

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Optimal switching problems with an infinite set of modes: an approach by randomization and constrained backward SDEs

M.-A. Morlais (LMM - IRA, Le Mans Université, France) j.w.w. M. Fuhrman (Milano, Italy)

9th BSDE international Colloquium Université Savoie Mont Blanc (27/06 - 01/07/2022)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline of the talk

- I- Preliminaries & motivations
 - The Optimal Switching problem (OSP): primal vs dual formulation.
 - Assumptions for the dual formulation.
 - Why choosing the "dual" approach ?
- II- Main results & perspectives
 - The two main results:
 - (i): equality between the two value functions;
 - (ii): new BSDE characterization.
 - Perspectives

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- I.1 Primal optimal switching problem and value function On a standard prob. space $(\Omega, \mathbb{F}, \mathbb{P})$, let
 - W: standard d-dim. Brownian Motion, W F-adapted. usually: F = F^W ∨ N.
 - ► *T* fixed finite horizon; *A* set of modes (possibly **infinite**).

▶
$$\forall$$
 (x_0 , e) $\in \mathbb{R}^n \times A$, let X^e proc. s.t.

$$\forall t \in [0, T], \ X_t^e = x_0 + \int_0^t (b^e(s, X_{\cdot}^e) ds + \sigma^e(s, X_{\cdot}^e) dW_s),$$

- I.1 Primal optimal switching problem and value function On a standard prob. space $(\Omega, \mathbb{F}, \mathbb{P})$, let
 - W: standard d-dim. Brownian Motion, W F-adapted. usually: F = F^W ∨ N.
 - T fixed finite horizon; A set of modes (possibly infinite).
 - ▶ \forall (x_0 , e) $\in \mathbb{R}^n \times A$, let X^e proc. s.t.

$$\forall t \in [0, T], \ X_t^e = x_0 + \int_0^t (b^e(s, X_{\cdot}^e) ds + \sigma^e(s, X_{\cdot}^e) dW_s),$$

Let $(f^e)_e$, $(g^e)_e$ and $(c_{e,e'})_{(e,e')}$: 3 families of (possib. **random**) real-valued data

- (i) $f^e(s, X)$: instant. profit (when system in mode e)
- (ii) $g^e(X)$: payoff at time T when syst. in mode e,
- (iii) $c_{e,e'}(s, X)$: nonnegative penalty costs incurred at time s when switching from e to e'.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

I.1 Primal optimal switching problem and value function

- Mathematical assumptions:
 - A: Borel set (example: any subspace of \mathbb{R}^d);
 - Both $(b^e, \sigma^e)_e$, (f^e, g^e) , $(c_{e,e'})_{e,e'}$ may be path-dependent;

• Let \mathbb{C}^n : set of continuous paths $(s \mapsto x(s))_{s \in [0,T]}$ Topology on \mathbb{C}^n : $|x|_* = \sup_{s \in [0,T]} |x(s)|$

I.1 Primal optimal switching problem and value function

- Mathematical assumptions:
 - A: Borel set (example: any subspace of \mathbb{R}^d);
 - Both $(b^e, \sigma^e)_e$, (f^e, g^e) , $(c_{e,e'})_{e,e'}$ may be path-dependent;

• Let \mathbb{C}^n : set of continuous paths $(s \mapsto x(s))_{s \in [0,T]}$ Topology on \mathbb{C}^n : $|x|_* = \sup_{s \in [0,T]} |x(s)|$

Measurability

 $(\overline{t,\omega,e}) \mapsto b^{e}(\overline{t}, x(\omega), \omega), \ \sigma^{e}(t,\omega, x(\omega), e) \text{ are } Prog(\mathbb{C}^{n}) \otimes \mathcal{B}(A) \text{ meas.; (similar for } f^{e}, g^{e}, c_{e,e'})$ $Prog(\mathbb{C}^{n}): \ \sigma\text{-algebra of prog. measurable maps on } [0, T] \times \Omega.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

I.1 Primal optimal switching problem and value function

Math. Assumptions (cont'):

• For every *t* in [0, *T*], $(x, e) \mapsto b_t(x, e) \sigma_t(x, e), f_t(x, e), g(x, e)$ are continuous on $\mathbb{C}^n \times A(x, e, e') \mapsto c_t(x, e, e')$ is continuous on $\mathbb{C}^n \times A \times A$.

