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Monge—Kantorovich Optimal Transport

Given:
@ Probability spaces (X, 1) and (Y, v), Polish

@ Cost function ¢ : X x Y — R, continuous

Problem:

e Find a coupling 7 of the marginals 1, v such as to minimize the cost:

CO(:“’? V) - Weli—lr}ft V) / C(X7 y) 7['(dX7 dy)

with (1) = { : (projx)em = 1, (projy) e = v}
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Entropic Optimal Transport

Regularization parameter £ > 0

Entropic optimal transport (EOT) problem:

Cc:= inf / cdrm+eH(n|P), P:=p®v
meN(uv) JXxy

@ H(-|P) is relative entropy (Kullback—Leibler divergence) wrt. P,

[log(95) dm, 7 < P,

H(r|P) := {oo P& P,

Call problem finite if C. < oo

In that case, unique minimizer 7., and m ~ P

EOT is tradeoff between transport cost and entropy

“Interpolates” between P and optimal transport
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Entropic Regularization
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(Figure from Peyré—Cuturi 2019)
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Properties of EOT

e Computation through Sinkhorn's algorithm (IPFP)
@ Solve EOT for small ¢ to approximate OT

@ EOT has many desirable properties related to smoothness:
EOT as cost allows for gradient descent, improved sampling
complexity, ... Sinkhorn divergence, differentiable ranks, ...

@ EOT can also be written as pure entropy minimization problem:
the static Schrédinger bridge problem (Féllmer, Léonard, . ..)

e—c/a
. = inH(-|R fi dR == ————=dP
g HCIR) o 9R = gy
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Geometry of Optimal Transport

@ c-cyclical monotonicity captures geometry
@ 7 is an optimal transport iff spt is c-cyclically monotone

@ A cornerstone of modern OT theory: stability, Monge solutions, etc.

@ Definition: A set ' C X x Y is c-cyclically monotone if for all
(xi,yi)eT, 1<i<k,
k k
ZC Xlayl < ZC(Xi,yi+1) where Yk+1 = W1
i=1 i—1

2

i
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Geometry of EOT: Cyclical Invariance

Definition: m € M(u,v) is (c,e)-cyclically invariant if 7 ~ P and

k k
drm 1 drm
dP(X,,y,) exp ( - [; c(xi, yi) ,Z; c(xi, yit1 D dP(x,,y,H)

for all k € N and (x;,y;)5; C X x Y, where yi1 := y1.

o Equivalently, TT¥_; 9 (5., yi) = [Ty 95 (i, yis1)
e Equivalently, density admits a factorization Z—E(X,y) = a(x)b(y)
Borwein—Lewis (1992), Riischendorf-Thomsen (1997), ...

@ Main novelty: tool used along the lines of c-cyclical monotonicity
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Relation to Optimality

If EOT problem is finite:

e 7 cyclically invariant <= 7 is the minimizer.

In OT, geometry can single out a unique coupling even if optimization is
not meaningful. McCann (1995), ...

General EOT problem:

@ Uniqueness: There exists are most one cyclically invariant coupling
o Existence: See below
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Stability Theorem for EOT

e Marginals (fin, vn) — (1, v) converging weakly

@ Measurable cost functions ¢, — ¢ locally uniformly
0ec,—e>0

@ Stability: associated EOT solutions satisfy 7, — 7 weakly

If X,Y are Euclidean spaces, we can show:

Theorem

Let w, be cyclically invariant wrt. (cp,&n, ttn,vn). Then m, converges
weakly and the limit  is cyclically invariant wrt. (c, e, p, v).

o If the EOT problems are all finite, this states the stability of the
optimizers

o Implies existence of cyclically invariant coupling: approximate (u, )
with discrete marginals. Alternative proof (cf. OT).
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Remarks on the Proof

@ Imitate c-cyclical monotonicity: fix (x;, y;) and pass to limit in

k
dmp
TRn(XHYI) = H dR (Xla.yl+1)

@ Weak convergence and densities are not immediately compatible
@ Blow up points to balls, pass to limit of integrals, shrink back

— Condition: spaces X, Y satisfy a version of Lebesgue’s theorem on
differentiation of measures

o Step 1: 7, — wand R, — R imply m < R. Uses only a local
boundedness condition on dR,/dP,. Based on rigidity:

nf(:ﬂn(Ai x Bj) ~ nf'(:ﬂn(Ai X Bit1)
@ Step 2: Pass to limit in the display
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Setting

¢ continuous with growth of order p
N marginals p1, ..., uy on Polish spaces Xi,..., Xy
Marginals have finite p-th moments

Distance of marginals measured by

(ZINZ]_ Wi (wi, ﬂi)p)l/p, p < 00,

Wp(pt, - s i fins - - -, fin) = .
P maxi—1, N Weo (i, fii), p = o0.

