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Part I: natural resource monitoring

“What is the utility to me of adding one more animal to my herd in a
meadow shared with other herdsmen?”

7 Full degradation of the meadow (Tragedy of commons, G. Hardin).
Monitoring policy to fix tragedy of commons, E. Ostrom.

How incentivize optimally an agent for higher interests than his/her
owns?

A renewable natural resource is managed by a natural resource manager.
A regulator incentivizes the natural resource manager to ensure the sus-
tainability of the resource.
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The natural ressource

The logistic equation

Xt “ X0 `

ż t

0
Xspν ´ µ´ λXsqds , t P r0,T s ,

where
ν, µ are the birth and death rates;
λ is the interspecies competition rate.
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Xspν ´ µ´ λXsqds , t P r0,T s ,

where
ν, µ are the birth and death rates;
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The natural ressource

The natural resource abundance Xλ
t under the harvesting/renewing strat-

egy is given by

Xλ
t “ x`

ż t

0

`

Xλ
s pν´µ´λpX

λ
s qq´αsX

λ
s

˘

ds`

ż t

0
σXλ

s dW
α
s , t P r0,T s .

ν, µ are the birth and death rates;
λ is the interspecies competition rate.
αtX

λ
t is the speed of the exploitation of the resource at time t.

Change of Brownian motion (weak formulation).



A bilevel optimization

(Regulator’s Problem) sup
ξ

Eα
‹
pξq

”

ξ ´ f pXλ
t q

ı

,

where
ξ is a compensation/tax proposes to the NRM;
f is a cost function depending on the size of the resource at T ;

subjected to
� for ξ fixed,

(NRM’s Problem) V Apξq “ sup
αPA

V Apξ;αq “ V Apξ;α‹pξqq,

with

V Apξ;αq :“ Eα
”

´exp
´

´γ
`

ż T

0
ppXλ

s qX
λ
s αsds

l jh n

incomes of the NRM

´

ż T

0

|αs |
2

2
ds

l jh n

Exploitation costs

´ ξ
ljhn

tax

˘

¯ı

.

� V A
0 pα

‹pξqq ě R0.



Step 1. NRM optimization.

Theorem

Let ξ P Ξ. There exists a unique pair pY0,Z q such that

the tax has the following decomposition

ξ “ Y Y0,Z
T “ Y0 ´

ż T

0

`

gpXλ
t ,Ztq `

σ2

2
γ|Zt |

2˘dt `

ż T

0
σZtdWt ,

where g is defined for any px , zq P R` ˆ R by

gpx , zq “
|a‹px , zq|2

2
´ ppxqxa‹px , zq ´ a‹px , zqz ,

with
a‹px , zq “

`

pppxqx ` zq _ p´Mq
˘

^M ,

V Apξq “ ´ exppγY0q , and the process α‹pξq defined by α‹t pξq “
a‹pXλ

t ,Ztq is the unique optimal effort associated with the tax ξ.

The proof uses the existence and uniqueness of the BSDE associated with
the NRM’s problem.
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Step 2. The optimal contract

(Regulator’s Problem) sup
Z

Eα
‹
pXλ,Zq

”

Y R̃,Z
T ´ f pXλ

t q

ı

,

with R̃ :“ logp´R0q{γ.

ðñ

#

´Btv ´ H
´

x , Bxvpt, xq, Bxxvpt, xq
¯

“ 0 , pt, xq P r0,T q ˆ R˚` ,
vpT , xq “ ´f pxq , x P R˚` ,

where the Hamiltonian H is given by

Hpx , δ1, δ2q “ sup
zPR

"

xppxqα‹px , zq ´ kpα‹px , zqq ´
σ2

2
γz2 ` xpν ´ µ´ λpxq ´ α‹px , zqqδ1

*

`
σ2

2
x2δ2 , px , δ1, δ2q P R˚` ˆ Rˆ R.

Up to technical conditions, we apply a verification result to get the optimal
Z and so the optimal contract proposed to the NMR by the regulator.
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Numerical analyzis

f pxq “ cpβ ´ xq` for a target β ą 0 and a cost c ą 0.



