N-player games and mean field games of moderate interactions

Franco Flandoli¹, Maddalena Ghio¹, Giulia Livieri¹

Annecy (France) - from June 27 to July 01, 2022

The 9th International Colloquium on BSDEs and Mean Field Systems

Outline

Mean Field Games

Beyond the MFG interactions: A Motivational Example

Moderately Interacting Particles

N-player games and Mean Field Games with Moderate Interaction

Mean Field Games

Mean Field Games

Beyond the MFG interactions: A Motivational Example

Moderately Interacting Particles

N-player games and Mean Field Games with Moderate Interaction

Mean Field Games: Introduction -(1)

- When? Introduced by Lasry-Lions (2006, Jpn. J. Math.) and Huang-Caines-Malhamé (2006, C.I.S.).
- An illustrative game: the *N*-player game

$$X_t^{N,i} = X_0^{N,i} + \int_0^t b(s, X_s^{N,i}, \mu_s^N, \alpha_s^{N,i}) \, ds + \sigma W_t^{N,i}, \quad X_t^{N,i} \in \mathbb{R}^d, \ t \in [0, T]$$
(1)

where:

J

$$(t,\omega) \mapsto \mu_{t,\omega}^{N}(\cdot) \doteq \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t,\omega}^{N,i}}(\cdot) \in \mathcal{P}(\mathbb{R}^{d}) \qquad \text{empirical distribution}$$
$$\boldsymbol{\alpha}^{N} \doteq (\alpha^{N,1}, \dots, \alpha^{N,i}, \dots, \alpha^{N,N}) \qquad \text{strategy vector}$$
$$^{N,i}(\boldsymbol{\alpha}^{N}) \doteq \mathbb{E}\left[\int_{0}^{T} f(\boldsymbol{s}, X_{s}^{N,i}, \mu_{s}^{N}, \alpha_{s}^{N,i}) \, d\boldsymbol{s} + F(T, X_{T}^{N,i})\right] \text{cost}$$

(Main) Characteristics: It is a non-zero sum, symmetric game where the interaction is of mean-field type, i.e. via the empirical distribution of the players.

Mean Field Games: Introduction -(2)

- Closely related to non-atomic games, anonymous games (e.g. Aumann, Schmeidler, Jovanovic, Rosenthal, ...)
- Main Idea :
 - (1) *N*-player symmetric games, *N* large $\xrightarrow[N \to \infty]{}$ MFGs (∞ players).
 - (2) *N*-players interacting through their average behaviour $\xrightarrow[N \to \infty]{}$ "one representative player" interacting with the distribution of the population.
- Receipe :
 - (1) Pass to the limit MFG first
 - (2) Study the equilibria in the limit problem.
 - (3) Use those equilibria as approximation of the equilibria in the pre-limit problem (*N*-fixed).
- Approaches :
 - (1) PDE: Lasry, Lions, Cardaliaguet, Achdou, Guéant, Gomes, Porretta, Bardi,
 - (1) Probability via BSDE: Bensoussan, Carmona, Delarue, Kolokoltsov, Lacker,

Mean Field Games: Introduction -(3)

An illustrative game: the MFG

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s, \alpha_s) ds + \sigma W_t, \quad X_t \in \mathbb{R}^d t \in [0, T], \quad (2)$$

where:

$$t \mapsto \mu_t(\cdot) \in \mathcal{P}(\mathbb{R}^d)$$
flow of measures

$$\alpha$$
control

$$J^{\mu}(\alpha) \doteq \mathbb{E}\left[\int_0^T f(s, X_s, \mu_s, \alpha_s) \, ds + F(T, X_T)\right]$$
cost

Applications : Social sciences (economics, finance, crowd dynamics ...) and engineering ... However ...

Beyond the MFG interactions: A Motivational Example

Mean Field Games

Beyond the MFG interactions: A Motivational Example

Moderately Interacting Particles

N-player games and Mean Field Games with Moderate Interaction

Beyond the MFG interactions -(1)

In many practical situations (e.g., in evacuation planning and crowd management at mass gatherings), a single person interacts only with the few people in the surrounding environment. Click on the picture below.

