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Mean Field Games: Introduction – ( 1 )

I When ? Introduced by Lasry-Lions (2006, Jpn. J. Math.) and
Huang-Caines-Malhamé (2006, C.I.S.).

I An illustrative game: the N-player game

X N,i
t = X N,i

0 +

∫ t

0
b(s,X N,i

s , µN
s , α

N,i
s ) ds + σW N,i

t , X N,i
t ∈ Rd , t ∈ [0,T ] (1)

where:

(t , ω) 7→ µN
t,ω(·) .

=
1
N

N∑
i=1

δX N,i
t,ω

(·) ∈ P(Rd ) empirical distribution

αN .
= (αN,1, . . . , αN,i , . . . , αN,N) strategy vector

JN,i (αN)
.

= E

[∫ T

0
f (s,X N,i

s , µN
s , α

N,i
s ) ds + F (T ,X N,i

T )

]
cost

I (Main) Characteristics : It is a non-zero sum, symmetric game where
the interaction is of mean-field type, i.e. via the empirical distribution of
the players.
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Mean Field Games: Introduction – ( 2 )

I Closely related to non-atomic games, anonymous games (e.g.
Aumann, Schmeidler, Jovanovic, Rosenthal, . . .)

I Main Idea :
( 1 ) N-player symmetric games, N large →

N→∞
MFGs (∞ players).

( 2 ) N-players interacting through their average behaviour →
N→∞

"one

representative player" interacting with the distribution of the
population.

I Receipe :
( 1 ) Pass to the limit MFG first
( 2 ) Study the equilibria in the limit problem.
( 3 ) Use those equilibria as approximation of the equilibria in the

pre-limit problem (N-fixed).
I Approaches :

( 1 ) PDE: Lasry, Lions, Cardaliaguet, Achdou, Guéant, Gomes,
Porretta, Bardi, . . ..

( 1 ) Probability via BSDE: Bensoussan, Carmona, Delarue,
Kolokoltsov, Lacker, . . ..
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Mean Field Games: Introduction – ( 3 )

I An illustrative game: the MFG

Xt = X0 +

∫ t

0
b(s,Xs, µs, αs) d s + σWt , Xt ∈ Rd t ∈ [0,T ], (2)

where:

t 7→ µt (·) ∈ P(Rd ) flow of measures
α control

Jµ(α)
.

= E

[∫ T

0
f (s,Xs, µs, αs) ds + F (T ,XT )

]
cost

I Applications : Social sciences (economics, finance, crowd dynamics
. . .) and engineering . . . However . . .
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Beyond the MFG interactions – ( 1 )

I In many practical situations (e.g., in evacuation planning and crowd
management at mass gatherings), a single person interacts only with
the few people in the surrounding environment.
Click on the picture below.

I Mathematically : If x , y ∈ Rd denote the positions of two individuals
(out of a population of N), then their interaction can be modelled by

N−1 V N(x − y),

with V N(z) = NβV (Nβ/dz), β ∈ (0,1) and V is a sufficiently regular
probability density function. (Oelschläger (Probab. Theory Relat.
Fields, 1985)).

I We speak in this case of Moderate Interactions. 8/26
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Moderately Interacting Particles – Heuristic ( 1 )

I The strength of interaction between two processes X N,i
t and X N,`

t ,
i 6= `, is measured by:

1
N

V N(X N,i
t − X N,`

t ) =
1
N

NβV (Nβ/d (X N,i
t − X N,`

t )), β ∈ (0,1).

( a ) If β = 0, then the strength of interaction is of order 1/N, whereas
the number of different processes X N,i

t interacting with one given
process is of order N. In this situation we speak of "weakly"
interacting processes.

( b ) If β = 1, then the strength of interaction is of order 1, whereas the
processes interact when their distance is of order N−1/d . In this
situation we speak of "strongly" interacting processes.

( c ) If β ∈ (0,1), then the volume of the region of space where the
presence of a process X N,i

t has an influence on the motion of a
given process X N,`

t is of order N−β , whereas the number of those
processes being in the domain of interaction with X N,i

t is ∼ N1−β .
In this situation we speak of "mederately" interacting processes.
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Moderately Interacting Particles – Contribution ( 1 )

I Consider for a fixed α ∈ Cb([0,T ]× Rd·N ;Rd ) the following dynamics

X N,i
t = X N,i

0 +

∫ t

0

α (s,XN
s
)

+ b

X N,i
s ,

1
N

N∑
j=1

V N(X N,i
s − X N,j

s )

 ds + W N,i
t

(3)

( a ) XN
s =

(
X N,1

s , . . . ,X N,N
s

)
and W N,1

t , . . . ,W N,N
t are independent

Wiener processes defined on (Ω,F , (Ft ),P) sat. usu. cond..
( b ) X N,i

0 are i.i.d. F0-measurable r.v. with law µ0 ∈ P(Rd ) a.c. w.r.t.
Lebesgue measure on Rd with density p0 ∈ Cb(Rd ) such that∫
Rd eλ|x|p0(x) dx <∞.

