Optimal switching problems with an infinite set of modes:
 an approach by randomization and constrained backward SDEs

M.-A. Morlais (LMM - IRA, Le Mans Université, France)
j.w.w. M. Fuhrman (Milano, Italy)

9th BSDE international Colloquium
Université Savoie Mont Blanc (27/06-01/07/2022)

Outline of the talk

I- Preliminaries \& motivations

- The Optimal Switching problem (OSP): primal vs dual formulation.
- Assumptions for the dual formulation.
- Why choosing the "dual" approach ?

II- Main results \& perspectives

- The two main results:
(i): equality between the two value functions;
(ii): new BSDE characterization.
- Perspectives

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

On a standard prob. space $(\Omega, \mathbb{F}, \mathbb{P})$, let

- W: standard d-dim. Brownian Motion, W \mathbb{F}-adapted. usually: $\mathbb{F}=\mathcal{F}^{W} \vee \mathcal{N}$.
- T fixed finite horizon; A set of modes (possibly infinite).
- $\forall\left(x_{0}, e\right) \in \mathbb{R}^{n} \times A$, let X^{e} proc. s.t.

$$
\forall t \in[0, T], \quad X_{t}^{e}=x_{0}+\int_{0}^{t}\left(b^{e}\left(s, X_{\cdot}^{e}\right) d s+\sigma^{e}\left(s, X_{\cdot}^{e}\right) d W_{s}\right)
$$

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

On a standard prob. space $(\Omega, \mathbb{F}, \mathbb{P})$, let

- W: standard d-dim. Brownian Motion, W \mathbb{F}-adapted. usually: $\mathbb{F}=\mathcal{F}^{W} \vee \mathcal{N}$.
- T fixed finite horizon; A set of modes (possibly infinite).
- $\forall\left(x_{0}, e\right) \in \mathbb{R}^{n} \times A$, let X^{e} proc. s.t.

$$
\forall t \in[0, T], \quad X_{t}^{e}=x_{0}+\int_{0}^{t}\left(b^{e}\left(s, X_{\cdot}^{e}\right) d s+\sigma^{e}\left(s, X_{\cdot}^{e}\right) d W_{s}\right)
$$

Let $\left(f^{e}\right)_{e},\left(g^{e}\right)_{e}$ and $\left(c_{e, e^{\prime}}\right)_{\left(e, e^{\prime}\right)}$: 3 families of (possib. random) real-valued data
(i) $f^{e}(s, X$.): instant. profit (when system in mode e)
(ii) $g^{e}(X$.$) : payoff at time T$ when syst. in mode e,
(iii) $c_{e, e^{\prime}}(s, X$) : nonnegative penalty costs incurred at time s when switching from e to e^{\prime}.

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

- Mathematical assumptions:
- A: Borel set (example: any subspace of \mathbb{R}^{d});
- Both $\left(b^{e}, \sigma^{e}\right)_{e},\left(f^{e}, g^{e}\right),\left(c_{e, e^{\prime}}\right)_{e, e^{\prime}}$ may be path-dependent;
- Let \mathbb{C}^{n} : set of continuous paths $(s \mapsto x(s))_{s \in[0, T]}$

Topology on $\mathbb{C}^{n}:|x|_{*}=\sup _{s \in[0, T]}|x(s)|$

$$
s \in[0, T]
$$

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

- Mathematical assumptions:
- A: Borel set (example: any subspace of \mathbb{R}^{d});
- Both $\left(b^{e}, \sigma^{e}\right)_{e},\left(f^{e}, g^{e}\right),\left(c_{e, e^{\prime}}\right)_{e, e^{\prime}}$ may be path-dependent;
- Let \mathbb{C}^{n} : set of continuous paths $(s \mapsto x(s))_{s \in[0, T]}$

Topology on $\mathbb{C}^{n}:|x|_{*}=\sup _{s \in[0, T]}|x(s)|$

- Measurability
$(t, \omega, e) \mapsto b^{e}(t, x(\omega), \omega), \sigma^{e}(t, \omega, x(\omega), e)$ are
$\operatorname{Prog}\left(\mathbb{C}^{n}\right) \otimes \mathcal{B}(A)$ meas.; (similar for $\left.f^{e}, g^{e}, c_{e, e^{\prime}}\right)$
$\operatorname{Prog}\left(\mathbb{C}^{n}\right): \sigma$-algebra of prog. measurable maps on
$[0, T] \times \Omega$.