- Regularity & growth assumpt (wrt *x*): $\exists \frac{K > 0 \text{ s.t. } \forall (t, x, x', e, e') \in [0, T] \times \mathbb{C}^n \times \mathbb{C}^n \times A \times A,$
 - (i) $|b_t(x, e) b_t(x', e)| + |\sigma_t(x, e) \sigma_t(x', e)| \le K|x x'|_{t*}$ Similar for other data.

(ii) $|b(t, 0, e)| + |\sigma(t, 0, e)| \le K$;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

I.1 Primal optimal switching problem and value function

• Growth assumpt wrt x (cont') $\exists r, K > 0 \text{ s.t. } \forall (t, x, x', e, e') \in [0, T] \times \mathbb{C}^n \times \mathbb{C}^n \times A \times A,$ (iii) $|f(t, x, e| + |g(x, e)| + |c(t, x, e, e')| \le K(1 + |x|_{t_*}^r)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

I.1 Primal optimal switching problem and value function

- Growth assumpt wrt x (cont')
- $\exists \overline{r, K > 0 \text{ s.t. } \forall (t, x, x', e, e')} \in [0, T] \times \mathbb{C}^n \times \mathbb{C}^n \times A \times A,$

(iii)
$$|f(t, x, e)| + |g(x, e)| + |c(t, x, e, e')| \le K(1 + |x|_{t*}^r)$$

Comment

(i)-(iii) standard to obtain estim.

(a) Estim. (of Hilbertian norm) of process X^e (see Cosso-Confortola-Fuhrman '18);
(b) Estim. of the value function (well known in Markovian case).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I.1 Primal optimal switching problem and value function

- 1. Let $\alpha = (\tau^n, \xi^n)_{n \ge 1}$ with $\tau^1 > 0$. α = management strategy
- 2. To α , we associate the state proc. *a* as follows

$$\boldsymbol{a}_{\boldsymbol{s}} = \xi^{1} \boldsymbol{1}_{\boldsymbol{s} < \tau_{1}} + \sum_{n \geq 1} \xi^{n+1} \boldsymbol{1}_{\tau^{n} \leq \boldsymbol{s} < \tau_{n+1}} \boldsymbol{1}_{\tau^{n} < T}$$

a: piecewise constant proc. A-valued

By abuse, one may replace α by *a*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

I.1 Primal value function: Admissible set A $a = (\tau^n, \xi^n)$ is said *admissible* (*a* in A if

H₁ $(\tau^n(\cdot), \xi^n(\cdot))_n$ - $\mathbb{R}^+ \times$ A-valued \mathbb{F} -adapt. such that $\tau_n(\omega) \to +\infty$ and $\tau^n < \tau^{n+1}$, \mathbb{P} -a.s

simultaneous switchings prohibited: equivalent to

$$orall (a_1,a_2,a_2)\in A^3, \quad c_{a_1,a_2}(t,x)+c_{a_2,a_3}(t,x)>c_{a_1,a_3}(t,x)$$

Stronger than the no-loop property (in finite case).

(日) (日) (日) (日) (日) (日) (日)

I.1 Primal value function: Admissible set A $a = (\tau^n, \xi^n)$ is said *admissible* (*a* in A if

H₁ $(\tau^n(\cdot), \xi^n(\cdot))_n$ - $\mathbb{R}^+ \times$ A-valued \mathbb{F} -adapt. such that $\tau_n(\omega) \to +\infty$ and $\tau^n < \tau^{n+1}$, \mathbb{P} -a.s

simultaneous switchings prohibited: equivalent to

$$orall (a_1,a_2,a_2)\in A^3, \quad c_{a_1,a_2}(t,x)+c_{a_2,a_3}(t,x)>c_{a_1,a_3}(t,x)$$

Stronger than the no-loop property (in finite case).

