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Stefan equation as a mean-field system

Stefan equation (Visintin 1998)

ut − L(uxx , ux , x , t) = 0, x ∈ D(t) or Rd \ ∂D(t), t > 0, u(x , 0) = φ(x),
(1)

u|∂D(t) = aV + bH, H is the mean curvature of ∂D(t),

where L is an elliptic operator (e.g., L = 1
2uxx) and the normal velocity

V (x , t) := Ḋ(x , t) of ∂D(t) at x ∈ ∂D(t) must, in addition, satisfy

V (x , t) =
1

2

[
lim

Dc (t)3y→x
ux(y , t) · ν(t, x)− lim

D(t)3y→x
ux(y , t) · ν(t, x)

]
,

with ν being the outer unit normal to ∂D(t).

Elliptic version of this problem is known as Hele-Shaw equation. Various
modifications of (1) form Laplacian growth models.

Applications: melting/solidification, condensation, crystal growth, aging of
alloys, interaction of fluids with different viscosities, dynamics of membrane
potentials in a network of neurons, tumor growth, etc.
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Stefan equation as a mean-field system

Stefan equation

Ḋ(x , t) = V (x , t) =
1

2

[
lim

Dc (t)3y→x
ux(y , t) · ν(t, x)− lim

D(t)3y→x
ux(y , t) · ν(t, x)

]
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Stefan equation as a mean-field system Regular Stefan problem

Probab-c rep-n for regular (φ ≥ 0, a = b = 0),
single-phase, one-dim. (d = 1) Stefan problem

ut −
1

2
uxx = 0, x > Λ(t), t > 0, u(x , 0) = φ(x),

u(Λ(t)+, t) = 0, −Λ̇(t) =
1

2
ux(Λ(t)+, t), Λ(0) = 0

Assume φ ≥ 0,
∫∞

0
φ = 1, and let ϕ(·, t) be Gaussian kernel with variance t.

Feynman-Kac formula and time reversal of BM W yield

σ := inf{s ≥ 0 : x + Ws ≤ Λ(t − s)}, u(x , t) = E [φ(x + Wt)1σ>t ]

=

∫ ∞
0

φ(y)ϕ(x − y , t)P
(

inf
s∈[0,t]

(x + Ws − Λ(t − s)) > 0 | x + Wt = y

)
dy

=

∫ ∞
0

φ(y)ϕ(x − y , t)P
(

inf
s∈[0,t]

(y + Ws − Λ(s)) > 0 | y + Wt = x

)
dy

= P(Xt ∈ dx , τ > t)/dx , Xt = ξ + Wt , τ := inf{s ≥ 0 : ξ + Ws ≤ Λ(s)},
with an independent r.v. ξ having density φ.
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Stefan equation as a mean-field system Regular Stefan problem

Probab-c representation of the growth condition

u(x , t) = P(Xt ∈ dx , τ > t)/dx , x > Λ(t),

Xt = (ξ + Wt∧τ ), τ := inf{s ≥ 0 : ξ + Ws ≤ Λ(s)},

−Λ̇(t) =
1

2
ux(Λ(t)+, t), Λ(0) = 0 (2)

We have established that u(·, t) is the density of the marginal distribution of
a BM absorbed at Λ, before absorption.

To derive a probabilistic representation for Λ (to replace (2)), we notice that

d

dt
P(τ > t) =

d

dt

∫
Λ(t)

u(x , t)dx = −Λ̇(t)u(Λ(t)+, t) +

∫
Λ(t)

ut(x , t)dx

=
1

2

∫
Λ(t)

uxx(x , t)dx = −1

2
ux(Λ(t), t) = Λ̇(t),

Λ(t) = −P(τ ≤ t)
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Stefan equation as a mean-field system Regular Stefan problem

Stefan problem as a McKean-Vlasov equation:
single-phase, d = 1, regular

u(x , t) = P(Xt ∈ dx , τ > t)/dx , x > Λ(t), Λ(t) = −P(τ ≤ t),

Xt = (ξ + Wt∧τ ), τ := inf{s ≥ 0 : ξ + Ws ≤ Λ(s)}, ξ ∼ u(0, x) dx

The above system is a McKean-Vlasov equation, as the dynamics of X
depend explicitly on its distribution.

Levine-Peres 2010 show that the regular Stefan (and Hele-Shaw) equation
can be obtained as a scaling limit of Internal Diffusion Limited
Aggregation (DLA) model.

