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Introduction

Mean-field approach to large population stochastic control

● Large number of N interacting dynamic agents/entities

● Agents are cooperative, and act for collective welfare following a center a
decision/social planner. Other interpretation:

Influencer controls the state of many individuals in social networks

▸ When N → ∞: optimal control of McKean-Vlasov equation (mean-field control
problem). Many papers mostly on continuous-time, and finite horizon

▸ Here, we focus on

Discrete time and possibly discrete space (graphs)

Infinite horizon

Common noise

When N → ∞: Conditional McKean-Vlasov Markov Decision Process
(CMKV-MDP)

→ Mathematical framework of reinforcement learning (RL) with many interacting
cooperative agents (R. Carmona, M. Laurière and Z. Tan 19, Gu, Guo, Wei and Xu 19)
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Introduction

Motivation from targeted advertising application

● A company C: Internet retailer, candidate to election

● A social network SN

N connected users of SN: state = customer/voter or not of C

Users data: cookies (track record of visited web pages)

▸ Targeted advertising:

An influencer (Criteo, etc) I working for C

I displays personalized online banner ads to users according to their cookies
and public data (no direct access to individual states) → Open-loop control
and common noise

Objective: optimize the targeted ad strategy, e.g., in order to attract the
largest possible clients/voters given ads costs.
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Problem formulation

Outline

1 Problem formulation

2 Lifted MDP on P(X) with relaxed control

3 Convergence of CMKV-MDP

4 Application to targeted advertising
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Problem formulation N-agent model

Framework and notations

● A universal probability space (Ω,F ,P)
● State and action spaces: X and A (compact Polish)

P(X), resp. P(A), resp. P(X ×A): set of probability measures on X , resp.
A, resp. X ×A, with Wasserstein distance

● Discrete time transition dynamics

Idiosyncratic noises: (εit)t∈N∗ , for agent i ∈ N∗, i.i.d. valued in E

Common noise: (ε0
t )t∈N∗ for all agents, i.i.d. valued in E 0

F : meas. function from X ×A × P(X ×A) × E × E 0 into X

● Reward on infinite horizon:

discount factor β ∈ [0,1)
f : meas. bounded function from X ×A × P(X ×A) into R
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Problem formulation N-agent model

Assumptions on transition dynamics and reward

(HFlip) There exists KF s.t. for all a ∈ A, e0 ∈ E 0, x , x ′ ∈ X , ν, ν′ ∈ P(X ×A),

E[dX (F (x , a, ν, ε1
1, e

0),F (x ′, a, ν′, ε1
1, e

0))] ≤ KF (dX (x , x ′) +W(ν, ν′)).

(Hflip) There exists Kf s.t. for all a ∈ A, x , x ′ ∈ X , ν, ν′ ∈ P(X ×A),

∣f (x , a, ν) − f (x ′, a, ν′)∣ ≤ Kf (dX (x , x ′) +W(ν, ν′)).

Remark: Lipschitz assumption in (HFlip) is made on expectation, not pathwisely.
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Problem formulation N-agent model

Information and decentralized open-loop controls in the finite population model

● A subalgebra G of F rich enough (used for randomization)

● ξi initial state in X of agent i = 1, . . . ,N; independent of G

● Decentralized open-loop control: a sequence α = (α1, . . . , αN) of processes
valued in AN , and adapted w.r.t.

FN
t = σ{ξi , (εis)s≤t , (ε0

s )s≤t , i = 1, . . . ,N} ∨ G, t ∈ N.

Remark: No symmetry assumption in control αi , i = 1, . . . ,N.
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Problem formulation N-agent model

Mean-field control problem in the N-population model

● Mean-field controlled dynamics: State process X i,N,α of agent i governed by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X i,N,α
0 = ξi

X i,N,α
t+1 = F(X i,N,α

t , αi
t ,

1
N

N

∑
j=1

δ
(X

j,N,α
t ,α

j
t )
, εit+1, ε

0
t+1).

(1)

● Gain functional for each agent i = 1, . . . ,N:

V i,N,α = E[
∞

∑
t=0

βt f (X i,N,α
t , αi

t ,
1

N

N

∑
j=1

δ
(X

j,N,α
t ,α

j
t )
)]

▸ Optimal gain for the center of decision (social planner/influencer):

V N(ξ1, . . . , ξN) = sup
α

1

N

N

∑
i=1

V i,N,α. (2)

Remark: Problem (1)-(2) is a standard MDP with state space XN , action space AN , for
which it is known that optimization over (randomized/relaxed) open-loop control is
equivalent to optimization over (randomized/relaxed) feedback control. But hardly
tractable when N is large!
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Problem formulation Asymptotic model

Mean-field control problem in the ∞-population model

Formally, we expect (by “propagation of chaos”) a problem formulation with:

● Controlled McKean-Vlasov equation: state Xα of representative agent governed by

{
Xα

0 = ξ

Xα
t+1 = F(Xα

t , αt ,P0
(Xαt ,αt)

, εt+1, ε
0
t+1).