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

- Math. Assumptions (cont'):
- For every t in $[0, T]$,
$(x, e) \mapsto b_{t}(x, e) \sigma_{t}(x, e), f_{t}(x, e), g(x, e)$ are continuous on $\mathbb{C}^{n} \times A\left(x, e, e^{\prime}\right) \mapsto c_{t}\left(x, e, e^{\prime}\right)$ is continuous on $\mathbb{C}^{n} \times A \times A$.
- Regularity \& growth assumpt (wrt x):
$\exists K>0$ s.t. $\forall\left(t, x, x^{\prime}, e, e^{\prime}\right) \in[0, T] \times \mathbb{C}^{n} \times \mathbb{C}^{n} \times A \times A$,
(i) $\left|b_{t}(x, e)-b_{t}\left(x^{\prime}, e\right)\right|+\left|\sigma_{t}(x, e)-\sigma_{t}\left(x^{\prime}, e\right)\right| \leq K\left|x-x^{\prime}\right|_{t *}$ Similar for other data.
(ii) $|b(t, 0, e)|+|\sigma(t, 0, e)| \leq K$;

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

- Growth assumpt wrt x (cont')
$\exists r, K>0$ s.t. $\forall\left(t, x, x^{\prime}, e, e^{\prime}\right) \in[0, T] \times \mathbb{C}^{n} \times \mathbb{C}^{n} \times A \times A$,
(iii) $\mid f\left(t, x, e\left|+|g(x, e)|+\left|c\left(t, x, e, e^{\prime}\right)\right| \leq K\left(1+|x|_{t *}^{r}\right)\right.\right.$

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

- Growth assumpt wrt x (cont')
$\exists r, K>0$ s.t. $\forall\left(t, x, x^{\prime}, e, e^{\prime}\right) \in[0, T] \times \mathbb{C}^{n} \times \mathbb{C}^{n} \times A \times A$,
(iii) $\mid f\left(t, x, e\left|+|g(x, e)|+\left|c\left(t, x, e, e^{\prime}\right)\right| \leq K\left(1+|x|_{t_{*}}^{r}\right)\right.\right.$

Comment
(i)-(iii) standard to obtain estim.
(a) Estim. (of Hilbertian norm) of process X^{e} (see

Cosso-Confortola-Fuhrman '18);
(b) Estim. of the value function (well known in Markovian case).

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

1. Let $\alpha=\left(\tau^{n}, \xi^{n}\right)_{n \geq 1}$ with $\tau^{1}>0$. $\alpha=$ management strategy
2. To α, we associate the state proc. a as follows

$$
a_{s}=\xi^{1} \mathbf{1}_{s<\tau_{1}}+\sum_{n \geq 1} \xi^{n+1} \mathbf{1}_{\tau^{n} \leq s<\tau_{n+1}} \mathbf{1}_{\tau^{n}<T}
$$

a: piecewise constant proc. A-valued
By abuse, one may replace α by a.

Motivations \& preliminaries

I. 1 Primal value function: Admissible set \mathcal{A}
a $=\left(\tau^{n}, \xi^{n}\right)$ is said admissible (a in \mathcal{A} if
$\mathbf{H}_{1}\left(\tau^{n}(\cdot), \xi^{n}(\cdot)\right)_{n-\mathbb{R}^{+}} \times \boldsymbol{A}$-valued \mathbb{F}-adapt. such that $\tau_{n}(\omega) \rightarrow+\infty$ and $\tau^{n}<\tau^{n+1}, \mathbb{P}$-a.s simultaneous switchings prohibited: equivalent to

$$
\forall\left(a_{1}, a_{2}, a_{2}\right) \in A^{3}, \quad c_{a_{1}, a_{2}}(t, x)+c_{a_{2}, a_{3}}(t, x)>c_{a_{1}, a_{3}}(t, x)
$$

Stronger than the no-loop property (in finite case).