This probabilistic connection offers a new perspective (and a new numerical
method), but the well-posedness of regular Stefan equation (for any d and
with any number of phases) was established a long time ago (e.g., in
Kamenomostskaja 1961).
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Stefan equation as a mean-field system Supercooled Stefan problem

Supercooled Stefan problem

ut − L(uxx , ux , x , t) = 0, x ∈ D(t) or Rd \ ∂D(t), t > 0, u(x , 0) = φ(x),

u|∂D(t) = aV + bH, H is the mean curvature of ∂D(t),

Ḋ(x , t) = V (x , t) =
1

2

[
lim

Dc (t)3y→x
ux(y , t) · ν(t, x)− lim

D(t)3y→x
ux(y , t) · ν(t, x)

]

If φ ≤ 0, a = b = 0 (and w.l.o.g.
∫∞

0
φ = −1), we call this Stefan problem

supercooled, as the liquid temperature is below the freezing point.

Such problems appear in the modeling of: solidification process (e.g., to
produce glassy metals), crystal growth, macroscopic dynamics of neurons’
membrane potentials, Hele-Shaw cell, etc.

Main challenges (as compared to regular case):

1 No global comparison principle.
2 Time-singularity of D(·).

Sergey Nadtochiy (IIT) Stefan equations with supercooling Annecy 7 / 30



Stefan equation as a mean-field system Supercooled Stefan: special features

Regular Stefan: comparison principle

u1(·, 0) ≥ u2(·, 0) ⇒ u1(·, t) ≥ u2(·, t)
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Stefan equation as a mean-field system Supercooled Stefan: special features

Supercooled Stefan: no comparison principle

u1(·, 0) ≥ u2(·, 0) ; u1(·, t) ≥ u2(·, t)
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Stefan equation as a mean-field system Supercooled Stefan: special features

Time-singularity of the boundary

The faster the boundary moves up, the steeper is the graph of u(·, t) at the

boundary.
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Stefan equation as a mean-field system Supercooled Stefan: special features

Jump size of the boundary

Λ(t)− Λ(t−) = inf{z > 0 : −
∫ Λ(t−)+z

Λ(t−)

u(y , t−) dy < z}
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Stefan equation as a mean-field system Supercooled Stefan: results for d = 1

Probabilistic representation for single-phase
supercooled Stefan, d = 1

ut −
1

2
uxx = 0, x > Λ(t), t > 0, u(x , 0) = φ(x) ≤ 0,

u(Λ(t)+, t) = 0, −Λ̇(t) =
1

2
ux(Λ(t)+, t), Λ(0) = 0

Similar to the regular case, one can derive the following probabilistic
representation of a single-phase supercooled Stefan problem, with d = 1:

Xt = ξ + Wt∧τ , ξ ∼ −φ(x)dx ≥ 0, x > 0,

τ := inf{s ≥ 0 : ξ + Ws ≤ Λ(s)}, Λ(t) = P(τ ≤ t),

Λ(t)− Λ(t−) = inf{z > 0 : P (τ ≥ t, Xt− ∈ (Λ(t−),Λ(t−) + z ]) < z}

Theorem. For small initial data, −1 < φ ≤ 0,
∫
φ = −1, there exists a

unique (smooth) solution to the above system.

This result was first established in 1980s: see, e.g., Fasano-Primicerio 1981
and Chayes-Swindle 1996 for PDE methods, and Ledger-Sojmark 2019 for
probabilistic approach.
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Stefan equation as a mean-field system Supercooled Stefan: results for d = 1

Sketch of the proof: small initial data

Xt = ξ + Wt∧τ , ξ ∼ −φ(x)dx , x > 0,

τ := inf{s ≥ 0 : ξ + Ws ≤ Λ(s)}, Λ(t) = P(τ ≤ t)

The mapping Γ 7→ Λ,

Λ(t) := P( inf
s∈[0,t]

(ξ + Ws − Γ(s)) ≤ 0) = −
∫ ∞

0

φ(x)P( inf
s∈[0,t]

(Ws − Γ(s)) ≤ −x) dx ,

is a contraction:

Λ(t)− Λ̃(t) ≤
∫ ∞

0

|φ(x)|P

(
inf

s∈[0,t]
(Ws − Γ(s)) ∈ [−x − sup

[0,T ]

|Γ− Γ̃|, −x ]

)
dx

≤ sup
R+

|φ|E
∫ ∞

0

1{−x−sup[0,T ] |Γ−Γ̃| ≤ infs∈[0,t](Ws−Γ(s))≤−x} dx ≤ sup
R+

|φ| sup
[0,T ]

|Γ− Γ̃|
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Stefan equation as a mean-field system Supercooled Stefan: results for d = 1

Single-phase supercooled Stefan, d = 1:
well-posedness w/o smallness

Xt = ξ + Wt∧τ , ξ ∼ −φ(x)dx ≥ 0, x > 0,

τ := inf{s ≥ 0 : ξ + Ws ≤ Λ(s)}, Λ(t) = P(τ ≤ t),

Λ(t)− Λ(t−) = inf{z > 0 : P
(
τ ≥ t, Xt− ∈ (Λ(t−),Λ(t−) + z ] < z

)
If we do not assume that |φ| < 1, the previous argument fails. Nevertheless,
existence (by approximation) and uniqueness (by a different argument) of
the solution have been established.

