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Outline of the talk

I- Preliminaries & motivations
• The Optimal Switching problem (OSP): primal vs dual
formulation.
• Assumptions for the dual formulation.
•Why choosing the "dual" approach ?

II- Main results & perspectives
• The two main results:

(i): equality between the two value functions;
(ii): new BSDE characterization.

• Perspectives



Motivations & preliminaries
I.1 Primal optimal switching problem and value function
On a standard prob. space (Ω,F,P), let
I W : standard d-dim. Brownian Motion, W F-adapted.

usually: F = FW ∨N .
I T fixed finite horizon; A set of modes (possibly infinite).
I ∀ (x0,e) ∈ Rn × A, let X e proc. s.t.

∀ t ∈ [0,T ], X e
t = x0 +

∫ t

0

(
be(s,X e

· )ds + σe(s,X e
· )dWs

)
,

Let (f e)e, (ge)e and (ce,e′)(e,e′): 3 families of (possib. random)
real-valued data

(i) f e(s,X·): instant. profit (when system in mode e)
(ii) ge(X·): payoff at time T when syst. in mode e,
(iii) ce,e′(s,X·) : nonnegative penalty costs incurred at time s

when switching from e to e′.
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Motivations & preliminaries

I.1 Primal optimal switching problem and value function

I Mathematical assumptions:
• A: Borel set (example: any subspace of Rd );
• Both (be, σe)e, (f e,ge), (ce,e′)e,e′ may be
path-dependent;
• Let Cn: set of continuous paths (s 7→ x(s))s∈[0,T ]

Topology on Cn: |x |∗ = sup
s∈[0,T ]

|x(s)|

• Measurability
(t , ω,e) 7→ be(t , x(ω), ω), σe(t , ω, x(ω),e) are
Prog(Cn)⊗ B(A) meas.; (similar for f e,ge, ce,e′)
Prog(Cn): σ-algebra of prog. measurable maps on
[0,T ]× Ω.
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Motivations & preliminaries

I.1 Primal optimal switching problem and value function

I Math. Assumptions (cont’):

• For every t in [0,T ],
(x ,e) 7→ bt (x ,e) σt (x ,e), ft (x ,e),g(x ,e) are continuous on
Cn × A (x ,e,e′) 7→ ct (x ,e,e′) is continuous on Cn × A× A.

• Regularity & growth assumpt (wrt x):
∃ K > 0 s.t. ∀ (t , x , x ′,e,e′) ∈ [0,T ]× Cn × Cn × A× A,

(i) |bt (x ,e)− bt (x ′,e)|+ |σt (x ,e)− σt (x ′,e)| ≤ K |x − x ′|t∗
Similar for other data.

(ii) |b(t ,0,e)|+ |σ(t ,0,e)| ≤ K ;



Motivations & preliminaries

I.1 Primal optimal switching problem and value function
• Growth assumpt wrt x (cont’)
∃ r , K > 0 s.t. ∀ (t , x , x ′,e,e′) ∈ [0,T ]× Cn × Cn × A× A,

(iii) |f (t , x ,e|+ |g(x ,e)|+ |c(t , x ,e,e′)| ≤ K
(
1 + |x |rt∗

)

Comment
(i)-(iii) standard to obtain estim.

(a) Estim. (of Hilbertian norm) of process X e (see
Cosso-Confortola-Fuhrman ’18 );
(b) Estim. of the value function (well known in Markovian case).
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Motivations & preliminaries

I.1 Primal optimal switching problem and value function

1. Let α = (τn, ξn)n≥1 with τ1 > 0. α = management strategy
2. To α, we associate the state proc. a as follows

as = ξ11s<τ1 +
∑
n≥1

ξn+11τn≤s<τn+11τn<T

a: piecewise constant proc. A-valued

By abuse, one may replace α by a.



Motivations & preliminaries

I.1 Primal value function: Admissible set A
a = (τn, ξn) is said admissible (a in A if
H1 (τn(·), ξn(·))n-R+ × A-valued F-adapt. such that

τn(ω)→ +∞ and τn < τn+1 , P-a.s
simultaneous switchings prohibited: equivalent to

∀(a1,a2,a2) ∈ A3, ca1,a2(t , x) + ca2,a3(t , x) > ca1,a3(t , x)

Stronger than the no-loop property (in finite case).