(3)

where the control process α is valued in A, and adapted w.r.t.

Ft = σ{ξ, (εs)s≤t , (ε0
s )s≤t} ∨ G, t ∈ N.

● Gain functional of representative agent

V α = E[
∞

∑
t=0

βt f (Xα
t , αt ,P0

(Xαt ,αt)
)]

▸ Optimal gain for the center of decision (social planner/influencer):

V (ξ) = sup
α

V α. (4)

Remark: Problem (3)-(4) is a priori a nonstandard MDP due to P0
(Xαt ,αt)

, and called
CMKV-MDP.
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Problem formulation Asymptotic model

Questions addressed in this talk

● (I) Can we obtain a tractable resolution of CMKV-MDP?

Dynamic programming, Bellman equation?

Examples of explicit resolution

● (II) Convergence of N-agent MDP to CMKV-MDP?

(1) V N towards V , and at which rate?

(2) How to get an approximate optimal control for the N-agent problem from an
optimal control for the CMKV-MDP? At which accuracy?

▸ Randomization of controls plays a crucial role! This is a noticeable difference with
continuous time framework.

Related literature:
(I) In discrete time:

Bauerle (21) closed-loop policies, Carmona, Laurière, Tan (22)

(II) mostly for continuous time MKV diffusion and for (1)

Lacker (18), Djete (20): tightness arguments (no rate of convergence)

Cecchin (21): Finite state: rate of CV N−1/2

Germain, P., Warin (21): BSDE methods under existence of a smooth solution. Rate of
convergence N−1

Gangbo, Mayorga, Swiech (20), Cardaliaguet, Daudin, Jackson, Souganidis (22): viscosity
solutions method. Rate of CV: N−γ for some γ ∈ (0,1].



10/28

Problem formulation Asymptotic model

Questions addressed in this talk

● (I) Can we obtain a tractable resolution of CMKV-MDP?

Dynamic programming, Bellman equation?

Examples of explicit resolution

● (II) Convergence of N-agent MDP to CMKV-MDP?

(1) V N towards V , and at which rate?

(2) How to get an approximate optimal control for the N-agent problem from an
optimal control for the CMKV-MDP? At which accuracy?

▸ Randomization of controls plays a crucial role! This is a noticeable difference with
continuous time framework.

Related literature:
(I) In discrete time:

Bauerle (21) closed-loop policies, Carmona, Laurière, Tan (22)

(II) mostly for continuous time MKV diffusion and for (1)

Lacker (18), Djete (20): tightness arguments (no rate of convergence)

Cecchin (21): Finite state: rate of CV N−1/2

Germain, P., Warin (21): BSDE methods under existence of a smooth solution. Rate of
convergence N−1

Gangbo, Mayorga, Swiech (20), Cardaliaguet, Daudin, Jackson, Souganidis (22): viscosity
solutions method. Rate of CV: N−γ for some γ ∈ (0,1].



11/28

Lifted MDP on P(X)

Outline

1 Problem formulation

2 Lifted MDP on P(X) with relaxed control

3 Convergence of CMKV-MDP

4 Application to targeted advertising
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Lifted MDP on P(X)

Reformulation on P(X) with relaxed/randomized control

● X = Xα ; CMKV dynamics with open-loop control α:

Xt+1 = F(Xt , αt ,P0
(Xt ,αt)

, εt+1, ε
0
t+1).

▸ Set µt = P0
Xt

. Then (with the pushforward measure notation ⋆):

µt+1 = F(⋅, ⋅,P0
(Xt ,αt)

, ⋅, ε0
t+1) ⋆ (P0

(Xt ,αt)
⊗ λε)

Bayes formula: P0
(Xt ,αt)

= µt ⋅ α̂t , where α̂t is the probability kernel on X ×A:

α̂t ∶ x ∈ X z→ L0(αt ∣Xt = x) ∈ P(A)

→ Controlled stochastic Fokker-Planck equation on P(X):

µt+1 = F̂(µt , α̂t , ε
0
t+1), t ∈ N,

with relaxed (P(A)-valued) feedback control α̂ valued in Â ≡ L0(X ;P(A)), and
F̂(µ, â, e0) = F(⋅, ⋅, µ ⋅ â, ⋅, e0) ⋆ ((µ ⋅ â) ⊗ λε).