( c ) V N(x) = NβV (N
β
d x), x ∈ Rd with V ∈ C1

c (Rd ) ∩ P(Rd ),
β ∈ (0,1/2).

( d ) b Borel measurable, continuous : there exist two constants
C,L > 0 : |b(x ,p)| ≤ C, |b(x ,p)− b(y ,q)| ≤ L(|p − q|).

I Question : What is the structure of the possible limits of the empirical
process SN

t = 1
N

∑N
`=1 δX N,`

t
? Henceforth: SN = (SN

t )t∈[0,T ].11/26



Moderately Interacting Particles – Contribution ( 2 )
Theorem (Moderately interacting particles)
Under the assumptions in the previous slide we have:

( i ) The sequence of laws (L(SN))N∈N converges weakly in
P(C([0,T ];P(Rd )) to δµ ∈ P(C([0,T ];P(Rd )) for a flow of probability
measures µ ∈ C([0,T ];P(Rd )); hence also SN converges in
probability to µ.

( ii ) For each t ∈ [0,T ], µt is absolutely continuous w.r.t. the Lebesgue
measure on Rd , with density p(t , · ); the flow of density functions
satisfies p ∈ Cb([0,T ]× Rd ) and it is the ! sol. in this space of

p(t) = Ptp(0) +

∫ t

0
∇Pt−s(p(s)(α(s) + b( · ,p(s)))) ds, (4)

where Pt is defined on functions h ∈ Cb(Rd ) as

(Pth)(x) =

∫
Rd

G(t , x − y)h(y) dy (5)

with G(t , x − y) the density x + Wt . 12/26



Moderately Interacting Particles – Contribution ( 3 )

I Observation : The previous theorem represents a version of the
superb result of Oelschläger (Probab. Theory Relat. Fields, 1985) on
the macroscopic limit of moderately interacting particles. He did not
assume µ0 a.c., but he had a more strict Lipschitz condition on the drift.

I Main steps of the proof :
( a ) Tightness of the laws (L(SN))N∈N and (L(V N ∗ SN))N∈N in

P(C([0,T ];P(Rd )).
( b ) Estimates (Hölder-type Seminorm Bounds) for the regularized

empirical measure.
Nota : Non-trivial since we work on the full space and not on
bounded set (for which we could have used the
Kolmogorov-Chentsov criterion).

( d ) Characterization of the limits: all the possible limits are a random
solution of:

p(t) = Ptp(0) +

∫ t

0
∇Pt−s(p(s)(α(s) + b( · ,p(s)))) ds, (6)

with the required regularity.
( e ) Uniqueness of the solutions.
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N-player dynamics – ( 1 )

I Let N ∈ N be the number of players and T > 0 be the finite horizon.
I Given a vector α := (αN,1, . . . , αN,N) of Rd -valued feedback strategies

with full state information that are uniformly bounded by some constant
C > 0, henceforth AN,fb

C , the players’ states evolve for
t ∈ [0,T ], i ∈ [[N]] as

X N,i
t = X0

N,i +

∫ t

0

(
α(s,X N

s ) + b
(

X N,i
s ,

1
N

N∑
j=1

V N(X N,i
s − X N,j

s )
))

ds + W N,i
t ,

(7)

( 1 ) X N
t = (X N,1

t , . . . ,X N,N
t ) and W N,1, . . . ,W N,N are ind. Wiener processes

on (Ω,F , (Ft ),P), which satisfies the usual conditions.

( 2 ) X N,i
0 are i.i.d. F0-measurable random variables, each with law

µ0 ∈ P(Rd ) and independent of the Wieners.

( 3 ) V N( · ) captures the interaction of moderate type among the players.15/26



N-player costs – ( 1 )

I Player i evaluates α ∈ AN,fb
C according to the cost functional

JN
i (αN)

.
= E

[∫ T

0

(
1
2
|α(s,X N

s )|2 + f
(

X N,i
s ,

1
N

N∑
j=1

V N(X N,i
s − X N,j

s )
))

ds + g(X N,i
T )

]
,

(8)

where X N
t = (X N,1

t , . . . ,X N,N
t ) and ((Ω,F , (Ft ),P),W N ,X N) is a

solution of Eq. (7) under µN
0 .

I (Possible) interpretation :
( 1 ) |α(s,X N

s )|2 penalizes the usage of energy.
( 2 ) V N(X N,i

s − X N,j
s ) penalizes trajectories passing through densely

crowded areas.
( 3 ) g(X N,i

T ) penalizes deviation from specific target regions.

