as the law of the McKean-Vlasov SDE:

$$\text{d} \theta_t = \left(\nabla \frac{\delta V^{\tau}_{\nu}(\rho)}{\delta \nu}(\nu_t, \theta_t) - \frac{\sigma^2}{2} \nabla U(\theta_t) \right) \text{d}t + \sigma \text{d}W_t .$$

Moreover, along the gradient flow, the regularized optimization objective is increasing

$$\frac{d}{dt} J^{\tau,\sigma}(\nu_t) = \int_{\mathbb{R}^d} \frac{\delta J^{\tau,\sigma}}{\delta \nu}(v_t) \partial_t \nu_t(d\theta) = \int_{\mathbb{R}^d} \left| \nabla \frac{\delta J^{\tau,\sigma}}{\delta \nu}(v_t) \right|^2 v_t(d\theta) \geq 0 .$$
Policy gradient flow approximation

Particle approximation

Approximating $\nu = (\nu_t)_{t \geq 0}$ with an empirical measure $\nu_t^{(N)} = \frac{1}{N} \sum_{n=1}^{N} \delta_{\theta_t^{(n)}}$ and discretizing in time with a learning rate η, we arrive at noisy gradient ascent

$$\theta_{k+1}^{(n)} = \theta_k^{(n)} + \eta \left(\nabla \frac{\delta V_{\pi_{\nu}}(\rho)}{\delta \nu} (\nu_k^{(N)}, \theta_k^{(n)}) - \frac{\sigma^2}{2} \nabla U(\theta_k^{(n)}) \right) + \sqrt{\eta} \sigma \zeta_{k+1}^{(n)},$$

where $\{\zeta_k^{(n)}\}_{1 \leq n \leq N, k \in \mathbb{N}_0} \overset{\text{i.i.d.}}{\sim} N(0, 1)$.
Theorem (Convergence in the regularized regime)

If $\beta := \frac{\sigma^2}{2} \kappa - C_2 - L > 0$, then there exists a unique solution v^* of

$$
\nabla \cdot \left(\nabla \frac{\delta J_{\tau,\sigma}}{\delta v} (v^*) v^* \right) = \nabla \cdot \left(\left(\nabla \frac{\delta J_{\tau,0}}{\delta v} (v^*) - \frac{\sigma^2}{2} \nabla U \right) v^* \right) + \frac{\sigma^2}{2} \Delta v^* = 0
$$

that is the global maximizer v^* of $J_{\tau,\sigma}$ in $\mathcal{P}_2(\mathbb{R}^d)$. Moreover, for all $t \geq 0$,

$$
W_2(v_t, v^*) \leq e^{-\beta t} W_2(v_0, v^*).
$$

where W_2 denotes the Wasserstein-2 distance.
Stability of flow

Theorem (Stability of \(W_2\))

Let \((v_t)_{t \geq 0}\) and \((v'_t)_{t \geq 0}\) be the solutions of the PG flow with parameters and initial data \(\sigma, \tau, v_0\) and \(\sigma', \tau', v'_0\), respectively. Then for all \(\ell > 0\) and \(t \in \mathbb{R}_+\),

\[
W_2^2(v_t, v'_t) \leq e^{-2\beta_t t} W_2^2(v_0, v'_0) + \frac{|\sigma^2 - \sigma'^2|}{8\ell} \int_0^t \int_{\mathbb{R}^d} e^{2\beta_t (s-t)} |\nabla U(\theta)|^2 v'_s(d\theta) \, ds
\]

\[
+ \frac{1}{2\beta_t} \left(D|\tau - \tau'| + d|\sigma - \sigma'|^2 \right) \left(1 - e^{-2\beta_t t} \right),
\]

where \(\beta_t := \frac{\sigma^2}{2} \kappa - C_2(\tau) - L(\tau) - \ell|\sigma^2 - \sigma'^2|\). Moreover, if \(\beta := \frac{\sigma^2}{2} \kappa - C_2(\tau) - L(\tau) > 0\) and \(v^*\) and \(v'^*\) are stationary solutions with \(\sigma, \tau\) and \(\sigma', \tau'\), respectively, then for all \(\ell > 0\) such that \(\beta_t = \beta - \ell|\sigma^2 - \sigma'^2| > 0\), we have

\[
W_2^2(v^*, v'^*) \leq \frac{|\sigma^2 - \sigma'^2|}{16\ell \beta_t} \int_{\mathbb{R}^d} |\nabla U(\theta)|^2 v'^*(d\theta) + \frac{1}{2\beta_t} \left(D|\tau - \tau'| + d|\sigma - \sigma'|^2 \right).
\]
Conclusion

We:

- proved the convergence of PG for continuous state and actions provided we add enough regularization
- quantified bias introduced by τ, σ-regularization

What is next:

- relaxing regularization strength by establishing non-local Łojasiewicz inequality
- study full learning setting (e.g., actor-critic or reinforce)