Mathematically: If $x, y \in \mathbb{R}^d$ denote the positions of two individuals (out of a population of *N*), then their interaction can be modelled by

$$N^{-1} V^N(x-y),$$

with $V^N(z) = N^{\beta}V(N^{\beta/d}z)$, $\beta \in (0, 1)$ and *V* is a sufficiently regular probability density function. (Oelschläger (Probab. Theory Relat. Fields, 1985)).

We speak in this case of Moderate Interactions. 8/26

Moderately Interacting Particles

Mean Field Games

Beyond the MFG interactions: A Motivational Example

Moderately Interacting Particles

N-player games and Mean Field Games with Moderate Interaction

Moderately Interacting Particles – Heuristic (1)

The strength of interaction between two processes X^{N,i} and X^{N,ℓ}, i ≠ ℓ, is measured by:

$$\frac{1}{N}V^{N}(X_{t}^{N,i}-X_{t}^{N,\ell})=\frac{1}{N}N^{\beta}V(N^{\beta/d}(X_{t}^{N,i}-X_{t}^{N,\ell})), \quad \beta \in (0,1).$$

- (a) If $\beta = 0$, then the strength of interaction is of order 1/N, whereas the number of different processes $X_t^{N,i}$ interacting with one given process is of order *N*. In this situation we speak of "weakly" interacting processes.
- (b) If $\beta = 1$, then the strength of interaction is of order 1, whereas the processes interact when their distance is of order $N^{-1/d}$. In this situation we speak of "strongly" interacting processes.
- (c) If $\beta \in (0, 1)$, then the volume of the region of space where the presence of a process $X_t^{N,\ell}$ has an influence on the motion of a given process $X_t^{N,\ell}$ is of order $N^{-\beta}$, whereas the number of those processes being in the domain of interaction with $X_t^{N,i}$ is $\sim N^{1-\beta}$. In this situation we speak of "mederately" interacting processes.

Moderately Interacting Particles – Contribution (1)

▶ Consider for a fixed $\alpha \in C_b([0, T] \times \mathbb{R}^{d \cdot N}; \mathbb{R}^d)$ the following dynamics

$$X_{t}^{N,i} = X_{0}^{N,i} + \int_{0}^{t} \left(\alpha \left(\boldsymbol{s}, \boldsymbol{X}_{s}^{N} \right) + b \left(X_{s}^{N,i}, \frac{1}{N} \sum_{j=1}^{N} V^{N} (X_{s}^{N,i} - X_{s}^{N,j}) \right) \right) \, d\boldsymbol{s} + W_{t}^{N,i}$$
(3)

- (a) X_s^N = (X_s^{N,1},...,X_s^{N,N}) and W_t^{N,1},..., W_t^{N,N} are independent Wiener processes defined on (Ω, F, (F_t), ℙ) sat. usu. cond..
 (b) X₀^{N,i} are *i.i.d.* F₀-measurable r.v. with law μ₀ ∈ P(ℝ^d) a.c. w.r.t. Lebesgue measure on ℝ^d with density p₀ ∈ C_b(ℝ^d) such that ∫_{ℝ^d} e^{λ|x|}p₀(x) dx < ∞.
- (c) $V^N(x) = N^{\beta} V(N^{\frac{\beta}{d}} x), x \in \mathbb{R}^d \text{ with } V \in C^1_c(\mathbb{R}^d) \cap \mathcal{P}(\mathbb{R}^d), \beta \in (0, 1/2).$
- (d) *b* Borel measurable, continuous : there exist two constants C, L > 0 : $|b(x, p)| \le C$, $|b(x, p) b(y, q)| \le L(|p q|)$.
- Question : What is the structure of the possible limits of the empirical process $S_t^N = \frac{1}{N} \sum_{\ell=1}^N \delta_{X_t^{N,\ell}}$? Henceforth: $S^N = (S_t^N)_{t \in [0, T]}^{1/26}$.