I Goal : Construction of approximate Nash equilibria for the N-player
game via the solution of the corresponding MFG.
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Assumptions – ( 1 )

(H1) b and f are Borel measurable functions, continuous and such that
there exist two constants C,L > 0 for which it holds that

|b(x ,p)|+ |f (x ,p)| ≤ C,
|b(x ,p)− b(y ,q)|+ |f (x ,p)− f (y ,q)| ≤ L(|x − y |+ |p − q|)

for all x , y ∈ Rd , p,q ∈ R+.

(H2) g is a Borel measurable function such that g, ∂xi g ∈ Cb(Rd ),
i = 1, . . . ,d .

(H3) For each N ∈ N, for some β ∈ (0,1/2) and some V ∈ C1
c(Rd ) ∩ P(Rd )

we have
V N(x)

.
= NβV (N

β
d x), x ∈ Rs.

(H4) For N ∈ N, the random variables ξi , i ∈ [[N]], are F0-measurable with
law µ0 ∈ P(Rd ) absolutely continuous with respect to the Lebesgue
measure on Rd and with density p0 ∈ Cb(Rd ) satisfying the following
condition: ∫

Rd
eλ|x|p0(x) dx <∞

for all λ > 0.
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PDE approach to MFGs : formulation – ( 1 )

I Let T > 0 be the finite time horizon and b, f ,p0,g as before.
−∂tu − 1

2 ∆u − b(x ,p(t , x)) · ∇u + 1
2 |∇u|2 = f (x ,p(t , x)), (t , x) ∈ [0,T )× Rd ,

∂tp − 1
2 ∆p + div[p(t , x)(−∇u(t , x) + b(x ,p(t , x)))] = 0, (t , x) ∈ (0,T ]× Rd ,

p(0, · ) = p0( · ) x ∈ Rd , u(T , · ) = g( · ), x ∈ Rd ,

(9)
for all (x ,p) ∈ Rd × R+.

I Observations :
( 1 ) The PDE MFG system is of local type with the dependence on

the local density p(t , x) appearing both on the dynamics and on
the running cost.

( 2 ) The state-space is Rd .
I In the next slide we define what we mean with weak solution of the

previous system; in the paper, you can find the proof of the
equivalence between the weak and the mild solution.
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PDE approach to MFGs : notion of solution – ( 1 )
Definition (MFG solution, PDE formulation)
A weak solution of the PDE system is a pair (u,p) such that:

(i) u, ∂iu and p ∈ Cb([0,T ]× Rd ) for all i ∈ [[ d ]];

(ii) for all ϕ,ψ ∈ C1,2
c ([0,T ]× Rd ) and all t ∈ [0,T ] the following two

equations

〈u (t) , ϕ (t)〉 − 〈g, ϕ (T )〉+

∫ T

t
〈u (s) ,Aϕ (s)〉ds

=

∫ T

t

〈
b( · ,p(s)) · ∇u (s)− 1

2
|∇u (s)|2 + f ( · ,p(s)), ϕ (s)

〉
ds,

(10)

〈p (t) , ψ (t)〉 − 〈p0, ψ (0)〉 −
∫ t

0
〈u (s) ,Aψ (s)〉ds

=

∫ t

0
〈p(s)(−∇u(s) + b( · ,p(s))),∇ψ (s)〉ds.

(11)

hold. 19/26



PDE approach to MFGs: Existence and Uniqueness
– ( 1 )

I By using Hopf-Cole transform for quadratic Hamiltonians, we consider
the following auxiliary system:

∂tw + 1
2 ∆w + b(x ,p(t , x)) · ∇w = w f (x ,p(t , x)), (t , x) ∈ [0,T )× Rd ,

∂tp − 1
2 ∆p + div

[
p(t , x)

(∇w
w + b(x ,p(t , x))

)]
= 0, (t , x) ∈ (0,T ]× Rd ,

p(0, · ) = p0( · ) x ∈ Rd , w(T , · ) = exp(−g( · )), x ∈ Rd .

(12)
I and we give the following:

Definition (MFG solution, PDE formulation - I)
Let p0 ∈ Cb

(
Rd
)

a given probability density and g ∈ Cb
(
Rd
)
, also given. A

weak solution of the PDE system (12) is a pair (w ,p) such that w , ∂iw and
p ∈ Cb

(
[0,T ]× Rd

)
for all i ∈ [[d ]], w (t , x) ≥ e−(‖g‖∞+T‖f‖∞) and the

system is satisfied in the weak sense as in the definition given in the
previous slide.
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PDE approach to MFGs: Existence and Uniqueness
– ( 2 )

I Additional (non restrictive) assumption for the global existence:
(H5) There exists a continuous function ρ : Rd → (0,∞) such that

lim
‖x‖→∞

ρ (x) = 0 and p0 (x) ≤ ρ (x)

for all x ∈ Rd . Moreover p0 ∈ Cαb (Rd ) for some α > 0 and
ρ−1 ∈ C2 (Rd

)
with

∥∥∆ρ−1
∥∥
∞ +

∥∥∇ρ−1
∥∥
∞ <∞.