Motivations \& preliminaries

I. 1 Primal value function: Admissible set \mathcal{A}
a $=\left(\tau^{n}, \xi^{n}\right)$ is said admissible (a in \mathcal{A} if
$\mathbf{H}_{1}\left(\tau^{n}(\cdot), \xi^{n}(\cdot)\right)_{n-\mathbb{R}^{+}} \times \boldsymbol{A}$-valued \mathbb{F}-adapt. such that $\tau_{n}(\omega) \rightarrow+\infty$ and $\tau^{n}<\tau^{n+1}, \mathbb{P}$-a.s simultaneous switchings prohibited: equivalent to

$$
\forall\left(a_{1}, a_{2}, a_{2}\right) \in A^{3}, \quad c_{a_{1}, a_{2}}(t, x)+c_{a_{2}, a_{3}}(t, x)>c_{a_{1}, a_{3}}(t, x)
$$

Stronger than the no-loop property (in finite case).
$\mathbf{H}_{2} \mathbf{H}_{1}$ implies: $N_{T}^{a}(\omega)=\operatorname{Card}\left\{\tau^{n}(\omega), \tau^{n}<T\right\}<\infty, \mathbb{P}$-a.s
H_{3} Impose $\tau^{n} \neq T$: no switching at terminal time. In finite case, equivalent to:

$$
\forall(i, j) \in A \times A, \quad g^{i}\left(X_{T}^{i}\right)>g^{j}\left(X_{T}^{j}\right)-c_{i, j}\left(T, X_{T}\right) .
$$

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

1. For a in \mathcal{A}, let $X^{\alpha}\left(\right.$ or $\left.X^{a}\right)$ the controlled proc. s.t.

$$
d X^{a}=b^{a}\left(s, X^{a}\right) d s+\sigma^{a}\left(s, X_{s}^{a}\right) d W_{s}
$$

with $b^{a}(s, x)=b^{\xi_{0}}(s, x) \mathbf{1}_{s<\tau^{1}}+\sum_{n \geq 1} b^{\xi^{n}}(s, x) \mathbf{1}_{\tau^{n} \leq s<\tau^{n+1}}$.
Similar definition for $\sigma^{a}(s, x)$.
Remark: b and σ path-dependent $\Rightarrow X^{a}$ no more Markovian (PDE approach not available).

Motivations \& preliminaries

I. 1 Primal control problem and (primal) value function

1. Primal value function \mathcal{V}

$$
\begin{gathered}
\mathcal{V}=\sup _{\alpha \in \mathcal{A}}(\mathcal{J}(\alpha)), \text { where } \\
J(\alpha)=\mathbb{E}\left(g^{a_{T}}(X .)+\int_{0}^{T} f^{a_{s}}\left(s, X^{a}\right) d s-\sum_{\substack{n \geq \geq \\
\tau_{n}<T}} c_{\xi_{n-1}, \xi_{n}}\left(\tau^{n}, X_{\tau^{n}}^{a}\right)\right) \\
=J_{1}(\alpha)-J_{2}(\alpha)
\end{gathered}
$$

Objective: choose the best $a($ or $\alpha)$ to optimize $J(\alpha)$ and minimize $\mathcal{J}_{2}(\alpha)$.