Moderately Interacting Particles – Contribution (2) Theorem (Moderately interacting particles)

Under the assumptions in the previous slide we have:

- (i) The sequence of laws (L(S^N))_{N∈N} converges weakly in P(C([0, T]; P(ℝ^d)) to δ_μ ∈ P(C([0, T]; P(ℝ^d)) for a flow of probability measures μ ∈ C([0, T]; P(ℝ^d)); hence also S^N converges in probability to μ.
- (ii) For each $t \in [0, T]$, μ_t is absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R}^d , with density $p(t, \cdot)$; the flow of density functions satisfies $p \in C_b([0, T] \times \mathbb{R}^d)$ and it is the ! sol. in this space of

$$p(t) = \mathcal{P}_t p(0) + \int_0^t \nabla \mathcal{P}_{t-s}(p(s)(\alpha(s) + b(\cdot, p(s)))) \, ds, \qquad (4)$$

where \mathcal{P}_t is defined on functions $h \in C_b(\mathbb{R}^d)$ as

$$(\mathcal{P}_t h)(x) = \int_{\mathbb{R}^d} G(t, x - y) h(y) \, dy \tag{5}$$

with G(t, x - y) the density $x + W_t$.

Moderately Interacting Particles – Contribution (3)

- Observation : The previous theorem represents a version of the superb result of Oelschläger (Probab. Theory Relat. Fields, 1985) on the macroscopic limit of moderately interacting particles. He did not assume µ₀ a.c., but he had a more strict Lipschitz condition on the drift.
- Main steps of the proof :
 - (a) Tightness of the laws $(\mathcal{L}(S^N))_{N \in \mathbb{N}}$ and $(\mathcal{L}(V^N * S^N))_{N \in \mathbb{N}}$ in $\mathcal{P}(C([0, T]; \mathcal{P}(\mathbb{R}^d)))$.
 - (b) Estimates (Hölder-type Seminorm Bounds) for the regularized empirical measure.

Nota: Non-trivial since we work on the full space and not on bounded set (for which we could have used the Kolmogorov-Chentsov criterion).

(d) Characterization of the limits: all the possible limits are a random solution of:

$$p(t) = \mathcal{P}_t p(0) + \int_0^t \nabla \mathcal{P}_{t-s}(p(s)(\alpha(s) + b(\cdot, p(s)))) \, ds, \quad (6)$$

with the required regularity.(e) Uniqueness of the solutions.

13/26

N-player games and Mean Field Games with Moderate Interaction

Mean Field Games

Beyond the MFG interactions: A Motivational Example

Moderately Interacting Particles

N-player games and Mean Field Games with Moderate Interaction

N-player dynamics – (1)

Let $N \in \mathbb{N}$ be the number of players and T > 0 be the finite horizon.

• Given a vector $\alpha := (\alpha^{N,1}, \dots, \alpha^{N,N})$ of \mathbb{R}^d -valued feedback strategies with full state information that are uniformly bounded by some constant C > 0, henceforth $\mathcal{A}_C^{N,fb}$, the players' states evolve for $t \in [0, T], i \in [[N]]$ as

$$X_{t}^{N,i} = X_{0}^{N,i} + \int_{0}^{t} \left(\alpha(s, \mathbf{X}_{s}^{N}) + b \left(X_{s}^{N,i}, \frac{1}{N} \sum_{j=1}^{N} \mathbf{V}^{N} (X_{s}^{N,i} - X_{s}^{N,j}) \right) \right) ds + W_{t}^{N,i},$$
(7)

- (1) $\boldsymbol{X}_{t}^{N} = (X_{t}^{N,1}, \dots, X_{t}^{N,N})$ and $W^{N,1}, \dots, W^{N,N}$ are ind. Wiener processes on $(\Omega, \mathcal{F}, (\mathcal{F}_{t}), \mathbb{P})$, which satisfies the usual conditions.
- (2) $X_0^{N,i}$ are *i.i.d.* \mathcal{F}_0 -measurable random variables, each with law $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$ and independent of the Wieners.
- (3) $V^{N}(\cdot)$ captures the interaction of moderate type among the players.