- **H**₂ **H**₁ implies: $N_T^a(\omega) = \text{Card}\{\tau^n(\omega), \tau^n < T\} < \infty, \mathbb{P}\text{-a.s}$
- **H**₃ Impose $\tau^n \neq T$: **no switching at terminal time**. In finite case, equivalent to:

$$orall \left(i,j
ight)\in oldsymbol{A} imesoldsymbol{A}, \ \ oldsymbol{g}^{i}(oldsymbol{X}_{T}^{i})>oldsymbol{g}^{j}(oldsymbol{X}_{T}^{j})-oldsymbol{c}_{i,j}(oldsymbol{T},oldsymbol{X}_{T}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

I.1 Primal optimal switching problem and value function

1. For *a* in A, let X^{α} (or X^{a}) the controlled proc. s.t.

$$dX^a = b^a(s, X^a)ds + \sigma^a(s, X^a_s)dW_s$$

with
$$b^{a}(s, x) = b^{\xi_{0}}(s, x)\mathbf{1}_{s < \tau^{1}} + \sum_{n \geq 1} b^{\xi^{n}}(s, x)\mathbf{1}_{\tau^{n} \leq s < \tau^{n+1}}$$
.
Similar definition for $\sigma^{a}(s, x)$.

Remark: *b* and σ path-dependent $\Rightarrow X^a$ no more Markovian (PDE approach not available).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- I.1 Primal control problem and (primal) value function
 - 1. Primal value function \mathcal{V}

$$\mathcal{V} = \sup_{\alpha \in \mathcal{A}} (\mathcal{J}(\alpha)), \text{ where }$$

$$\begin{aligned} J(\alpha) &= \mathbb{E}\left(g^{a_{T}}(X_{\cdot}) + \int_{0}^{T} f^{a_{s}}(s, X_{\cdot}^{a}) ds - \sum_{\substack{n \geq 1, \\ \tau_{n} < T}} c_{\xi_{n-1},\xi_{n}}(\tau^{n}, X_{\tau^{n}}^{a})\right) \\ &= J_{1}(\alpha) - J_{2}(\alpha) \end{aligned}$$

Objective: choose the best *a* (or α) to optimize $J(\alpha)$ and minimize $\mathcal{J}_2(\alpha)$.

A (non exhaustive) review of the literature

(1) OSP with finite set of modes:

- (i) Using PDE approaches: Ishii-Koike '91, Yong-Zhou '99, Ludkowski '05, Carmona-Ludkovski '07-08, ...
- Using BSDE and analyt. tools: Hamadène-Jeanblanc '02, Djehiche-Hamadene-Popier '08, Hu-Tang '07 Chassagneux-Elie Kharroubi; Elie-Kharroubi '08 '11, ...
- (iii) <u>Standard OSP with refinements:</u> infinite horizon, partial information, non positive costs: Lundstrom -Olofsson, R. Martyr, B. El Asri, ..
- (2) Connection between "finite" OSP & constrained BSDE:
 - (a) Ma-Pham-Kharroubi '08 (Markovian setting)
 - (b) Elie-Kharroubi ('14) (Non Markovian case)

(日) (日) (日) (日) (日) (日) (日)

I.2 Randomized set-up & dual formulation

1. On $(\Omega', \mathbb{F}', \mathbb{P}')$ let $\mu = \sum_{n \ge 0} \delta_{\sigma^m, \zeta^m}$ be a Poisson random meas. s.t.

(i) Random dates & marks (σ^m, ζ^m)_m ℝ⁺ × A-valued;
(ii) μ indep. of W with μ̂(de, ds) = λ(de)ds s.t
(a) μ̃ = μ − μ̂ is a martingale measure;
(b) λ(de) has full support and λ(A) < +∞.

I.2 Randomized set-up & dual formulation

1. On $(\Omega', \mathbb{F}', \mathbb{P}')$ let $\mu = \sum_{n \ge 0} \delta_{\sigma^m, \zeta^m}$ be a Poisson random meas. s.t.