Motivations \& preliminaries

A (non exhaustive) review of the literature
(1) OSP with finite set of modes:
(i) Using PDE approaches: Ishii-Koike '91, Yong-Zhou '99, Ludkowski '05, Carmona-Ludkovski '07-08, ...
(ii) Using BSDE and analyt. tools: Hamadène-Jeanblanc '02, Djehiche-Hamadene-Popier '08, Hu-Tang '07
Chassagneux-Elie Kharroubi; Elie-Kharroubi '08 '11, ...
(iii) Standard OSP with refinements: infinite horizon, partial information, non positive costs: Lundstrom -Olofsson, R.
Martyr, B. El Asri, ..
(2) Connection between "finite" OSP \& constrained BSDE:
(a) Ma-Pham-Kharroubi '08 (Markovian setting)
(b) Elie-Kharroubi ('14) (Non Markovian case)

Motivations \& preliminaries

I. 2 Randomized set-up \& dual formulation

1. On $\left(\Omega^{\prime}, \mathbb{F}^{\prime}, \mathbb{P}^{\prime}\right)$ let $\mu=\sum_{n \geq 0} \delta_{\sigma^{m}, \zeta^{m}}$ be a Poisson random meas. s.t.
(i) Random dates \& marks $\left(\sigma^{m}, \zeta^{m}\right)_{m} \mathbb{R}^{+} \times A$-valued;
(ii) μ indep. of W with $\hat{\mu}(d e, d s)=\lambda(d e) d s$ s.t
(a) $\tilde{\mu}=\mu-\hat{\mu}$ is a martingale measure;
(b) λ (de) has full support and $\lambda(\mathbf{A})<+\infty$.

Motivations \& preliminaries

I. 2 Randomized set-up \& dual formulation

1. On $\left(\Omega^{\prime}, \mathbb{F}^{\prime}, \mathbb{P}^{\prime}\right)$ let $\mu=\sum_{n \geq 0} \delta_{\sigma^{m}, \zeta^{m}}$ be a Poisson random meas. s.t.
(i) Random dates \& marks $\left(\sigma^{m}, \zeta^{m}\right)_{m} \mathbb{R}^{+} \times A$-valued;
(ii) μ indep. of W with $\hat{\mu}(d e, d s)=\lambda(d e) d s$ s.t
(a) $\tilde{\mu}=\mu-\hat{\mu}$ is a martingale measure;
(b) $\lambda(d e)$ has full support and $\lambda(\mathbf{A})<+\infty$.
2. The randomized dual set up $:=(\bar{\Omega}, \overline{\mathbb{P}}, \overline{\mathcal{F}}, \bar{W}, \bar{\mu})$:
(2.i) Let $\bar{\Omega}:=\Omega \times \Omega^{\prime}, \overline{\mathbb{P}}=\mathbb{P} \otimes \hat{\mathbb{P}}^{\prime}$ and $\overline{\mathcal{F}}=\mathbb{F}^{W, \mu}$, with

$$
\mathbb{F}^{W, \mu}:=\left(\mathbb{F}^{W} \vee \mathbb{F}^{\mu}\right) \vee \mathcal{N}
$$

(2.ii) $\bar{W}\left(\omega, \omega^{\prime}\right)=W(\omega)$ remains a $\mathbb{F}^{W, \mu}$ - Brownian motion; $\bar{\mu}:=\left(\bar{\sigma}^{m}, \bar{\zeta}^{m}\right)_{m}$ Poisson r.m. with $\mathbb{F}^{W, \mu}$-prog. meas random marks and same determ. compensator $\hat{\hat{\mu}}=\hat{\mu}$.