N-player costs – (1)

Player *i* evaluates $\alpha \in \mathcal{A}_{C}^{N, fb}$ according to the cost functional $J_{i}^{N}(\alpha^{N}) \doteq \mathbb{E}\left[\int_{0}^{T} \left(\frac{1}{2}|\alpha(s, \boldsymbol{X}_{s}^{N})|^{2} + f\left(X_{s}^{N, i}, \frac{1}{N}\sum_{j=1}^{N}V^{N}(X_{s}^{N, i} - X_{s}^{N, j})\right)\right) ds + g(\boldsymbol{X}_{T}^{N, i})\right]$ (8)

where $\boldsymbol{X}_{t}^{N} = (X_{t}^{N,1}, \dots, X_{t}^{N,N})$ and $((\Omega, \mathcal{F}, (\mathcal{F}_{t}), \mathbb{P}), \boldsymbol{W}^{N}, \boldsymbol{X}^{N})$ is a solution of Eq. (7) under μ_{0}^{N} .

- (Possible) interpretation :
 - (1) $|\alpha(s, \mathbf{X}_{s}^{N})|^{2}$ penalizes the usage of energy.
 - (2) $V^{N}(X_{s}^{N,i} X_{s}^{N,j})$ penalizes trajectories passing through densely crowded areas.
 - (3) $g(X_T^{N,i})$ penalizes deviation from specific target regions.
- Goal: Construction of approximate Nash equilibria for the N-player game via the solution of the corresponding MFG.

Assumptions – (1)

(H1) *b* and *f* are Borel measurable functions, continuous and such that there exist two constants C, L > 0 for which it holds that

 $|b(x,p)|+|f(x,p)|\leq C,$

 $|b(x,p) - b(y,q)| + |f(x,p) - f(y,q)| \le L(|x-y| + |p-q|)$

for all $x, y \in \mathbb{R}^d$, $\rho, q \in \mathbb{R}_+$.

- (H2) g is a Borel measurable function such that $g, \partial_{x_i}g \in C_b(\mathbb{R}^d)$, i = 1, ..., d.
- (H3) For each $N \in \mathbb{N}$, for some $\beta \in (0, 1/2)$ and some $V \in C_c^1(\mathbb{R}^d) \cap \mathcal{P}(\mathbb{R}^d)$ we have

$$V^N(x) \doteq N^{\beta} V(N^{\frac{\beta}{d}}x), \quad x \in \mathbb{R}^s.$$

(H4) For $N \in \mathbb{N}$, the random variables ξ^i , $i \in [[N]]$, are \mathcal{F}_0 -measurable with law $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$ absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^d and with density $p_0 \in C_b(\mathbb{R}^d)$ satisfying the following condition:

$$\int_{\mathbb{R}^d} e^{\lambda |x|} p_0(x) \, dx < \infty$$
 17/26

for all $\lambda > 0$.

PDE approach to MFGs : formulation – (1)

Let T > 0 be the finite time horizon and b, f, p_0, g as before.

$$\begin{cases} -\partial_t u - \frac{1}{2}\Delta u - b(x, p(t, x)) \cdot \nabla u + \frac{1}{2} |\nabla u|^2 = f(x, p(t, x)), & (t, x) \in [0, T) \times \mathbb{R}^d, \\ \partial_t p - \frac{1}{2}\Delta p + \operatorname{div}[p(t, x)(-\nabla u(t, x) + b(x, p(t, x)))] = 0, & (t, x) \in (0, T] \times \mathbb{R}^d, \\ p(0, \cdot) = p_0(\cdot) \quad x \in \mathbb{R}^d, \quad u(T, \cdot) = g(\cdot), & x \in \mathbb{R}^d, \end{cases}$$

$$(9)$$

for all $(x, p) \in \mathbb{R}^d \times \mathbb{R}_+$.

- Observations :
 - (1) The PDE MFG system is of local type with the dependence on the local density p(t, x) appearing both on the dynamics and on the running cost.
 - (2) The state-space is \mathbb{R}^d .
- In the next slide we define what we mean with weak solution of the previous system; in the paper, you can find the proof of the equivalence between the weak and the mild solution.