Theorem (Existence)
There exists a weak solution (w ,p) on [0,T ] of system (12). Moreover, the
pair

(u,p)
.

= (− log w ,p)

is a weak solution of the system (9).

Theorem (Local well posedness)
There exists a unique weak (or mild) solution of the MFG system (10)-(11),
for T sufficiently small.
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Open-loop MFG with given density – ( 1 )

( i ) We denote by AK the set of admissible open-loop controls for the
MFG, which is defined as the set of tuples (Ω,F , (Ft ),P,X ,W , α)
where α = (α(t))t∈[0,T ] is Ft -progressively measurable, continuous and
bounded by K a.s. for all t ∈ [0,T ], while (Ω,F , (Ft ),P,X ,W ) is a
weak solution of

Xt = X0 +

∫ t

0
(α(s) + b(Xs,p(s,Xs))) ds + Wt , t ∈ [0,T ] (13)

where X0
d∼ µ0, having density p0, is independent of the Ft -Wiener

process W .

( ii ) We consider the following cost functional

J(α)
.

= E

[∫ T

0

1
2
|α(s)|2 + f (Xs,p(s,Xs)) ds + g(XT )

]
(14)

and we say that α∗ .= (α∗(t))t∈[0,T ] ∈ AK is an optimal control if it is a
minimizer of J over AK , i.e. if J(α∗) = infα∈AK J(α).

Notation : We will denote by OC this Optimal Control problem.
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Open-loop MFG with given density – ( 2 )
Definition (MFG solution, stochastic open-loop formulation)
Let T > 0 be the finite time horizon and b, f ,p0,g as in (H1)-(H2) and (H4).
Then a open-loop MFG solution for bound K > 0 is a pair (α∗,p) such that:

(i) p ∈ Cb([0,T ]× Rd ) and α∗ ∈ AK , α∗ standing for the full tuple:

(Ω,F , (Ft ),P,X ,W , α∗);

(ii) Given p ∈ Cb([0,T ]× Rd ), α∗ ∈ AK is an optimal control for problem
OC (in the sense of item (ii) above);

(iii) (Ω,F , (Ft ),P,X ,W ) is a weak solution of Eq.(13) such that Xt has law
µt with density p(t , ·) for every t ∈ [0,T ].

Observation : The minimization problem over feedback and open-loop
controls are equivalent from the point of view of the value function (El
Karoui et al. (1987), Stochastics).
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Open-loop MFG with given density – ( 3 )

Theorem (Verification Theorem)
Consider the PDE system in Eq. (9) and let (u,p) be a weak (or mild)
solution. Consider the optimal control problem OC as in Definition 6-(iii) and
set α∗(t) = α∗(t , x)

.
= −∇u(t , x). Then,

(i) α∗ is an optimal control for OC;

(ii) for any weak solution (Ω,F , (Ft ),P,X ∗,W ) of Eq. (13) with
α(s) = α∗(s,X ∗s ), the state X ∗t has law µ∗t with density p(t , · ) for every
t ∈ [0,T ].

Observation : In our case, the value function of the representative player is
not “regular enough", and so, in order to apply Itô formula, some work
based on standard mollification arguments needed.
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Approximate Nash equilibria from the MFG – ( 1 )
Theorem
Let N ∈ N, N > 1. Grant (H1)-(H4). Suppose (u,p) is a weak solution of the
PDE system in Eq. ( 1 ) and let α∗(t , x)

.
= −Ou(t , x) the optimal control of

the problem OC in the class Afb
K with K given by

K (T ,b, f ,p0,g)
.

= supt∈[0,T ],x∈Rd |∇u (t , x)| and AN,fb
K the set of all vectors

αN of feedback strategies for the N-player game that are uniformly bounded
by K > 0. Set

αN,i (t ,x)
.

= α∗(t , xi )
.

= −Ou(t , xi ), t ∈ [0,T ], x = (x1, . . . , xN) ∈ Rd×N , i ∈ [[N]]

and αN = (αN,1, . . . , αN,N)∈ AN;fb
K . Then for every ε > 0, there exist

N0 = N0(ε) ∈ N such that αN is an ε-Nash equilibrium for the N-player
game whenever N ≥ N0.

I Observations :
( 1 ) Proof based on (standard) weak convergence arguments and

controlled martingale problems.
( 2 ) Main difficulty is the presence of a deviating player which destroys

the prelimit systems’ symmetry: usage of relaxed controls.25/26



Thank you for your attention.
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