H2 H1 implies: Na
T (ω) = Card{τn(ω), τn < T} <∞, P-a.s

H3 Impose τn 6= T : no switching at terminal time.
In finite case, equivalent to:

∀ (i , j) ∈ A× A, g i(X i
T ) > g j(X j

T )− ci,j(T ,XT ).
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Motivations & preliminaries

I.1 Primal optimal switching problem and value function

1. For a in A, let Xα (or X a) the controlled proc. s.t.

dX a = ba(s,X a)ds + σa(s,X a
s )dWs

with ba(s, x) = bξ0(s, x)1s<τ1 +
∑
n≥1

bξ
n
(s, x)1τn≤s<τn+1 .

Similar definition for σa(s, x).

Remark: b and σ path-dependent⇒ X a no more Markovian
(PDE approach not available).



Motivations & preliminaries

I.1 Primal control problem and (primal) value function

1. Primal value function V

V = sup
α∈A

(
J (α)

)
, where

J(α) = E

gaT (X·) +
∫ T

0 f as (s,X a
· )ds −

∑
n≥1,
τn<T

cξn−1,ξn (τn,X a
τn )


= J1(α)− J2(α)

Objective: choose the best a (or α) to optimize J(α) and
minimize J2(α).



Motivations & preliminaries

A (non exhaustive) review of the literature

(1) OSP with finite set of modes:
(i) Using PDE approaches: Ishii-Koike ’91, Yong-Zhou ’99,

Ludkowski ’05, Carmona-Ludkovski ’07-08, ...
(ii) Using BSDE and analyt. tools: Hamadène-Jeanblanc ’02,

Djehiche-Hamadene-Popier ’08, Hu-Tang ’07
Chassagneux-Elie Kharroubi; Elie-Kharroubi ’08 ’11, ...

(iii) Standard OSP with refinements: infinite horizon, partial
information, non positive costs: Lundstrom -Olofsson, R.
Martyr, B. El Asri, ..

(2) Connection between "finite" OSP & constrained BSDE:
(a) Ma-Pham-Kharroubi ’08 (Markovian setting)
(b) Elie-Kharroubi (’14) (Non Markovian case)



Motivations & preliminaries

I.2 Randomized set-up & dual formulation

1. On (Ω′,F′,P′) let µ =
∑

n≥0 δσm,ζm be a Poisson random
meas. s.t.
(i) Random dates & marks (σm, ζm)m R+ × A-valued;
(ii) µ indep. of W with µ̂(de,ds) = λ(de)ds s.t

(a) µ̃ = µ− µ̂ is a martingale measure;
(b) λ(de) has full support and λ(A) < +∞.

2. The randomized dual set up := (Ω,P,F ,W , µ):
(2.i) Let Ω := Ω× Ω′, P = P⊗ P̂′ and F = FW ,µ, with

FW ,µ := (FW ∨ Fµ) ∨N

(2.ii) W (ω, ω′) = W (ω) remains a FW ,µ- Brownian motion;
µ := (σm, ζ

m
)m Poisson r.m. with FW ,µ-prog. meas random

marks and same determ. compensator µ̂ = µ̂.
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Motivations & preliminaries

I.2. The randomized set-up and dual formulation

1. Let I (resp. I) the Poisson point proc. assoc. with µ
(resp. µ) as follows

∀ t ∈ [0,T ], It = ζ01t<σ1 +
∑
m≥1

ζm1σm≤t<σm+1 .

Note that N I
T := Card{m ≥ 1, σm(ω′) < T} <∞, P′-a.s.

2. On randomized prob. space, (̄I,X Ī) is a forward
uncontrolled proc. with

X Ī
t = x0 +

∫ t

0

(
bĪs (s,X Ī)ds + σ Īs (s,X Ī)dWs

)



Motivations & preliminaries

I.2. The randomized set-up and dual formulation

1. To any proc. ν FW ,µ-meas., associate process κν

κνT = ET ((ν − 1) ? µ̃) = e−
∫ T

0

∫
A(νs(e)−1)λ(de)ds

∏
m≥1
ζm<T

νσm (ζm)

2. Let P̄ν with density κν , i.e.
d P̄ν̂

d P̄
= κν

then, under P̄ν̂ ,
(a) Ī remains Poisson point proc.;
(b) New compensated meas. νs(e)λ(de)ds

3. Set of dual controls

AR := {ν : Ω×[0,T ]×A 7→]0;∞[ meas. and essentially bounded}



Motivations & preliminaries

I.2 The randomized set-up: dual formulation

1. Let VR
0 = supν∈AR JR(ν) be the dual value function with

JR(ν) = Ēν
(

g(X I , IT ) +

∫ T

t
f (s,X I , Is)ds

)
︸ ︷︷ ︸

=JR
1 (ν)

− Ēν
∑

m≥1

cζm−1,ζm (σm,Xσm )


︸ ︷︷ ︸

=JR
2 (ν)

Ēν stands for expectation under meas. Pν .