Motivations \& preliminaries

I.2. The randomized set-up and dual formulation

1. Let I (resp. \bar{I}) the Poisson point proc. assoc. with μ (resp. $\bar{\mu}$) as follows

$$
\forall t \in[0, T], \quad I_{t}=\zeta^{0} \mathbf{1}_{t<\sigma^{1}}+\sum_{m \geq 1} \zeta^{m} \mathbf{1}_{\sigma^{m} \leq t<\sigma^{m+1}} .
$$

Note that $N_{T}^{\prime}:=\operatorname{Card}\left\{m \geq 1, \sigma_{m}\left(\omega^{\prime}\right)<T\right\}<\infty, \mathbb{P}^{\prime}$-a.s.
2. On randomized prob. space, ($\left.\bar{I}, X^{\bar{\top}}\right)$ is a forward uncontrolled proc. with

$$
X_{t}^{\overline{1}}=x_{0}+\int_{0}^{t}\left(b^{\bar{\tau}_{s}}\left(s, X^{\bar{\top}}\right) d s+\sigma^{\bar{\tau}_{s}}\left(s, X^{\bar{\top}}\right) d W_{s}\right)
$$

Motivations \& preliminaries

I.2. The randomized set-up and dual formulation

1. To any proc. $\bar{\nu} \mathbb{F}^{W, \mu}$-meas., associate process $\kappa^{\bar{\nu}}$

$$
\kappa_{T}^{\bar{\nu}}=\mathcal{E}_{T}((\bar{\nu}-1) \star \tilde{\mu})=e^{-\int_{0}^{T} \int_{A}\left(\bar{\nu}_{s}(e)-1\right) \lambda(d e) d s} \prod_{\substack{m \geq 1 \\ \zeta_{m}<T}} \bar{\nu}_{\sigma^{m}}\left(\zeta^{m}\right)
$$

2. Let $\overline{\mathbb{P}}^{\bar{\nu}}$ with density $\kappa^{\bar{\nu}}$, i.e. $\frac{d \overline{\mathbb{P}} \hat{\bar{V}}}{d \overline{\mathbb{P}}}=\kappa^{\bar{\nu}}$ then, under $\overline{\mathbb{P}}^{\hat{\nu}}$,
(a) \bar{I} remains Poisson point proc.;
(b) New compensated meas. $\bar{\nu}_{s}(e) \lambda(d e) d s$
3. Set of dual controls
$\mathcal{A}^{R}:=\{\bar{\nu}: \bar{\Omega} \times[0, T] \times A \mapsto] 0 ; \infty[$ meas. and essentially bounded $\}$

Motivations \& preliminaries

I. 2 The randomized set-up: dual formulation

1. Let $\mathcal{V}_{0}^{R}=\sup _{\bar{\nu} \in \mathcal{A}^{R}} J^{R}(\bar{\nu})$ be the dual value function with

$$
\begin{aligned}
J^{R}(\bar{\nu})= & \underbrace{\overline{\mathbb{E}}^{\bar{\nu}}\left(g\left(X^{\prime}, I_{T}\right)+\int_{t}^{T} f\left(s, X^{\prime}, I_{s}\right) d s\right)}_{=J_{1}(\bar{\nu})} \\
& \underbrace{-\overline{\mathbb{E}}^{\bar{\nu}}\left(\sum_{m \geq 1} c_{\zeta_{m-1}, \zeta_{m}}\left(\sigma^{m}, X_{\left.\sigma^{m}\right)}\right)\right.}_{=J_{2}^{R}(\bar{\nu})}
\end{aligned}
$$

$\overline{\mathbb{E}}^{\bar{\nu}}$ stands for expectation under meas. $\mathbb{P}^{\bar{\nu}}$.

Motivations \& preliminaries

I. 2 The randomized set-up: Major comments

1. Unique assumption on A : it is a Borel space No compactness assumption.
Desirable properties: A both metric and separable.
2. Exogeneous proc. X (resp. \bar{X}) not necess. Markovian
3. The controlled volatility process may be degenerate (contrary to papers using PDE approaches).
4. If b, σ only depends on (x, a) not on ω, then the pair $\left(I, X^{\prime}\right)$ is a Markov process.

Main results

II First main result \& comments
Under all previous assumptions on the primal \& dual version of the OSP, one claims

$$
\mathcal{V}_{0}=\mathcal{V}_{0}^{\mathcal{R}}=v_{0}\left(x_{0}, a_{0}\right) .
$$

This deterministic common value function only depends on $X_{0}=x_{0}$ and initial mode a_{0} and not of the choice of the randomized set up:
(i.e. neither on the construction of the extended dual set-up nor on the choice of intensity measure λ).

