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Entropy regularized Markov decision processes (MDPs)

Value function:

7 € F(AlS) — V](p) = E} Z v [r(st,at) = r-]
t=0

S and A: polish state and action spaces
P € P(S|S x A): stochastic transition kernel
p € P(S): arbitrary initial state distribution

r € By(S x A): bounded measurable reward
y € [0,1): discount factor

: finite reference measure on % (A)

© © © © @ @ ©

7: reward-based entropy regularization
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Soft Bellman equation

Denoting V7 (s) = V7 (J;) for s € S, we define
F5.0) = r(s.0) +y [ VPS50,
5]

Let V*(s) = sup, V*(s) and define Q* analagously.

If T = 0, the usual Bellman equation holds. If T > 0, then for all s € S,

Vi(s)=rln L exp (Q:(s,a)/7) p(da)

and V' (p) = [ V*(s)p(ds). Moreover, there is a unique optimal policy

7 (dals) = exp ((Q; (s, @) — V7 (5))/7) pu(da)
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Unknown dynamics or high dimension

What do you do if you don’t know the dynamics or the dimension too large?

©® direct: learn the dynamics and solve Bellman if dimension is low

©® indirect: Q-learning i.e., swap sup E to E sup and use stochastic approx
® indirect: policy gradient i.e., parameterize policy

® indirect: hybrid e.g., actor-critic

© all other approximate dynamic programming [Bertsekas et al., 2011]

If you don’t know the dynamics, you can compare algorithms by their
performance on a finite number of “plays or samples” (i.e., regret)
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Policy gradient in a nutshell

Parameterize policy:

J() =V"(p), where my(dals) ~ exp(f(s,a,0))u(da)

Policy gradient:
d
VgJ"(0) = E m [(Qf —7ln ﬁ) \/ lnnp]
P du

dg‘g(ds) =E,[(id —yP™)71]: occupancy measure
Estimate gradient using rollouts or stochastic approximation of Q7
Policy gradient flow:
6 = Vo] (0)

7 = 1 helps with exploring AND convergence
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Softmax mean-field parameterized policy

Softmax parameterized policy:

ve PRY) —s ,(dals) ~ exp <J]Rd f(s,a, 9)v(d0)) u(da)

©® feL®(SxA; Cf(le)): smooth parametric family

Let S=R%, A=R%, ¢ : R — [-1,1] smooth,

K
f(s,a,(c,w,b)) = Z () tanh({wy, (s, a)) + by) .
k=1

- o Dyeo iid.
For an i.i.d. sample {812, = {(c™, w®™, pM)}> "<y,

N

K
Ld £(5,0,00(d0) = lim — 3" 3" (") tanh((wf”, (5,@)) + ).

N

n=1 k=1
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Convergence of softmax policy gradient

Tabular: my(sla) = softmax(60(s, a))

® O(1/+/t)-convergence of policy gradient [Agarwal et al., 2021]
©® O(1/t)-convergence of softmax policy gradient [Mei et al., 2020]
® O(e)-convergence of entropy-regularized PG [Mei et al., 2020]

Continuous state and action: softmax mean-field 7,

® if PG flow v; converges to v* with full support, then m,« = 7}
[Agazzi and Lu, 2021]

But does it converge?
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Parameter-based entropy regularization

Entropy regularized objective:
2
7,0 v _ o
7706 =7 ) - &

©® U: potential on R4
- bounded 2nd derivative
» K-strong convex
- satisfies [ eV @d0 =1
+ eg, U(0) = 4In(2r) + 1|0
® o: strength of parameter-based entropy regularization

Goal: compute v* € max, J"?(v)
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Policy gradient: the Lion’s derivative

For allv € (R?) and 6 € R?,

5]’“ 5Vr (p)

(1 0) = v, 0)— — (VU(Q) + Vinv(0)) ,

5VT (p)

dr,
(v,0) = Egr cov, (Q:‘ —7ln i, Vf(9)> .
— y ' du

sl 16



Properties of Lion’s derivative

There are constants C, k € N, L, and D such that for allt,7" > 0,0 € R, v,v" € (%(]Rd),

7,0
WL ,0) <,

UT’O(V )= ]T’O(V)‘ <CW(v,v),

‘ 5]10 5]10

W,0) -V W, 0)| < Lw,(v',v),

]T ,0 JTO

and |V

v,0) -V (v9)<D|T —1.




Policy gradient flow

For every v, € F(R?), there exists a unique solution of the policy gradient flow

a[V, _ < (S]TU(V[)V[) _ (( 5Vr (P)( t,e) _ZVU> V[> RS %ZAV[ .

The solution has a representation v = Law(0) as the law of the McKean-Vlasov SDE:

5VT”"
a6, - (VJ
ov

2
(,6) — %vu(@g) dt + odW, .

Moreover, along the gradient flow, the regularized optimization objective is increasing

]TU ]TU

9 oy = [ 7 oomany = [ 22| w20
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Policy gradient flow approximation

Particle approximation

L . . N
Approximating v = (4),so With an empirical measure V[(N) =3 P 59;,1» and

discretizing in time with a learning rate n, we arrive at noisy gradient ascent

5Vr
(n) _ (n) 4 I’]( 5 (P)

2
i 0,67~ VU(GZ;"))) + oG

(n) i.id.
where {ékn }lSnSN,kEJNO -~ N(O’ 1)~
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Convergence of entropy-regularized policy gradient

Ifp := —lc —C, — L > 0, then there exists a unique solution v* of

V- < 5Jm(v) ) (( 5]70( )——VU) )+§AV*:0

that is the global maximizer v* of J*° in %(R%). Moreover, for allt > 0,
Wy(n, v*) < eiﬁtWZ(VOsV*)-

where W, denotes the Wasserstein-2 distance.
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Stability of flow

Let (V)0 and (V/);>o be the solutions of the PG flow with parameters and initial data
0,7,V and a’, 7', vy, respectively. Then for all£ > 0 andt € R,
0* —a

’2 t
L[] ereomu@pan s
Rd

WZZ(Vt’ V) < eizﬁ'tWZZ(Vo’ ) + 30
0

+ L (DIt —7'| +dlo —o’]?) (1 - e Ay,
2P,

where f, := G,—:K — Cy(t) — L(z) — tJo? — 6”%|. Moreover, if B := %ZK —C(r)—L(r) >0
andv* andv'* are stationary solutions with o, and ¢’,7’, respectively, then for all £ > 0
such that B, = B —t|lo* — 0’*| > 0, we have

o2

. o — o’
Wi, v™) < |

; 1
— VU@)*v'*(d0) + — (D|r — 7’| + dlo — o’|?) .
o [ U @Fv @) + o (Dt = 1+ d —o'F)
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Conclusion

We:

©® proved the convergence of PG for continuous state and actions provided
we add enough regularization

©® quantified bias introduced by 7, o-regularization
What is next:

® relaxing regularization strength by establishing non-local Lojasiewicz
inequality

©® study full learning setting (e.g., actor-critic or reinforce)
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