PDE approach to MFGs : notion of solution – (1) Definition (MFG solution, PDE formulation)

A weak solution of the PDE system is a pair (u, p) such that:

(i)
$$u, \partial_i u$$
 and $p \in C_b([0, T] \times \mathbb{R}^d)$ for all $i \in [[d]];$

(ii) for all $\varphi, \psi \in C_c^{1,2}([0, T] \times \mathbb{R}^d)$ and all $t \in [0, T]$ the following two equations

$$\langle \boldsymbol{p}(t), \boldsymbol{\psi}(t) \rangle - \langle \boldsymbol{p}_{0}, \boldsymbol{\psi}(0) \rangle - \int_{0}^{t} \langle \boldsymbol{u}(s), \mathcal{A}\boldsymbol{\psi}(s) \rangle \, ds$$

$$= \int_{0}^{t} \langle \boldsymbol{p}(s)(-\nabla \boldsymbol{u}(s) + \boldsymbol{b}(\cdot, \boldsymbol{p}(s))), \nabla \boldsymbol{\psi}(s) \rangle \, ds.$$

$$(11)$$

hold.

PDE approach to MFGs: Existence and Uniqueness -(1)

By using Hopf-Cole transform for quadratic Hamiltonians, we consider the following auxiliary system:

$$\begin{cases} \partial_t w + \frac{1}{2} \Delta w + b(x, p(t, x)) \cdot \nabla w = w f(x, p(t, x)), & (t, x) \in [0, T) \times \mathbb{R}^d, \\ \partial_t p - \frac{1}{2} \Delta p + \operatorname{div} \left[p(t, x) \left(\frac{\nabla w}{w} + b(x, p(t, x)) \right) \right] = 0, & (t, x) \in (0, T] \times \mathbb{R}^d, \\ p(0, \cdot) = p_0(\cdot) \quad x \in \mathbb{R}^d, \quad w(T, \cdot) = \exp(-g(\cdot)), & x \in \mathbb{R}^d. \end{cases}$$

$$(12)$$

and we give the following:

Definition (MFG solution, PDE formulation - I)

Let $p_0 \in C_b(\mathbb{R}^d)$ a given probability density and $g \in C_b(\mathbb{R}^d)$, also given. A weak solution of the PDE system (12) is a pair (w, p) such that $w, \partial_i w$ and $p \in C_b([0, T] \times \mathbb{R}^d)$ for all $i \in [[d]]$, $w(t, x) \ge e^{-(||g||_{\infty} + T||f||_{\infty})}$ and the system is satisfied in the weak sense as in the definition given in the previous slide.

PDE approach to MFGs: Existence and Uniqueness -(2)

Additional (non restrictive) assumption for the global existence:
(H5) There exists a continuous function *ρ* : ℝ^d → (0,∞) such that

$$\lim_{\|x\|\to\infty}
ho\left(x
ight)=0 \quad ext{and} \quad p_{0}\left(x
ight)\leq
ho\left(x
ight)$$

for all $x \in \mathbb{R}^d$. Moreover $p_0 \in C_b^{\alpha}(\mathbb{R}^d)$ for some $\alpha > 0$ and $\rho^{-1} \in C^2(\mathbb{R}^d)$ with $\|\Delta \rho^{-1}\|_{\infty} + \|\nabla \rho^{-1}\|_{\infty} < \infty$.

Theorem (Existence)

There exists a weak solution (w, p) on [0, T] of system (12). Moreover, the pair

$$(u,p) \doteq (-\log w,p)$$

is a weak solution of the system (9).

Theorem (Local well posedness)

There exists a unique weak (or mild) solution of the MFG system (10)-(11), for T sufficiently small.

Open-loop MFG with given density – (1)

(i) We denote by *A_K* the set of admissible open-loop controls for the MFG, which is defined as the set of tuples (Ω, *F*, (*F_t*), ℙ, *X*, *W*, α) where α = (α(t))_{t∈[0,T]} is *F_t*-progressively measurable, continuous and bounded by *K* a.s. for all t ∈ [0, T], while (Ω, *F*, (*F_t*), ℙ, *X*, *W*) is a weak solution of

$$X_{t} = X_{0} + \int_{0}^{t} (\alpha(s) + b(X_{s}, p(s, X_{s}))) \, ds + W_{t}, \quad t \in [0, T]$$
(13)

where $X_0 \stackrel{d}{\sim} \mu_0$, having density p_0 , is independent of the \mathcal{F}_t -Wiener process *W*.