@ Aim: estimate distance of value functions and optimizers
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Continuity of Value

EOT value (for e = 1) is

Clua, ... pun) == inf /cd7r—i—H(7r|P)7 P=/1® & uyn
7€M (1, stn)
Theorem
Let p € [1,00].

(i) Let puj, puf' € Pp(X;) satisfy limp Wp(pj, u?) =0 fori=1,...,N.
Then C(uf, ..., pupy) — C(pa, - .., ) and the associated optimal
couplings converge in W,,.

(i) Let pj, fii € Pp(Xj) fori=1,...,N and let c satisfy (A;). Then

’C(Mla' . '7MN) _C(ﬁ]-? s 7/1N)| S LWp(,“’l; cee nu’N;[Llu ce 7/1N)-

v
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Lipschitz-type Condition (A;)

Definition

Let p € [1,00] and pj, fii € Pp(Xi), i=1,...,N. For a constant L > 0,
we say that c satisfies (A;) if

’/cd(w—fr)

for all 7 € n(pl, a0 ,/,LN) and 7 € I'I(ﬁl, s0a ,ﬂN).

< LW, (7, ) (Ar)

Example: (A}) holds for ¢(x1, %) = [|x1 — x2||> on RY x R and p = 2,
with constant

L= V2 [M() + M(fin) + M(p2) + M(fio)]
where M (1) := ([ ||x||? u(dx))*/2. More generally, it holds for [x1 — xa||P.
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Lipschitz-type Condition (A;) (cont'd)

Idea: Relax requirements on ¢ by making constant depend on marginals
Lemma
Let p € [1,00) and
c(x) = a(x)c(x)
where c1, ¢p are Lipschitz and have growth of order at most p — 1.

Then (AL) holds with a constant L depending only on the Lipschitz and
growth constants of ci, ¢, and the p-th moments of u;, fi;, i =1,..., N.

For p = oo, the analogue holds with dependence on the bounds of c1, c;.

Generalizes to product c(x) = c1(x) - - - cm(x) of m Lipschitz functions
satisfying a suitable growth condition
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Stability of Optimizers

Theorem

Let p € [1,00] and q € [1,00) with q < p and let p;, jij € Pp(Xi).

Let puy, ..., un satisfy (T;) with constant Cg, and let c satisfy (Ap).

The optimizers 7, 7* of pu1,...,un and fi1, ..., fiy satisfy
W,(r*,#%) < NG5 A+ C, [(2LA)7 + (L A)z%],

A= Wp(pa, - i ity - - -5 fin)-

In particular, (p1,...,pun) — 7 is %—Hélder continuous in W, when
restricted to a bounded set of marginals satisfying (A;) and (T},) with
given constants.
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Transport Inequality (T/c,)

Let g € [1,00). We say that pj € Pg(Xi), i =1,..., N satisfy (T;) with
constant C(; if for all 7,0 € M(u1,...,pun),

H(0])s + <H(9‘”)>21q] (Tq)

Wq(e’ﬂ-) S C(/, 2

Lemma (Based on Bolley-Villani 2005)
If i € P(X;) satisfy [ exp(adx.(Ri, xi)9) pi(dx;) < oo for some
a € (0,00) and %; € X;, then (T/q) holds with constant

1
q

N
/ , 1 3 N
C, = 2)A<e)|<n’(1;>0 (a E (5 + Iog/exp(adxi(x,-,x,-)q),u;(dx,-))>

i=1
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Sinkhorn's Algorithm (Primal Formulation)
N = 2 marginals p1, 2.