Main results

II. Second main result: BSDE characterization

Let $Y^{\mathcal{R}}$ be the minimal solution of following BSDE

$$
\left\{\begin{array}{c}
Y_{t}^{\mathcal{R}}=g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}-K_{t} \tag{1}\\
\quad-\int_{t}^{T} Z_{s} d W_{s}-\int_{(t, T]} \int_{A} U_{s}(a) \tilde{\mu}(d s d a), \\
U_{t}(a) \leq c_{t}\left(X, I_{t-}, a\right), \lambda(d a) d s \mathbb{P}-\text { a.s. }
\end{array}\right.
$$

then it holds

$$
Y_{0}^{\mathcal{R}}=\mathcal{V}_{0}^{\mathcal{R}}
$$

Remark: (1) is a BSDE with constrained jumps \& non decreas. proc K : K only càdlàg .
$Y_{t}^{\mathcal{R}} \mathcal{F}_{t}^{W, \mu}$-adapted.

Main results: comments

I.3. Why choosing randomization to study the OSP ?

1. when A infinite (even uncountable), the infinite system of RBSDEs does not seem well posed (at least to us..)

Main results: comments

I.3. Why choosing randomization to study the OSP ?

1. when A infinite (even uncountable), the infinite system of RBSDEs does not seem well posed (at least to us..)
2. For the primal OSP, many ingredients deeply use the finiteness of A.

Main results: comments

I.3. Why choosing randomization to study the OSP ?

1. when A infinite (even uncountable), the infinite system of RBSDEs does not seem well posed (at least to us..)
2. For the primal OSP, many ingredients deeply use the finiteness of A.
3. the randomized set up allows to tackle general cases: path-dependency, possibly degenerate diffusions, case of an infinite set of modes.

Main results: comments

Institut
du Risque \&
de 'Assurance
I.3. Why choosing randomization to study the OSP ?

1. when A infinite (even uncountable), the infinite system of RBSDEs does not seem well posed (at least to us..)
2. For the primal OSP, many ingredients deeply use the finiteness of A.
3. the randomized set up allows to tackle general cases: path-dependency, possibly degenerate diffusions, case of an infinite set of modes.
4. Another motivation: in the Markovian setting, connection already proved by R.Elie \& I.Kharroubi ('09, '10).

Main results: comments

Connection with BSDE associated with the OSP (finite set of modes)
Let \mathcal{J} set of modes and let $\left(Y^{i}\right)_{i \in \mathcal{J}}$ solving

$$
\left\{\begin{align*}
& Y_{t}^{i}= g\left(X_{T}, i\right)+\int_{t}^{T} f_{s}\left(X_{s}, i\right) d s+K_{T}^{i}-K_{t}^{i} \\
&-\int_{t}^{T} Z_{s}^{i} d W_{s}, \\
& Y_{s}^{i} \geq \max _{\{j \in \mathcal{J} \backslash\{i\}\}}\left(Y_{s}^{j}-c_{i, j}\left(s, X_{s}\right)\right) \text { and } \tag{2}\\
& \int_{0}^{T}\left(Y_{s}^{i}-\max _{\{j \in \mathcal{J} \backslash\{i\}\}}\left(Y_{s}^{j}-c_{i, j}\left(s, X_{s}\right)\right) d K_{s}^{i}=0\right.
\end{align*}\right.
$$

If BSDE system (2) has a solution, the minimal solution of dual BSDE (1) is s.t.

$$
Y_{t}^{\mathcal{R}}=Y_{t}^{l_{t}} \text { and } U_{t}(i)=Y_{t}^{i}-Y_{t}^{t_{t}-}
$$

