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Introduction

Mean-field approach to large population stochastic control

e Large number of N interacting dynamic agents/entities

e Agents are cooperative, and act for collective welfare following a center a
decision/social planner. Other interpretation:

@ Influencer controls the state of many individuals in social networks
» When N — oo: optimal control of McKean-Vlasov equation (mean-field control
problem). Many papers mostly on continuous-time, and finite horizon
» Here, we focus on

@ Discrete time and possibly discrete space (graphs)
@ Infinite horizon

@ When N — oo: McKean-Vlasov Markov Decision Process
(CMKV-MDP)

— Mathematical framework of reinforcement learning (RL) with many interacting
cooperative agents (R. Carmona, M. Lauriére and Z. Tan 19, Gu, Guo, Wei and Xu 19)



Introduction

Motivation from targeted advertising application

e A company C: Internet retailer, candidate to election

¢ A social network SN
@ N connected users of SN: state = customer/voter or not of C
o Users data: cookies (track record of visited web pages)

» Targeted advertising:
@ An influencer (Criteo, etc) | working for C

o | displays personalized online banner ads to users according to their cookies
and public data (no direct access to individual states) — Open-loop control
and common noise

@ Objective: optimize the targeted ad strategy, e.g., in order to attract the
largest possible clients/voters given ads costs.



Outline

o Problem formulation



Problem formulation N-agent model

Framework and notations

e A universal probability space (Q, F,P)
e State and action spaces: X and A (compact Polish)
o P(X), resp. P(A), resp. P(X x A): set of probability measures on X, resp.
A, resp. X x A, with Wasserstein distance
e Discrete time transition dynamics
@ Idiosyncratic noises: (si)teN*, for agent / € N*, i.i.d. valued in E
o Common noise: (£2)sen+ for all agents, i.i.d. valued in E°
e F: meas. function from X x Ax P(X x A) x E x E® into X

e Reward on infinite horizon:
e discount factor 8 € [0,1)
@ f: meas. bounded function from X x Ax P(X x A) into R



Problem formulation N-agent model

Assumptions on transition dynamics and reward

(HF ;) There exists K s.t. for all a€ A, €® € E?, x,x" € X, 1,1/ € P(X x A),

]E[dX(F(X, a,v,e1,e), F(x', a0/ e}, eo))] < Kp(d;g(x,x’) + W(v, 1/)).

(Hfji») There exists K¢ s.t. forall ae A, x,x" € X, v,/ € P(X x A),

|f(Xa a, V) - f(X,7 371/)

< Kf(dX(X, x") + W(v, V')).

Remark: Lipschitz assumption in (HF;;,) is made on expectation, not pathwisely.



Problem formulation N-agent model

Information and decentralized open-loop controls in the finite population model

e A subalgebra G of F rich enough (used for randomization)
e & initial state in X of agent i = 1,..., N; independent of G

o Decentralized open-loop control: a sequence a = (a?,...,a") of processes
valued in AV, and adapted w.r.t.

FNo= o€ (D) oet, (D) ser,i=1,... N} VG, teN.

Remark: No symmetry assumption in control o, i = 1,..., N.
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-agent model
Mean-field control problem in the N-population model

o Mean-field controlled dynamics: State process X"'* of agent i governed by

PN, .
X(; (a2 — §l
i\N,ox iN, i1 N N i 0 (1)
X = F(Xt y Oty Z()(XJ‘N,OL J‘)7€t+17€f+1)'
oot
e Gain functional for each agent i = 1,... N:
oo N
Vi,N,oL _ E tf-(Xi,N,a i 1 5
- B[SOl LY )
t=0 j=1 t et

» Optimal gain for the center of decision (social planner/influencer):

VA CoI L B szp%z’\eviw,a. .

i=1

Remark: Problem (1)-(2) is a standard MDP with state space X", action space A", for
which it is known that optimization over (randomized/relaxed) open-loop control is
equivalent to optimization over (randomized/relaxed) feedback control. But hardly
tractable when N is large!