Algorithm (Sinkhorn)

Set 7 := R and define 7", n > 1 recursively via

dn" d
g (X)) = dn 'L,fll(Xl) for n odd,
dd,, 1( x) = dd/,le (x2) for n even,

where 7r,f’_1 is the i-th marginal of "1

e 7] = pu1 for n odd (and 7§ = uo for n even)
o m" =argminp,, 4 H(-|w"~1) for n odd
o I (x) = 4. dn5 = a(x1)b(x2)

e 7" is solution of EOT problem with its own marginals
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Sinkhorn Marginals

Suppose C < oo and let 7 € (1, p2) be the optimal coupling
Key identity: H(7*|n") = H(7*|R) — >_0_o H(rt|xt 1)
Hence H(7t|wt~!) — 0 and thus

marginals converge in entropy: H(7”|u;) =0, i=1,2
Implies 77" — p; in total variation

Léger (2021): sublinear rate H(7?|p;) < H(7*|R)/n

Summary:
o 7" are optimizers of EOT problems with marginals (un, vn) — (1, V)

— Sinkhorn convergence is an instance of EOT stability
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Weak Sinkhorn Convergence

@ Sinkhorn convergence is well understood when c is bounded: linear
convergence

@ Slightly more general conditions in Riischendorf (1995)
@ We are interested in results for unbounded ¢

@ Especially quadratic cost and Gaussian-like marginals
Sinkhorn marginals converge in TV, hence weakly. If X; = RY (or any
space with differentiation of measures), weak EOT stability yields:

Theorem
Let ¢ be continuous and C(p1, p2) < co. Then " — m* weakly.
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Sinkhorn Convergence in W,
o F(r):= [cdm+ H(r|u @ p2)
Theorem

Let p € [1,00). Fori=1,2, let u; € P(X;) satisfy
f exp(a dxl.()?,',X,')p) M,'(dX,') < oo for some o € (0, OO) and X; € X;.

(i) Let c be continuous with growth of order p. As n — oo, we have
F(m") — F(7"), " =7 in W,

(i) Let1 < g < p and c(x) = c1(x)ca2(x) where c1, c» are Lipschitz with
growth of order p — 1. For all n > 2, with a known constant C,

|F(n*) — F(x")| < Cn™ %, W, (r*, 7") < Cn™ .

o Covers quadratic cost and subgaussian marginals

@ The constant C does not grow exponentially in ¢
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Dual Problem and Potentials

Let c € LY(u ®v). The dual EOT problem (for e = 1) is

sup G(f,g),
fell(u).gel(v)

G(f.) = () +1(g) ~ [ "D () + 1.

Unique (up to constant) solution (f,g) € L*(u) x Li(v)

f,g are called (Schrodinger, EOT) potentials

Potentials give the density of the optimal coupling:

dm,
dP

(x,y) = ef()+el)=clxy)

Normalize potentials, e.g., symmetrically: u(f) = v(g)
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Stability of Potentials

One incarnation, for absolutely continuous marginals:

Theorem

Let ¢ be continuous, p, — p and v, — v weakly, and

/cd(,un®l/n)—>/cd(u®u).

Suppose |1 < i, and v < v, with densities bounded in probability:

. du
> —
i ) 2 K} =0

Mn

dv
li >K;=0.
dm s | 0> K} =0

Then the potentials converge: f, — f in L°(y) and g, — g in L°(v)
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Stability of Potentials for TV Convergence

Remark: if sup, [ e(+9)¢ d(u, ® v,) < 0o, the potentials admit versions
that are equicontinuous and uniformly bounded. Uniform convergence on
compacts follows, without any additional conditions.

Boundedness in probability clearly holds if p, — p and v, — v in TV.
Corollary

Let ¢ be continuous and [ ¢ d(pn @ vp) — [cd(p @ v).

If i, — p and v, — v in total variation, then f, — f in L%(u) and g, — g
in L°(v).

In particular: optimal couplings 7, — 7, in total variation.
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Sinkhorn in Dual Formulation

Algorithm (Sinkhorn in Dual)
Set g% :=0,f%:=0. Forn>1,

(x) = —Iog/ 8" ) =clxy) v(dy),
Y

g"(y) = —log /X e (I=el) y(dx).

Link to primal formulation:

dn(f,g) =€ d(pv),

72N = (", g"), pen—l.— W(f”,g"_l), n>1.
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Convergence of Sinkhorn in Dual Formulation

e Sinkhorn marginals (pp, vp) := (7], 75) are equivalent to (y,v) and
converge in total variation

Theorem

Let ¢ € LY(u ® v) be continuous. If c is such that the Sinkhorn marginals
(tns va) 1= (], 78) satisfy

/cd(un®un)—>/cd(,u®z/),

the iterates (f", g") converge in probability to the potentials (f, g).
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Convergence as ¢ — 0

@ Fix marginals u, v and continuous cost ¢ on Polish spaces X, Y

@ Fore >0, let m. € M(u,v) be (c,e)-cyclically invariant

Proposition

Let w be a cluster point of (w;) as € — 0. Then spt is c-cyclically
monotone.