Part II: scaling limit in population dynamics

1 What about the relevancy of using a continuous process compared
with a (natural) birth and death process to model the dynamic of the
natural resource?

2 Convergence of the solutions for associated stochastic control prob-
lems with these models?

Thibaut Mastrolia Regulation of natural resources exploitation.



Scaling limit of birth/death process

Scaling parameter K ą 0 of the population size;
the number of birth by a Poisson process Nb with intensity
λK ,bt “ νXK

t K ` σ2

2 XK
t K 2;

the number of death by a Poisson process Nd with intensity
λK ,dt “ µXK

t K ` σ2

2 XK
t K 2;

the rescaled population process XK by

XK “ x0 `
Nb ´ Nd

K
, x0 P N.

Theorem

The sequence of processes pXK
t , t P r0,T sqKą0 converges in law (for the

Skorohod topology) to the continuous diffusion process
pXt , t P r0,T sqKą0 solution to the stochastic Feller differential equation

Xt “ x0 `

ż t

0
pν ´ µqXsds `

ż T

0
σ
a

XsdWs ,

where W is a brownian motion under "a larger" probability space.
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Controlled problem: a toy model in the discrete case

We consider a natural resource manager modifying the death rate of the
resource with an action α so that

λK ,d,αt :“ KXK
t pµ` K

σ2

2
q ` KXK

t αt .

The agent is assumed to be penalized

if he fails at reaching a fixed level rx ą 0 of the resource at time T
determined by a regulator.

by the instantaneous amount |αX
K
|
2

2 per unit of time for a given effort
α fixed.

The problem of the resource manager is thus to solve

pTMqK : V K
0 “ sup

αPAK

EK ,αr´γpXK
T ´ rxq2 ´

ż T

0

pαsX
K
s q

2

2
dss
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Controlled problem: a toy model in the discrete case

The Hamilton Jacobi Bellman equation associated to the control problem
pTMqK is given by

pHJBqK

#

BtU
K pt, xq ` HK px ,DK

`U
K pt, xq,DK

´U
K pt, xqq “ 0,

UK pT , xq “ ´γpx ´ rxq2, x P pN˚{K q,

for some Hamiltonian HK with DK
˘U

K pt, xq “ UK pt, x˘1{K q´UK pt, xq.

ðñ

#

Y K
t “ ξK `

şT

t
pKZK,d

s q
2

2 1XK
s ą0ds ´

şT

t
ZK
s ¨ dM

K
s .

ξK “ ´γpXK
T ´ rxq2.
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Corresponding problem in the continuous case

In the continuous framework, the problem becomes

pTMq : V0 “ sup
αPA

Er´γpXT ´ rxq2 ´

ż T

0

pαsXsq
2

2
dss,

with
dXt “ pν ´ µ´ αtqXtdt ` σ

a

XsdWt .

ðñ

pHJBq

#

BtUpt, xq ` Hpx ,DUpt, xq,∆Upt, xqq “ 0, pt, xq P r0,T q ˆ R`,
UpT , xq “ ´γpx ´ rxq2, x P R`,

ðñ

Yt “ ξ `

ż T

t

Z 2
s

2
1Xsą0ds ´

ż T

t

Zsσ
a

XsdWs

ξ “ ´γpXT ´ rxq2.
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Illustrative example: convergence of solutions

Figure: lim
KÑ`8

Y K
0 “ Y0

Figure: lim
KÑ`8

α˚,K „ ZK in law
“ α˚ „ Z



Extension to non-Markovian problems

For non-Markovian problems, we need to investigate the convergence of
BSDE driven by sequences of martingales.

Extension of Briand, Delyon, and Mémin (2002). On the robustness
of backward stochastic differential equations.

We have the convergence of the corresponding value functions (Y
components of the BSDEs considered) and the weak convergence of
the Z component.

See other stability results for general classes of BSDEs in Papapan-
toleon, Possamaï and Saplaouras. (2022).