● Similarly and with law of conditional expectations, we have

V α = E[
∞

∑
t=0

βt f̂ (µt , α̂t)]

for some function f̂ ∶ P(X) × Â → R explicitly derived from f .
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Lifted MDP on P(X)

Bellman operator of the lifted MDP

● Bellman operator T of the lifted MDP: for W ∈ L∞m (P(X)),

T [W ](µ) ∶= sup
â∈Â

T â[W ](µ) ∶= sup
â∈Â

{f̂ (µ, â) + βE[W (F̂(µ, â, ε0
1))]}.

▸ T is well-defined and contractive on L∞m (P(X)) → unique fixed point, denoted V ⋆:
V ⋆ = T [V ∗].
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Lifted MDP on P(X)

Characterization by Bellman equation on P(X)

Theorem

(i) Law invariance. For any ξ, ξ̃ s.t. Pξ = Pξ̃, we have V (ξ) = V (ξ̃). We then define
V (µ) ∶= V (ξ), for µ = Pξ ∈ P(X).

(ii) Dynamic Programming (DP). V = V ⋆, hence satisfies the Bellman fixed point
equation:

V (µ) = T [V ](µ) = sup
â∈Â

T â[V ](µ), µ ∈ P(X).

(iii) For all ε > 0, there exists an ε-optimal randomized feedback control for V (ξ) in
the form:

αεt ∶= aε(P0
Xt
,Xt ,Ut), t ∈ N.

where (Ut)t sequence of i.i.d. G-measurable ∼ U([0,1]), for some measurable function
aε(µ, x ,u) on P(X) × X × [0,1] constructed from the argmax in T â.
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Convergence of CMKV-MDP

Outline

1 Problem formulation

2 Lifted MDP on P(X) with relaxed control

3 Convergence of CMKV-MDP

4 Application to targeted advertising
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Convergence of CMKV-MDP

Convergence of the N-agent MDP

● Usually based on propagation of chaos on state process X i,N towards X pathwisely or
in law (symmetry arguments is crucial), and then deduce convergence of V N towards V

● Here, we do not have in general propagation of chaos on X i,N,α controlled by α =
(α1, . . . , αN), which is not assumed to be symmetric.

● Instead, we prove a propagation of chaos on the Bellman operator of the N-agent
MDP defined by

T a
N [W ](x) ∶= f (x , a) + βE[W (F(x , a, (εi1)i∈J1,NK, ε

0
1))]

where for x = (x i)i∈J1,NK ∈ XN , a = (ai)i∈J1,NK ∈ AN ,

f (x , a) ∶= 1

N

N

∑
i=1

f (x i , ai ,
1

N

N

∑
j=1

δ(x j ,aj ))

F(x , a, (e i)i∈J1,NK, e
0) ∶= (F(x i , ai ,

1

N

N

∑
j=1

δ(x j ,aj ), e
i , e0))

i∈J1,NK
∈ XN .
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Convergence of CMKV-MDP

Propagation of chaos of the Bellman operator

For V value function on P(X) of the CMKV-MDP, we set V̌ defined on XN by

V̌ (x) ∶= V (µN [x]), for x = (x i)i∈J1,NK ∈ XN ,

where µN [x] =
1
N ∑

N
i=1 δx i .

Proposition

There exists some positive constant C s.t. for all x = XN , N ∈ N∗,

∣ sup
a∈AN

T a
N [V̌ ](x) − sup

â∈Â

T â[V ](µN [x])∣ ≤ CMN
γ ,

where γ = min [1, ∣ lnβ∣
(ln 2KF )+

], and

MN ∶= sup
ν∈P(X×A)

E[W(νN , ν)], (νN empirical measure of ν).

Remark. From Fournier-Guillin 15: MN →
N→∞

0, and for X ×A ⊂ Rd

MN = O(N− 1
2 ) for d = 1

MN = O(N− 1
2 log(1 +N)) for d = 2

MN = O(N− 1
d ) for d ≥ 3
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Convergence of CMKV-MDP

Convergence rate of N-agent MDP

Theorem

1. Value function. There exists some positive constant C s.t. for all x ∈ XN ,

∣V N(x) − V (µN [x])∣ ≤ CMγ
N .