Asymptotic model
Mean-field control problem in the co-population model

Formally, we expect (by “propagation of chaos”) a problem formulation with:

e Controlled McKean-Vlasov equation: state X of representative agent governed by

X[;l = 5 o o (3)
a1 = F(X;l7at,P(x;>7(¥[)75t+175t+1)-

where the control process « is valued in A, and adapted w.r.t.

Fi = 0{57(55)s£t,(52)sgt}vg7 teN.

e Gain functional of representative agent

ve - ]E[gﬂ‘f(xﬁanp?xg‘,at))]

» Optimal gain for the center of decision (social planner/influencer):

V(E) = sup ve. (4)

Remark: Problem (3)-(4) is a priori a nonstandard MDP due to P(()Xta,at)' and called
CMKV-MDP.



Asymptotic model
Questions addressed in this talk

e (1) Can we obtain a tractable resolution of CMKV-MDP?
@ Dynamic programming, Bellman equation?
@ Examples of explicit resolution

e (I1) Convergence of N-agent MDP to CMKV-MDP?

(1) V" towards V, and at which rate?

(2) How to get an approximate optimal control for the N-agent problem from an
optimal control for the CMKV-MDP? At which accuracy?



Asymptotic model
Questions addressed in this talk

e (1) Can we obtain a tractable resolution of CMKV-MDP?
@ Dynamic programming, Bellman equation?
@ Examples of explicit resolution

e (I1) Convergence of N-agent MDP to CMKV-MDP?
(1) V" towards V, and at which rate?

(2) How to get an approximate optimal control for the N-agent problem from an
optimal control for the CMKV-MDP? At which accuracy?

» Randomization of controls plays a crucial role! This is a noticeable difference with
continuous time framework.
Related literature:
(1) In discrete time:
@ Bauerle (21) closed-loop policies, Carmona, Lauriere, Tan (22)
(1) mostly for continuous time MKV diffusion and for (1)
@ Lacker (18), Djete (20): tightness arguments (no rate of convergence)
@ Cecchin (21): Finite state: rate of CV N~1/2
@ Germain, P., Warin (21): BSDE methods under existence of a smooth solution. Rate of
convergence N1
@ Gangbo, Mayorga, Swiech (20), Cardaliaguet, Daudin, Jackson, Souganidis (22): viscosity
solutions method. Rate of CV: N~V for some « € (0,1].



Outline

© Lifted MDP on P(X) with relaxed control



Reformulation on P(X’) with relaxed/randomized control

e X = X% ~ CMKV dynamics with open-loop control a:

0 0
Xi1 = F(XtyOétv]P(Xt,at)7€t+175t+1)'

» Set ji; = P . Then (with the pushforward measure notation +):

Mt+1 = F('7'7]P)(()Xt,at)7'75?+l) * (]P?Xt,at) ®>\E)



Reformulation on P(X’) with relaxed/randomized control

e X = X* ~» CMKV dynamics with open-loop control «:

0 0
Xi1 = F(Xt7at7P(Xt,at)75t+last+1)'

» Set ic = P%,. Then (with the pushforward measure notation *):
per = F(, 'JP’(()xt,am €0 * (P?Xt,at) ® /\s)
Bayes formula: P?Xt,at) = e - &, where & is the probability kernel on X' x A:
GeixeX — L%aXe=x) € P(A)
— Controlled stochastic Fokker-Planck equation on P(X):
Mer1 = l:'(,ut,&t,sgﬂ), teN,

with relaxed (P(A)-valued) feedback control & valued in A= 1%X;P(A)), and
F(.U‘véveo) = F('7'7,U"é\a'7eo) * ((“é)(@)‘E)
e Similarly and with law of conditional expectations, we have

Ve = E[ ggff(ut, @t)]

for some function 7 : P(X) x A - R explicitly derived from f.



Bellman operator of the lifted MDP

e Bellman operator 7 of the lifted MDP: for W ¢ L7 (P(X)),

TIW)(i) = supT [W](n) = sup {F(p, 8) + BE[W(F(u,4,€1))]}-

E 4eA

» T is well-defined and contractive on L (P(X)) — unique fixed point, denoted V":
Ve =T[V"].