Motivations & preliminaries

I.2 The randomized set-up: Major comments

1. Unique assumption on A: it is a Borel space
No compactness assumption.
Desirable properties: A both metric and separable.

2. Exogeneous proc. X (resp. X̄ ) not necess. Markovian
3. The controlled volatility process may be degenerate

(contrary to papers using PDE approaches).
4. If b, σ only depends on (x ,a) not on ω, then the pair (I,X I)

is a Markov process.



Main results

II First main result & comments
Under all previous assumptions on the primal & dual version
of the OSP, one claims

V0 = VR0 = v0(x0,a0).

This deterministic common value function only depends on
X0 = x0 and initial mode a0 and not of the choice of the
randomized set up:
(i.e. neither on the construction of the extended dual
set-up nor on the choice of intensity measure λ).



Main results

II. Second main result: BSDE characterization
Let YR be the minimal solution of following BSDE


YRt = g(X , IT ) +

∫ T
t fs(X , Is) ds + KT − Kt

−
∫ T

t ZsdWs −
∫

(t ,T ]

∫
A Us(a) µ̃(ds da),

Ut (a) ≤ ct (X , It−,a), λ(da)ds P− a.s.
(1)

then it holds
YR0 = VR0 .

Remark: (1) is a BSDE with constrained jumps & non decreas. proc
K : K only càdlàg .
YR

t F
W ,µ
t -adapted.



Main results: comments

I.3. Why choosing randomization to study the OSP ?

1. when A infinite (even uncountable), the infinite system of
RBSDEs does not seem well posed (at least to us..)

2. For the primal OSP, many ingredients deeply use the
finiteness of A.

3. the randomized set up allows to tackle general cases:
path-dependency, possibly degenerate diffusions, case of
an infinite set of modes.

4. Another motivation: in the Markovian setting, connection
already proved by R.Elie & I.Kharroubi (’09, ’10).
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Main results: comments

Connection with BSDE associated with the OSP (finite set
of modes)
Let J set of modes and let (Y i)i∈J solving


Y i

t = g(XT , i) +
∫ T

t fs(Xs, i) ds + K i
T − K i

t
−
∫ T

t Z i
sdWs,

Y i
s ≥ max{j∈J\{ i}}

(
Y j

s − ci,j(s,Xs)
)

and∫ T
0 (Y i

s −max{j∈J\{ i}}

(
Y j

s − ci,j(s,Xs)
)

dK i
s = 0

(2)

If BSDE system (2) has a solution, the minimal solution of dual
BSDE (1) is s.t.

YRt = Y It
t and Ut (i) = Y i

t − Y It−
t .



Main results: the BSDE characterization

The minimal BSDE
Let Y the minimal solution of following BSDE


YRt = g(X , IT ) +

∫ T
t fs(X , Is) ds + KT − Kt

−
∫ T

t ZsdWs −
∫

(t ,T ]

∫
A Us(a) µ̃(ds da),

Us(a) ≤ cs(X , Is−,a), λ(da)ds P− a.s.
(3)

then it holds: YR0 = VR0 . Combined with first main result

YR0 = VR0 = V0 = sup
α∈A
J (α).

YR: obtained as the increasing limit of penalized scheme.



Main results: the BSDE characterization

Probabilistic representation
Let (Y n) solving

Y n
t = g(X , IT ) +

∫ T
t fs(X , Is) ds + K n

T − K n
t

−
∫ T

t Z n
s dWs −

∫
(t ,T ]

∫
A Un

s (a) µ̃(ds da),

with dK n
s = n

∫
A

(
Un

s (a)− cs(X , Is,a)
)+
λ(da)ds.

(4)

It holds

Y n
t = ess sup ν∈AR

|ν|∞≤n
Eν
(
g(XT , IT ) +

∫ T

t
fr (X , Ir )dr

−
∫ T

t

∫
A

cr (Xr , Ir−,a)µ(da,ds)
∣∣FW ,µ

t
)

(5)
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Concluding remarks

Some perspectives: theoretical & numerical

1. Stability results: Approximating the general OSP by the
OSP with finite number of modes
Objective: explicit rate of convergence

2. Refinements in Markovian setting ((I, X I) Markov process)

3. Numerical perspectives
Numerical solving of the "dual" BSDE.

Note when Card(A) <∞ but too large, simulating the
solution of multidim BSDE system becomes unfeasible.

Thanks for your attention !
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