Main results: the BSDE characterization

The minimal BSDE

Let Y the minimal solution of following BSDE

$$
\left\{\begin{align*}
& Y_{t}^{\mathcal{R}}=g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}-K_{t} \\
& \quad-\int_{t}^{T} Z_{s} d W_{s}-\int_{\left(t, T J_{A} \int_{A} U_{s}(a) \tilde{\mu}(d s d a),\right.} \tag{3}\\
& U_{s}(a) \leq c_{s}\left(X, I_{s-}, a\right), \lambda(d a) d s \mathbb{P}-\text { a.s. }
\end{align*}\right.
$$

then it holds: $Y_{0}^{\mathcal{R}}=\mathcal{V}_{0}^{\mathcal{R}}$. Combined with first main result

$$
Y_{0}^{\mathcal{R}}=\mathcal{V}_{0}^{\mathcal{R}}=\mathcal{V}_{0}=\sup _{\alpha \in \mathcal{A}} \mathcal{J}(\alpha) .
$$

$Y^{\mathcal{R}}$: obtained as the increasing limit of penalized scheme.

Main results: the BSDE characterization

Probabilistic representation

Let $\left(Y^{n}\right)$ solving

$$
\left\{\begin{align*}
& Y_{t}^{n}=g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}^{n}-K_{t}^{n} \tag{4}\\
&-\int_{t}^{T} Z_{s}^{n} d W_{s}-\int_{(t, T]} \int_{A} U_{s}^{n}(a) \tilde{\mu}(d s d a), \\
& \text { with } d K_{s}^{n}= n \int_{A}\left(U_{s}^{n}(a)-c_{s}\left(X, I_{s}, a\right)\right)^{+} \lambda(d a) d s .
\end{align*}\right.
$$

Main results: the BSDE characterization

Probabilistic representation

Let $\left(Y^{n}\right)$ solving

$$
\left\{\begin{array}{c}
Y_{t}^{n}=g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}^{n}-K_{t}^{n} \tag{4}\\
\quad-\int_{t}^{T} Z_{s}^{n} d W_{s}-\int_{(t, T]} \int_{A} U_{s}^{n}(a) \tilde{\mu}(d s d a), \\
\text { with } d K_{s}^{n}=n \int_{A}\left(U_{s}^{n}(a)-c_{s}\left(X, I_{s}, a\right)\right)^{+} \lambda(d a) d s .
\end{array}\right.
$$

It holds

$$
\begin{align*}
& Y_{t}^{n}=\operatorname{ess} \sup \\
& \substack{\nu \in \mathcal{A R} \\
|\nu| \infty \leq \mathrm{n}} \mathbb{E}^{\nu}\left(g\left(X_{T}, I_{T}\right)+\int_{t}^{T} f_{r}\left(X, I_{r}\right) d r\right. \tag{5}\\
&\left.-\int_{t}^{T} \int_{A} c_{r}\left(X_{r}, I_{r-}, a\right) \mu(d a, d s) \mid \mathcal{F}_{t}^{W, \mu}\right)
\end{align*}
$$

Concluding remarks

Some perspectives: theoretical \& numerical

1. Stability results: Approximating the general OSP by the OSP with finite number of modes
Objective: explicit rate of convergence
2. Refinements in Markovian setting (($\left.I, X^{\prime}\right)$ Markov process)
3. Numerical perspectives

Numerical solving of the "dual" BSDE.
Note when $\operatorname{Card}(A)<\infty$ but too large, simulating the solution of multidim BSDE system becomes unfeasible.

Concluding remarks

Some perspectives: theoretical \& numerical

1. Stability results: Approximating the general OSP by the OSP with finite number of modes
Objective: explicit rate of convergence
2. Refinements in Markovian setting (($\left.I, X^{\prime}\right)$ Markov process)
3. Numerical perspectives

Numerical solving of the "dual" BSDE.
Note when $\operatorname{Card}(A)<\infty$ but too large, simulating the solution of multidim BSDE system becomes unfeasible.

Thanks for your attention!