Theorem. (Delarue et al 2015, N.-Shkolnikov 2019, Ledger-Sojmark 2019,
Cuchiero et al 2021) There exists a probabilistic solution (X ,Λ) for any
absolutely integrable −φ ≥ 0,

∫
φ = −1.

Theorem. (Delarue-N.-Shkolnikov 2019) Assume that −φ ≥ 0 is bounded
and changes its monotonicity finitely many times on any compact. Then,
the probabilistic solution (X ,Λ) is unique.
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Stefan equation as a mean-field system Supercooled Stefan: results for d = 1

Single-phase supercooled Stefan, d = 1: existence
via particle representation

Particles {X i,N}Ni=1 perform random walks, started from i.i.d. {X i,N
0 }Ni=1

generated from −φ(x) dx .

Each particle is absorbed when hitting the aggregate [0,Λ(·)], increasing
the aggregate by 1/N.

Theorem (Delarue et al 2015, N.-Shkolnikov 2019, Ledger-Sojmark 2019,
Cuchiero et al 2020) As N →∞, there exists at least one (weak) limit point
(X ,Λ) of {(X 1,N ,ΛN)}N , and any such limit point is a (probabilistic)
solution to the single-phase supercooled Stefan problem with d = 1.
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Stefan equation as a mean-field system Supercooled Stefan: results for d = 1

Single-phase supercooled Stefan, d = 1: proof of
uniqueness

Xt = ξ + Wt∧τ , ξ ∼ −φ(x)dx ≥ 0, x > 0,

τ := inf{s ≥ 0 : ξ + Ws ≤ Λ(s)}, Λ(t) = P(τ ≤ t),

Λ(t)− Λ(t−) = inf{z > 0 : P
(
τ ≥ t, Xt− ∈ (Λ(t−),Λ(t−) + z ] < z

)

Proposition. Assume that u(0−, ·) = −φ(·) is bounded and changes its
monotonicity finitely many times on any compact. Then, for any two
probabilistic solutions (X 1

t ,Λ
1(t)), (X 2

t ,Λ
2(t)), with Λ1(0−) = Λ2(0−), there

exist δ, ε > 0 s.t. u1(0, x) = u2(0, x) > −1 for x ∈ (0, δ], and hence the two
solutions coincide for t ∈ [0, ε].

Thus, it remains to prove that, for any t, u(t−, ·) changes its monotonicity
finitely many times on any compact.
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Stefan equation as a mean-field system Supercooled Stefan: results for d = 1

Points of monotonicity changes cannot multiply
Extending the results of Angenent-Fiedler 1988, we show that the curves that
separate the domains of positive and negative values of

v(t, ·) := −ux(t, ·)
look as follows:
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Stefan equation as a mean-field system Supercooled Stefan with d > 1

Prob-c rep-n: single-phase supercooled Stefan,
d ≥ 2 (N.-Shkolnikov-Zhang 2022)

ut −
1

2
uxx = 0, x ∈ D(t), t > 0,

u|∂D(t) = 0, u(x , 0) = φ(x) ≤ 0,

Ḋ(x , t) = V (x , t) =
1

2

[
lim

Dc (t)3y→x
ux(y , t) · ν(t, x)− lim

D(t)3y→x
ux(y , t) · ν(t, x)

]
(3)

The first two lines of the above are expressed probabilistically as:

Xt = ξ + Wt∧τ , ξ ∼ −φ(x)dx ≥ 0,

τ := inf{s ≥ 0 : ξ + Ws ∈ Γ(s)}, Γ(t) := Rd \ D(t)

Growth condition (3) is equivalent to: P(Xt ∈ dx , τ ≤ t) = 1Γ(t)(x) dx .
(See also Kim-Kim 2021 for connections to optimal transport.)
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Stefan equation as a mean-field system Supercooled Stefan with d > 1

d = 2: Diffusion Limited Aggregation (DLA)

Particles {X i,N}Ni=1 perform random walks.