2. Optimal control. Let aε ∶ P(X) × X × [0,1] → A, be an ε-optimal randomized
feedback policy for CMKV-MDP. Then, it defines an (ε + O(Mγ

N))-optimal randomized
feedback control αε = (αε,i)i∈J1,NK for the N-agent MDP with

αε,it = aε(µN [X t],X i
t ,U

i
t), t ∈ N, i = 1, . . . ,N,

where X = (X i)i∈J1,NK is the state of the N-agent controlled by αε, and U i
t , i = 1, . . . ,N,

t ∈ N, are i.i.d. ∼ U([0,1]).

Interpretation: Policies to agents in the population are applied randomly by the central
planner in a non-symmetric assignment.
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Application

Outline

1 Problem formulation

2 Lifted MDP on P(X) with relaxed control

3 Convergence of CMKV-MDP
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Application

Back to targeted advertising example: spaces and noise

● State space X = {0,1}:

x = 1 (resp. 0): customer (not customer) of company C

● Action space A = {0,1}:

a = 1 (resp. 0): I displays (or not) an ad

● For each SN user i :

εit : uniform r.v. representing e.g. time spent at day t on a forum about
product sold by C

● For simplicity here, no common noise
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Application

Targeted advertising example: dynamics and reward

● State transition function:

F (x , a, µ, e) =
⎧⎪⎪⎨⎪⎪⎩

1e>µ({0})−2ηa if x = 0

1e<µ({1})+2ηa if x = 1.

Large e: eager to change of operator

µ({0}): proportion of SN users that are not customers of C

η > 0: efficiency of ad for incentive to become or remain a customer of C

● Reward function: for x ∈ X = {0,1}, a ∈ A = {0,1},

f (x , a) = x − ca,

c > 0: ad cost
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Application

Lifted to deterministic control problem on [0,1]

● State variable: pt ≡ proportion of SN users that are customers of C

● (Relaxed) control variable: qt ≡ probability of displaying an ad to SN users
(sending an ad to qt proportion of the SN users)

→

pt+1 = pt + qt min(η,1 − pt), t ∈ N.

● Value function on [0,1]:

V (p) = sup
q

∞
∑
t=0

βt(pt − cqt), p ∈ [0,1].
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Application

Disjunction depending on the ratio cost/efficiency of ad

-
β

1−β
β0

c
η

Bang-Bang.

Always q = 1

except at the end

Ad very cheap.

Do nothing (q = 0).

Ad too expensive.

Randomized strategy:
q ∈ [0, 1]

Three cases according to the position of c
η

relative to β and β
1−β .

→ We next focus on the case: β < c
η
< β

1−β .
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Application

Optimal control

-

6

1

1

q⋆(p)

1 − η1 − 2η 1 − c
1−β
β

1 − η

−η(1 − β)

⋯ p

@
@
@
@
@@

Case β < c
η
< β

1−β . Optimal policy (in red).



25/28

Application

Optimal increment of pt

-

6

1

η

pt+1 − pt

1 − η1 − 2η 1 − c
1−β
β

1 − η

−η(1 − β)

⋯ pt

@
@
@
@
@@

@
@
@

Case β < c
η
< β

1−β . Variational optimal state (in red).

p0

@
@
@

@
@
@

@
@ p1

@
@
@
@

@@ p2

@
@
@
@

@
@

@
@ p3
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Conclusion

Summary of main results

● CMKV-MDP lifted to optimization problem on space of laws with relaxed controls:

Dynamic Programming Bellman fixed point equation characterizing the value
function

ε-optimal randomized feedback policy aε

● Examples of explicit resolution of the lifted MDP

● N-agent MDP Ð→
N→∞

CMKV-MDP with explicit rate of convergence.

● (Approximate) optimal randomized feedback control of CMKV-MDP → Quantitative
approximation of optimal control for the N-agent MDP
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Conclusion

Some remarks

● Open loop vs feedback controls vs randomized feedback controls

In standard MDP, it is well-known that: sup. over
open-loop/feedback/randomized feedback controls give same value

Here with mean-field dependence, we have:

Sup. over open-loop control = Sup. over randomized feedback control

> Sup. over feedback control.

This differs from continuous time McKean-Vlasov control where
randomization does not yield greater gain
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Conclusion

References

● M. Motte, H.P.: Mean-field Markov decision process with common
noise and open-loop controls, to appear in Annals of Applied Probability.

● M. Motte: Mathematical models for large populations,
behavorial economics, and targeted advertising, PhD thesis (2021).

Thank you for your attention
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