(i) Random dates & marks (σ^m, ζ^m)_m ℝ⁺ × A-valued;
(ii) μ indep. of W with μ̂(de, ds) = λ(de)ds s.t
(a) μ̃ = μ − μ̂ is a martingale measure;
(b) λ(de) has full support and λ(A) < +∞.

2. The *randomized* dual set up := $(\overline{\Omega}, \overline{\mathbb{P}}, \overline{\mathcal{F}}, \overline{W}, \overline{\mu})$: (2.i) Let $\overline{\Omega} := \Omega \times \Omega', \overline{\mathbb{P}} = \mathbb{P} \otimes \hat{\mathbb{P}}'$ and $\overline{\mathcal{F}} = \mathbb{F}^{W,\mu}$, with

$$\mathbb{F}^{W,\mu} := (\mathbb{F}^W \vee \mathbb{F}^\mu) \vee \mathcal{N}$$

I.2. The randomized set-up and dual formulation

1. Let *I* (resp. \overline{I}) the Poisson point proc. assoc. with μ (resp. $\overline{\mu}$) as follows

$$\forall t \in [0, T], \quad I_t = \zeta^0 \mathbf{1}_{t < \sigma^1} + \sum_{m \ge 1} \zeta^m \mathbf{1}_{\sigma^m \le t < \sigma^{m+1}}.$$

Note that $N_T' := \text{Card}\{m \ge 1, \sigma_m(\omega') < T\} < \infty, \mathbb{P}'$ -a.s.

2. On *randomized* prob. space, $(\overline{I}, X^{\overline{I}})$ is a **forward uncontrolled proc.** with

$$X_t^{\overline{l}} = x_0 + \int_0^t \left(b^{\overline{l}_s}(s, X^{\overline{l}}) ds + \sigma^{\overline{l}_s}(s, X^{\overline{l}}) dW_s \right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

I.2. The randomized set-up and dual formulation

1. To any proc. $\overline{\nu} \mathbb{F}^{W,\mu}$ -meas., associate process $\kappa^{\overline{\nu}}$

$$\kappa_T^{\overline{\nu}} = \mathcal{E}_T((\overline{\nu} - 1) \star \tilde{\mu}) = e^{-\int_0^T \int_A (\overline{\nu}_s(e) - 1)\lambda(de)ds} \prod_{\substack{m \geq 1 \\ \zeta_m < T}} \overline{\nu}_{\sigma^m}(\zeta^m)$$

- Let P
 [¯] with density κ[¯], i.e. d
 [¯] d
 [¯] = κ[¯]
 then, under P
 [˜],
 (a) *Ī* remains Poisson point proc.;
 (b) New compensated meas.
 [¯] ε_s(e)λ(de)ds
- 3. Set of dual controls

 $\mathcal{A}^{R} := \{ \overline{\nu} : \overline{\Omega} \times [0, T] \times A \mapsto]0; \infty [\text{ meas. and essentially bounded} \}$

I.2 The randomized set-up: dual formulation

1. Let $\mathcal{V}^R_0 = \sup_{\overline{\nu} \in \mathcal{A}^R} J^R(\overline{\nu})$ be the dual value function with

$$J^{R}(\overline{\nu}) = \underbrace{\mathbb{E}^{\overline{\nu}}\left(g(X^{I}, I_{T}) + \int_{t}^{T} f(s, X^{I}, I_{s}) ds\right)}_{=J_{1}^{R}(\overline{\nu})} - \underbrace{\mathbb{E}^{\overline{\nu}}\left(\sum_{m \geq 1} c_{\zeta_{m-1}, \zeta_{m}}(\sigma^{m}, X_{\sigma^{m}})\right)}_{=J_{2}^{R}(\overline{\nu})}$$

 $\bar{\mathbb{E}}^{\overline{\nu}}$ stands for expectation under meas. $\mathbb{P}^{\overline{\nu}}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

I.2 The randomized set-up: Major comments

- Unique assumption on A: it is a Borel space No compactness assumption.
 Desirable properties: A both metric and separable.
- 2. Exogeneous proc. X (resp. \bar{X}) not necess. Markovian
- 3. The controlled volatility process may be degenerate (contrary to papers using PDE approaches).
- 4. If *b*, σ only depends on (*x*, *a*) not on ω , then the pair (*I*, *X'*) is a Markov process.