@ Hence 7 is an optimal transport, as soon as the OT problem is finite

o Compare: Gamma-convergence, Léonard (2012), Carlier at al. (2017), ...

e Corollary: If OT problem has unique cyclically monotone coupling 7,
then T, — m,

@ Convergence of 7. also known whenever an optimal transport with
finite entropy exists. Also: 1D Monge problem, Di Marino—Louet (2018)
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Proof

o Recall:
k P P .
dr. _ 1 i
L[ G o) = e (-2 [zu - et ) 1155 o)

@ Let k > 2 and § > 0. Define set of §-improvable k-tuples:

K K
A= {(Xia)/i)f'(—l € (XX Y)Y el yi) = Y clxiyyip1) = 5} :

Then
h(A) < e forall > 0.

o If m. — 7 along a subsequence, it follows that spt 7 is c-cyclically
monotone
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Convergence Rate as ¢ — 0

@ For simplicity of exposition: assume

» OT problem has unique solution 7, € My, V)
» its dual problem has a unique solution (f.(x),g«(y))

o Asseen: m, —

Finite-Dimensional Linear Programs:

@ If u, v are discrete with finite support: Exponential convergence,
|Te — | 7V < ae Ple forall e < &g

Cominetti-San Martin (1994), Weed (2018)
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A Continuous Example:

If 11, are centered Gaussians on R, cost c(x,y) = |x — y|:
7e is Gaussian, (Monge) transport T is linear

Linear convergence transport of cost

/cdwa—/cdﬂ*:e/2+o(5)

Leading term: from mass at distance ~ /¢ to I = sptm, = graph T

Expansion has been studied for more general marginals, including by
Altschuler et al. (2021), Conforti—-Tamanini (2019), Pal (2019)

Local picture: Density

dm,

ame —aly—T(x)]2/e
P (x,y) o< e

decays exponentially away from I

Comparable result for general problem? Local exponential rate?
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Large Deviations Principle as ¢ — 0

Theorem

Let m, = lim.o 7 and I(x,y) = c(x,y) — fi(x) — g(y).
(a) For any compact set C C X x Y,

limsupelogm(C) < — inf I(x,y).
e—0 (x,y)eC

(b) For any open set U C Xg x Yo,

_ > _ ‘
I|2n_:gfslogﬂs(U) > (X’lyn)feul(x,y)

@ Xo := projx [ and Yy := projy I', where I' = spt
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Capturing the Rate for the Lower Bound
@ Look for a good k-tuple including the point (x, y)!

Lemma

Fix (x,y). Suppose there exist (x;, yj)2<i<k C sptm such that
k k
0o = Z c(xi,yi) — Z c(xi,yi+v1) >0, where (x1,y1) := (x,y).
i=1 i=1
Given § < &g, there exist o, r,eq > 0 such that

Te(Br(x,y)) < e for e < ep.

@ Optimizing over § will give a good lower bound

Definition of (rate) Function /:
k k

I(X,y):SUp sup ZC(Xiayi)_ZC(thH-l)a

k22 (xi,y1)f_,CT =1 i=1
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Dual Problem and Potentials

Let ¢ € LY (u ®v). The dual EOT problem is
S—  sup ( [ uta + [ et viay)

fell(p).gel(v)
. / ef(x)+g(y€)—c(x,y) () (dy) + E)‘

e Unique (up to constant) solution (f., g.) € L(u) x L}(v)
o f., g are called the Schrodinger potentials

o (—f.,—g.) is the optimal (static) portfolio for an exponential utilit
& y
maximizer with random endowment ¢ and risk aversion 71
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Dual Convergence
Theorem

Let c € LY (u®v). Let f., g. be the rescaled dual solution of EOT
(= the Schrédinger potentials):

) = 200 + &) - clx)] )

normalized with [ f.dp = [ g- dv. Then

f.—f in [Y(p), g — g in LY(v)

where (f., g.) = Kantorovich potentials with [ f. du = [ g dv.

@ More generally (without uniqueness): compactness in L!

@ One can also vary c. — ¢ with locally uniform convergence

e Compact case has uniform convergence and follows from
Arzela—Ascoli. Previously shown by Gigli-Tamanini
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Thank you!
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