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Part |: natural resource monitoring

“What is the utility to me of adding one more animal to my herd in a
meadow shared with other herdsmen?”’

X Full degradation of the meadow (Tragedy of commons, G. Hardin).
Monitoring policy to fix tragedy of commons, E. Ostrom.

How incentivize optimally an agent for higher interests than his/her
owns?

A renewable natural resource is managed by a natural resource manager.

A regulator incentivizes the natural resource manager to ensure the sus-
tainability of the resource.
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The natural ressource

The logistic equation

t
xt=x0+J Xo(v—p—MX)ds, tel0,T],
0

where
@ v, are the birth and death rates;

@ M\ is the interspecies competition rate.



The natural ressource

The logistic equation
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where

@ v, u are the birth and death rates;
@ )\ is the interspecies competition rate.

The stochastic logistic equation.

t t

Xs(z/fuf)\Xs)derf oXsdW, , tel0, T].

Xt:X0+J
0

0



The natural ressource

The natural resource abundance X;* under the harvesting/renewing strat-
egy is given by

t t
X} :x+J (XQ(V—M—A(Xg))—asxj)derJ o XMW, tel0,T].
0 0

v, i are the birth and death rates;
A is the interspecies competition rate.

a:X;" is the speed of the exploitation of the resource at time t.

Change of Brownian motion (weak formulation).



A bilevel optimization

(Regulator’'s Problem) sup B ©) [{ — f(Xt)‘)],
13

where
@ ¢ is a compensation/tax proposes to the NRM;
@ f is a cost function depending on the size of the resource at T;

subjected to

> for £ fixed,
(NRM's Problem)  VA(&) = sup VA(E; o) = VA& a*(€)),
aceA

with

T T 2
Qs

VA& a) = E® [—exp (—v( p(XM X2 asds — J %ds - ¢ ))]
0 0 =~
incomes of the NRM Exploitation costs =

> Vg™ (€)) = Ro.



Step 1. NRM optimization.

Let £ € =. There exists a unique pair (Yo, Z) such that

@ the tax has the following decomposition

T 2 T
E=Y4 =Y, —f (g(X2,Z:) + %W\Zt|2)dt +J o ZedW,
0 0
where g is defined for any (x,z) e R. x R by
* 2
g0e2) = T it ,2) - (2

with o
a*(x,2) = ((P(x)x + 2) v (—M)) A M,
o VA(E) = —exp(7Yo) , and the process a*(§) defined by af(¢) =
a* (X}, Z;) is the unique optimal effort associated with the tax £.
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@ the tax has the following decomposition
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with o
a*(x,2) = ((P(x)x + 2) v (—M)) A M,
o VA(E) = —exp(7Yo) , and the process a*(§) defined by af(¢) =
a* (X}, Z;) is the unique optimal effort associated with the tax £.

The proof uses the existence and uniqueness of the BSDE associated with
the NRM'’s problem.



Step 2. The optimal contract

(Regulator's Problem) sgp E“*(XA’D[YT'?’Z — f(X{\)]-,

with R := log(—Ry) /7.



Step 2. The optimal contract

(Regulator’s Problem) sgp E“*(XA’D[YT'?’Z — f(Xt’\)],

with R := log(—Ry) /7.

v — H(x,&xv(t,x),axxv(t, x)) —0, (t.x)e[0,T)xR:
v(T,x) =—f(x), xeR%,

where the Hamiltonian H is given by

o2

H(x,d1,82) = sup {xp(x)a*(x, z) — k(a*(x,2)) — 7722 +x(v—p—Ax) —a” (X,Z))(51}
zeR

2
+%X2§2, (X,51,52)€R1XRXR.

Up to technical conditions, we apply a verification result to get the optimal
Z and so the optimal contract proposed to the NMR by the regulator.



Numerical analyzis

f(x) = c(B—x)" for a target 3 > 0 and a cost ¢ > 0.




Part Il: scaling limit in population dynamics

© What about the relevancy of using a continuous process compared
with a (natural) birth and death process to model the dynamic of the
natural resource?

@ Convergence of the solutions for associated stochastic control prob-
lems with these models?
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Scaling limit of birth/death process

@ Scaling parameter K > 0 of the population size;

@ the number of birth by a Poisson process N® with intensity
AP = uXEK + 5 XEK?,

@ the number of death by a Poisson process N¢ with intensity
AO? = uXKK + T XEK?,

e the rescaled population process X* by

NP — N

XK =x0+ = x0eN.
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Scaling limit of birth/death process

@ Scaling parameter K > 0 of the population size;

@ the number of birth by a Poisson process N® with intensity
AP = uXEK + 5 XEK?,

@ the number of death by a Poisson process N¢ with intensity
AO? = uXKK + T XEK?,

e the rescaled population process X* by

NP — N

XK =x0+ = x0eN.

Theorem

The sequence of processes (XK, t € [0, T])k=o converges in law (for the
Skorohod topology) to the continuous diffusion process
(Xt, t€ [0, T])k=0 solution to the stochastic Feller differential equation

t
Xt:x0+j( de+f o/ XsdW,

0

where W is a brownian motion under "a larger" probability space.
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Controlled problem: a toy model in the discrete case

We consider a natural resource manager modifying the death rate of the
resource with an action « so that

2
NG xR (4 K%) + KXKay.
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We consider a natural resource manager modifying the death rate of the
resource with an action « so that

2
NG xR (4 K%) + KXKay.

The agent is assumed to be penalized

e if he fails at reaching a fixed level X > 0 of the resource at time T
determined by a regulator.

K2
@ by the instantaneous amount |O‘X2 | per unit of time for a given effort

« fixed.

The problem of the resource manager is thus to solve

T K\2
X

(TM) : VI = sup EFo[—(XE —X)? _J %

0

aeAK

ds]



Controlled problem: a toy model in the discrete case

The Hamilton Jacobi Bellman equation associated to the control problem
(TM) is given by

0:UK(t,x) + HX (x, DK UK (¢, x), DK UK (t,x)) = 0,

(HIB) {UK(T7X) = —y(x—=X)?, xe (N*/K),

for some Hamiltonian HX with DX UK (t, x) = UX(t,x +1/K)— UX(t,x).
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T K,d\2 T
— YtK = §K + St @IXS‘BOdS - St ZSK ’ def('
€€ = A (XE -3



Corresponding problem in the continuous case

In the continuous framework, the problem becomes

T 2
SXS
(TM) : Vo = sup E[_’V(XT _ )?)2 _f (a ) dS],
aeA 0
with
dX; = (v — p — ag) Xedt + o/ Xed W,



Corresponding problem in the continuous case

In the continuous framework, the problem becomes

T 2
(TM) : Vo = sup E[—(X7 — X)? — L (@sXo)” 41,

acA 2
with
dX; = (v — p — ag) Xedt + o/ Xed W,
—
(HJB) 0:U(t, x) + H(x, DU(t,x),AU(t,x)) =0, (t,x)€[0,T) x R*,
U(T,x) = —v(x = X)?, xeR*,

<

T 22 T
Y, =§+J 751X5>0ds—f Zoon/XedW,
t t

£=—(Xr —%)%



lllustrative example: convergence of solutions
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Extension to non-Markovian problems

For non-Markovian problems, we need to investigate the convergence of
BSDE driven by sequences of martingales.

e Extension of Briand, Delyon, and Mémin (2002). On the robustness
of backward stochastic differential equations.

@ We have the convergence of the corresponding value functions (Y
components of the BSDEs considered) and the weak convergence of
the Z component.

@ See other stability results for general classes of BSDEs in Papapan-
toleon, Possamai and Saplaouras. (2022).