Main results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

II First main result & comments

Under all previous assumptions on the primal & dual version of the OSP, one claims

$$\mathcal{V}_0=\mathcal{V}_0^{\mathcal{R}}=\mathbf{v}_0(\mathbf{x}_0,\mathbf{a}_0).$$

This **deterministic** common value function only depends on $X_0 = x_0$ and initial mode a_0 and not of the choice of the randomized set up:

(i.e. neither on the construction of the extended dual set-up nor on the choice of intensity measure λ).

Main results

(ロ) (同) (三) (三) (三) (○) (○)

II. Second main result: BSDE characterization Let $Y^{\mathcal{R}}$ be the *minimal* solution of following BSDE

$$\begin{cases} Y_t^{\mathcal{R}} = g(X, I_T) + \int_t^T f_s(X, I_s) \, ds + K_T - K_t \\ - \int_t^T Z_s dW_s - \int_{(t,T]} \int_A U_s(a) \, \tilde{\mu}(ds \, da), \\ U_t(a) \leq c_t(X, I_{t-}, a), \ \lambda(da) ds \, \mathbb{P} - \text{a.s.} \end{cases}$$
(1)

then it holds

$$Y_0^{\mathcal{R}} = \mathcal{V}_0^{\mathcal{R}}.$$

Remark: (1) is a BSDE with constrained jumps & non decreas. proc K: K only càdlàg . $Y_t^{\mathcal{R}} \mathcal{F}_t^{W,\mu}$ -adapted.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

I.3. Why choosing randomization to study the OSP ?

1. when *A* infinite (even uncountable), the *infinite* system of RBSDEs does not seem well posed (at least to us..)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

I.3. Why choosing randomization to study the OSP ?

- 1. when A infinite (even uncountable), the *infinite* system of RBSDEs does not seem well posed (at least to us..)
- 2. For the primal OSP, many ingredients **deeply** use the finiteness of *A*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

I.3. Why choosing randomization to study the OSP ?

- 1. when A infinite (even uncountable), the *infinite* system of RBSDEs does not seem well posed (at least to us..)
- 2. For the primal OSP, many ingredients **deeply** use the finiteness of *A*.
- 3. the randomized set up allows to tackle general cases: path-dependency, possibly degenerate diffusions, case of an infinite set of modes.

(日) (日) (日) (日) (日) (日) (日)

I.3. Why choosing randomization to study the OSP ?

- 1. when A infinite (even uncountable), the *infinite* system of RBSDEs does not seem well posed (at least to us..)
- 2. For the primal OSP, many ingredients **deeply** use the finiteness of *A*.
- 3. the randomized set up allows to tackle general cases: path-dependency, possibly degenerate diffusions, case of an infinite set of modes.
- 4. Another motivation: in the Markovian setting, connection already proved by R.Elie & I.Kharroubi ('09, '10).

(ロ) (同) (三) (三) (三) (○) (○)

Connection with BSDE associated with the OSP (finite set of modes)

Let \mathcal{J} set of modes and let $(Y^i)_{i \in \mathcal{J}}$ solving

$$\begin{cases} Y_t^i = g(X_T, i) + \int_t^T f_s(X_s, i) \, ds + K_T^i - K_t^i \\ -\int_t^T Z_s^j dW_s, \end{cases} \\ Y_s^i \ge \max_{\{j \in \mathcal{J} \setminus \{i\}\}} \left(Y_s^j - c_{i,j}(s, X_s)\right) \text{ and} \\ \int_0^T (Y_s^i - \max_{\{j \in \mathcal{J} \setminus \{i\}\}} \left(Y_s^j - c_{i,j}(s, X_s)\right) dK_s^i = 0 \end{cases}$$

$$(2)$$

If BSDE system (2) has a solution, the *minimal* solution of dual BSDE (1) is s.t.

$$Y_t^{\mathcal{R}} = Y_t^{l_t}$$
 and $U_t(i) = Y_t^i - Y_t^{l_{t-1}}$.