(ii) We consider the following cost functional

$$J(\alpha) \doteq \mathbb{E}\left[\int_0^T \frac{1}{2} |\alpha(s)|^2 + f(X_s, p(s, X_s)) \, ds + g(X_T)\right]$$
(14)

and we say that $\alpha^* \doteq (\alpha^*(t))_{t \in [0,T]} \in \mathcal{A}_K$ is an optimal control if it is a minimizer of J over \mathcal{A}_K , i.e. if $J(\alpha^*) = \inf_{\alpha \in \mathcal{A}_K} J(\alpha)$.

Notation : We will denote by **OC** this Optimal Control problem.

Open-loop MFG with given density – (2)

Definition (MFG solution, stochastic open-loop formulation) Let T > 0 be the finite time horizon and b, f, p_0, g as in (H1)-(H2) and (H4). Then a open-loop MFG solution for bound K > 0 is a pair (α^*, p) such that:

(i) $p \in C_b([0, T] \times \mathbb{R}^d)$ and $\alpha^* \in \mathcal{A}_K$, α^* standing for the full tuple:

 $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}, X, W, \alpha^*);$

- (ii) Given $p \in C_b([0, T] \times \mathbb{R}^d)$, $\alpha^* \in \mathcal{A}_K$ is an optimal control for problem **OC** (in the sense of item (ii) above);
- (iii) $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}, X, W)$ is a weak solution of Eq.(13) such that X_t has law μ_t with density $p(t, \cdot)$ for every $t \in [0, T]$.

Observation: The minimization problem over feedback and open-loop controls are equivalent from the point of view of the value function (El Karoui et al. (1987), Stochastics).

Open-loop MFG with given density – (3)

Theorem (Verification Theorem)

Consider the PDE system in Eq. (9) and let (u, p) be a weak (or mild) solution. Consider the optimal control problem **OC** as in Definition 6-(iii) and set $\alpha^*(t) = \alpha^*(t, x) \doteq -\nabla u(t, x)$. Then,

- (i) α^* is an optimal control for **OC**;
- (ii) for any weak solution $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}, X^*, W)$ of Eq. (13) with $\alpha(s) = \alpha^*(s, X_s^*)$, the state X_t^* has law μ_t^* with density $p(t, \cdot)$ for every $t \in [0, T]$.

Observation: In our case, the value function of the representative player is not "regular enough", and so, in order to apply Itô formula, some work based on standard mollification arguments needed.

Approximate Nash equilibria from the MFG - (1)

Theorem

Let $N \in \mathbb{N}$, N > 1. Grant (H1)-(H4). Suppose (u, p) is a weak solution of the PDE system in Eq. (1) and let $\alpha^*(t, x) \doteq -\nabla u(t, x)$ the optimal control of the problem **OC** in the class \mathcal{A}_{K}^{fb} with K given by

 $K(T, b, f, p_0, g) \doteq \sup_{t \in [0, T], x \in \mathbb{R}^d} |\nabla u(t, x)|$ and $\mathcal{A}_K^{N, fb}$ the set of all vectors α^N of feedback strategies for the N-player game that are uniformly bounded by K > 0. Set

 $\alpha^{N,i}(t,\mathbf{x}) \doteq \alpha^*(t,x_i) \doteq - \nabla u(t,x_i), \ t \in [0,T], \ \mathbf{x} = (x_1,\ldots,x_N) \in \mathbb{R}^{d \times N}, \ i \in [[N]]$

and $\alpha^N = (\alpha^{N,1}, \ldots, \alpha^{N,N}) \in \mathcal{A}_K^{N,fb}$. Then for every $\varepsilon > 0$, there exist $N_0 = N_0(\varepsilon) \in \mathbb{N}$ such that α^N is an ε -Nash equilibrium for the N-player game whenever $N \ge N_0$.

Observations :

- (1) Proof based on (standard) weak convergence arguments and controlled martingale problems.
- (2) Main difficulty is the presence of a deviating player which destroys the prelimit systems' symmetry: usage of relaxed?controls.

Thank you for your attention.