Each particle is absorbed when hitting the aggregate Γ(·), adding the
square in which the particle is located to the aggregate.

This is a Multiparticle External Diffusion Limited Aggregation.
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Stefan equation as a mean-field system Supercooled Stefan with d > 1

Negative result for d = 2

N.-Shkolnikov-Zhang 2021. Every limit point of {(X 1,N ,ΛN)}N (at least one limit

point does exist) corresponds to a BM absorbed at hitting the aggregate, but the

growth condition is only satisfied with inequality: P(Xt ∈ dx , τ ≤ t) < 1Γ(t)(x)dx .
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Stefan problem with surface tension

Two-phase Stefan with surface tension

ut − L(uxx , ux , x , t) = 0, x ∈ Rd \ ∂D(t), t > 0, u(x , 0) = φ(x),

u|∂D(t) = bH, H is the mean curvature of ∂D(t),

Ḋ(x , t) = V (x , t) =
1

2

[
lim

Dc (t)3y→x
ux(y , t) · ν(t, x)− lim

D(t)3y→x
ux(y , t) · ν(t, x)

]

Why surface tension? It regularizes ∂Γ(t)(= ∂D(t)) and eliminates the
degeneracy observed in limiting DLA aggregate.

New challenges:

Single-phase simplification is impossible (only two-phase).
It is typically impossible to avoid supercooling, even if φ ≥ 0.
Partial maximum principle (available in 1-phase 1-dim. supercooled
Stefan, with b = 0) no longer holds.

Merimanov 1994 shows that classical solution fails to exist globally even in a
radially symmetric case.

Luckhaus 1990 constructs weak solutions, but shows that the proposed
notion of a solution is too weak to yield uniqueness.
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Stefan problem with surface tension

Two-phase Stefan w. surface tension: probab-c
representation?

One can try to construct an analogous McKean-Vlasov (or particle) system.

Main problem: if u(·, t) was the density of a limiting process Xt ,
absorbed at Γ, we would have u|∂Γ(t) = 0!

What is the probabilistic interpretation of u|∂Γ(t) = H?
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Stefan problem with surface tension Solution

Probab-c rep-n of the surface tension condition
u|∂Γ(t) = H

Main idea: particles are not only absorbed at hitting the aggregate, but new
particles are expelled from the aggregate.

Consider Brownian particles generated at Poisson times with rate 1/(2δ),
stated from the initial location δ > 0, and absorbed at zero.

The (non-probability) measure given by the expected sum of distributions of
all survived particles at time t is

uδ(x , t) = t
P(Bδt−τ ∈ dx , infs∈[0,t−τ ] B

δ
s > 0)

2δ dx
, x > 0,

where Bδ is a BM started from δ > 0, independent of τ ∼ Unif (0, t).

Claim. For any x > 0, we have

lim
δ↓0

uδ(x , t) = 2(1− Φ(x/
√
t)) =: u0(x , t), u0

t =
1

2
u0
xx , u0(0, t) = 1,

where Φ is the standard normal c.d.f.
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Stefan problem with surface tension Solution

Stefan w. surface tension, under radial symmetry

ut −
1

2
uxx = 0, x ∈ Rd , |x | 6= Λ(t), t > 0, u(x , 0) = φ(x),

u||x|=Λ(t) = H(Λ(t)) = −1/Λ(t),

Λ̇(t) =
1

2

[
lim

y→x, |y |<|x|
ux(y , t) · x

|x |
− lim

y→x, |y |>|x|
ux(y , t) · x

|x |

]
, |x | = Λ(t)

Due to radial symmetry, we expect that u(x , t) depends on x only via |x |. Thus,
we can reduce the above Stefan problem to an equation in spatial dimension one:

ut −
1

2
uxx −

d − 1

2x
ux = 0, x ∈ R \ {Λ(t)}, t > 0, u(x , 0) = φ(x),

u(Λ(t)±, t) = −1/Λ(t),

Λ̇(t) =
1

2

[
ux(Λ(t)−, t)− ux(Λ(t)+, t)

]
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Stefan problem with surface tension Solution

Stefan w. surface tension, under radial symmetry:
probabilistic representation

ut −
1

2
uxx −

d − 1

2x
ux = 0, x ∈ R \ {Λ(t)}, t > 0, u(x , 0) = φ(x),

u(Λ(t)±, t) = H(Λ(t)) := −1/Λ(t),

Λ̇(t) =
1

2

[
ux(Λ−, t)− ux(Λ+, t)