Main results: the BSDE characterization

(日) (日) (日) (日) (日) (日) (日)

The minimal BSDE Let Y the *minimal* solution of following BSDE

$$\begin{cases} Y_t^{\mathcal{R}} = g(X, I_T) + \int_t^T f_s(X, I_s) \, ds + K_T - K_t \\ - \int_t^T Z_s dW_s - \int_{(t,T]} \int_A U_s(a) \, \tilde{\mu}(ds \, da), \\ U_s(a) \leq c_s(X, I_{s-}, a), \, \lambda(da) ds \, \mathbb{P} - \text{a.s.} \end{cases}$$
(3)

then it holds: $Y_0^{\mathcal{R}} = \mathcal{V}_0^{\mathcal{R}}$. Combined with first main result

$$Y_0^{\mathcal{R}} = \mathcal{V}_0^{\mathcal{R}} = \mathcal{V}_0 = \sup_{\alpha \in \mathcal{A}} \mathcal{J}(\alpha).$$

 $Y^{\mathcal{R}}$: obtained as the increasing limit of penalized scheme.

Main results: the BSDE characterization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Probabilistic representation

Let (Y^n) solving

$$\begin{cases} Y_t^n = g(X, I_T) + \int_t^T f_s(X, I_s) \, ds + K_T^n - K_t^n \\ - \int_t^T Z_s^n dW_s - \int_{(t,T]} \int_A U_s^n(a) \, \tilde{\mu}(ds \, da), \quad (4) \\ \text{with } dK_s^n = n \int_A \left(U_s^n(a) - c_s(X, I_s, a) \right)^+ \lambda(da) ds. \end{cases}$$

Main results: the BSDE characterization

Probabilistic representation

Let (Y^n) solving

$$\begin{cases} Y_t^n = g(X, I_T) + \int_t^T f_s(X, I_s) \, ds + K_T^n - K_t^n \\ - \int_t^T Z_s^n dW_s - \int_{(t,T]} \int_A U_s^n(a) \, \tilde{\mu}(ds \, da), \qquad (4) \\ \text{with } dK_s^n = n \int_A \left(U_s^n(a) - c_s(X, I_s, a) \right)^+ \lambda(da) ds. \end{cases}$$

It holds

$$Y_{t}^{n} = \operatorname{ess\,sup}_{\substack{\nu \in \mathcal{AR} \\ |\nu|_{\infty} \leq \mathbf{n}}} \quad \mathbb{E}^{\nu} (g(X_{T}, I_{T}) + \int_{t}^{T} f_{r}(X, I_{r}) dr \\ - \int_{t}^{T} \int_{\mathcal{A}} c_{r}(X_{r}, I_{r-}, a) \mu(da, ds) |\mathcal{F}_{t}^{W, \mu})$$
(5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Concluding remarks

Some perspectives: theoretical & numerical

- Stability results: Approximating the general OSP by the OSP with finite number of modes
 Objective: explicit rate of convergence
- 2. Refinements in Markovian setting ((I, X') Markov process)
- Numerical perspectives Numerical solving of the "dual" BSDE.

Note when $Card(A) < \infty$ but too large, simulating the solution of multidim BSDE system becomes unfeasible.

Concluding remarks

Some perspectives: theoretical & numerical

- Stability results: Approximating the general OSP by the OSP with finite number of modes
 Objective: explicit rate of convergence
- 2. Refinements in Markovian setting ((I, X') Markov process)
- Numerical perspectives Numerical solving of the "dual" BSDE.

Note when $Card(A) < \infty$ but too large, simulating the solution of multidim BSDE system becomes unfeasible.

Thanks for your attention !