]
The following Feynman-Kac formula gives a probabilistic representation for
v := −u:

v(t, x) := Ex
[
1{τ≤t} · H(Rτ )

]
+ Ex

[
1{τ>t} · (−φ(Rt))

]
,

1

d

(
Λd(t)− Λd(0−)

)
=

∫
R+

(−φ(x)) ν(dx)−
∫
R+

v(t, x) ν(dx),

where R is a Bessel process, ν(dx) := xd−1 dx , and τ is the first crossing time of

Λ(t − ·) by R.
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Stefan problem with surface tension Solution

Probabilistic solution to Stefan problem w. surface
tension, under radial symmetry: definition

v(t, x) := Ex
[
1{τ≤t} · H(Rτ )

]
+ Ex

[
1{τ>t} · (−φ(Rt))

]
,

1

d

(
Λd(t)− Λd(0−)

)
=

∫
R+

(−φ(x)) ν(dx)−
∫
R+

v(t, x) ν(dx),

To have a chance for uniqueness, we add the jump condition:

Λ(t−)− Λ(t) = inf

{
z ∈ (0,Λ(t−)] :

∫ Λ(t−)

Λ(t−)−z
v(t−, x) ν(dx)

>

∫ Λ(t−)

Λ(t−)−z

(
H(x)− 1

)
ν(dx)

}
,

Λ(t)− Λ(t−) = inf

{
z > 0 :

∫ Λ(t−)+z

Λ(t−)

v(t−, x) ν(dx)

<

∫ Λ(t−)+z

Λ(t−)

(
H(x) + 1

)
ν(dx)

}
.
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Stefan problem with surface tension Solution

Probab-c Stefan w. surface tension, under radial
symmetry: existence via approximation

v(t, x) := Ex
[
1{τ≤t} · H(Rτ )

]
+ Ex

[
1{τ>t} · (−φ(Rt))

]
,

1

d

(
Λd(t)− Λd(0−)

)
=

∫
R+

(−φ(x)) ν(dx)−
∫
R+

v(t, x) ν(dx),

Λ(t−)− Λ(t) = inf

{
z ∈ (0,Λ(t−)] :

∫ Λ(t−)

Λ(t−)−z
v(t−, x) ν(dx)

>

∫ Λ(t−)

Λ(t−)−z

(
H(x)− 1

)
ν(dx)

}
,

Λ(t)− Λ(t−) = . . .

Theorem (N.-Shkolnikov 2022). Assume that φ ≥ −1 and that
|φ(x)| ≤ C exp(−Cx). Then, for d ≥ 3, there exists a solution to the above
system.
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Stefan problem with surface tension Solution

Numerical experiment

Figure: Graph of Λ(·), for d =3 and the initial data Λ(0−) = 0.9, φ=−1[0,0.81].
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Stefan problem with surface tension Solution

About the proof
For a given piece-wise constant cadlag Λ∆, consider:

a d-dimensional Bessel process X started according to the density
−φ(x) xd−1

and its crossing time τ∆ := inf{t > 0: (Xt − Λ∆
t )(X0 − Λ∆

0 ) < 0} of Λ∆
· ;

for m ≥ 1, the d-dim. Bessel processes {Xm,i,∆}i≥1 started at time m∆
from the atoms of an independent Poisson random measure of intensity H in
the interval between Λ∆

(m−1)∆ and Λ∆
m∆,

and their crossing times τm,∆i of Λ∆
· ;

the jumps times {T δ,∆
i }i≥1 of a Poisson process with rate 2δ−1(Λ∆)d−2, for

δ > 0;

[−1, 1]-valued independent uniform random variables {γi}i≥1;

independent d-dimensional Bessel processes {Y δ,i,∆}i≥1 started at the times

{T δ,∆
i }i≥1 from {(Λ∆

Tδ,∆i

+ δγi ) ∨ 0}i≥1, respectively,

and their crossing times τ δ,∆i of Λ∆
· .
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Stefan problem with surface tension Solution

Implicit Euler scheme

Fix ∆ > 0 and define Λ∆ by solving the following recursive equations, for all
m = 0, 1, . . .:

1

d

(
(Λ∆

m∆)d−(Λ∆
0−)d

)
= P(τ∆≤m∆)−

m∑
n=1

∑
i≥1

P(τn,∆i >m∆)

− lim
δ↓0

∑
i≥1

P(T δ,∆
i ≤m∆<τ δ,∆i )

Theorem (N.-Shkolnikov 2022) {Λ∆}∆↓0 is pre-compact in M1, and its
every limit point yields a probabilistic solution to the supercooled Stefan
problem with surface tension, under radial symmetry.
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