Characterization by Bellman equation on P(X)

Theorem

(i) Law invariance. For any ¢, € s.t. Pe = Pz, we have V() = V(£). We then define
V(p) = V(€), for p = Pe € P(X).

(ii) Dynamic Programming (DP). V = V', hence satisfies the Bellman fixed point
equation:

V(p) = T[VI(w) = supT[VI(n), neP(X).

deA

(iii) For all € > 0, there exists an e-optimal randomized feedback control for V(¢) in
the form:

of = ae(]P’g)(t,Xt,Ut), teN.

where (U:): sequence of i.i.d. G-measurable ~ /([0,1]), for some measurable function
ac(p, x,u) on P(X) x X x [0,1] constructed from the argmax in 7°.




Outline

© Convergence of CMKV-MDP



Convergence of CMKV-MDP

Convergence of the N-agent MDP

e Usually based on propagation of chaos on state process X"V towards X pathwisely or
in law (symmetry arguments is crucial), and then deduce convergence of V" towards V

e Here, we do not have in general propagation of chaos on X"N'® controlled by o =
(a?,...,a"), which is not assumed to be symmetric.



Convergence of the N-agent MDP

e Usually based on propagation of chaos on state process X"V towards X pathwisely or
in law (symmetry arguments is crucial), and then deduce convergence of V" towards V

e Here, we do not have in general propagation of chaos on X*"'* controlled by o =
(a?,...,a"), which is not assumed to be symmetric.

e Instead, we prove a propagation of chaos on the Bellman operator of the N-agent
MDP defined by

TRIW](x) = f(x,a)+BE[W(F(x,a,(e1)iep,n:€3))]

where for x = (Xi)ie[[l,N]] exV a= (a"),‘e[[l’,\,]] e AV,

1 .
f(x,a) f( NZ;(S(XJ aj))

i
™M=

I
-

i

N “
) 0 N N
F(x,a,(e)ieqng.€) = ( 25()(] ), €, € )e[[l M e X",
j=1 ie[1,



Propagation of chaos of the Bellman operator

For V value function on P(X) of the CMKV-MDP, we set V defined on X" by
V(x) = V(uy[x]), forx=(x)iepn ",

where 11, [x] = %Z;’L i

Proposition

There exists some positive constant C s.t. for all x = XN, N ¢ N*,

| sup TRIVI(x) = sup T°[V](my[x])] < CMu”,

acAN seA
here v = min [1, 7o ?L_], and
wnere 7y min > (in2Kp)s 17 an

My = sup ]E[W(VN, 1/)], (vn empirical measure of V).
veP (X xA)

Remark. From Fournier-Guillin 15: My N» 0, and for X x Ac R
® My=0O(N2)ford=1
o My=0O(N2log(l+N)) for d =2
o My=O(N7) ford>3



Convergence rate of N-agent MDP

Theorem
1. Value function. There exists some positive constant C s.t. for all x € X",
VYx) - Vx| < oy

2. Optimal control. Let a. : P(X) x X x [0,1] - A, be an e-optimal randomized
feedback policy for CMKV-MDP. Then, it defines an (¢ + O(M})))-optimal randomized
feedback control a® = (a®');cp,n for the N-agent MDP with

af’i = aE(lu’N[Xt]thiyUl’:)? tEN, i:]"""N’

where X = (X"),-E[[LN]] is the state of the N-agent controlled by a, and Ui, i=1,...,N,
teN, areiid. ~U([0,1]).

o

Interpretation: Policies to agents in the population are applied randomly by the central
planner in a non-symmetric assignment.
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@ Application to targeted advertising



Application

Back to targeted advertising example: spaces and noise

e State space X = {0,1}:

@ x =1 (resp. 0): customer (not customer) of company C
e Action space A = {0,1}:

@ a =1 (resp. 0): | displays (or not) an ad
e For each SN user i:

° 5’;: uniform r.v. representing e.g. time spent at day t on a forum about
product sold by C

e For simplicity here, no common noise



Targeted advertising example: dynamics and reward

e State transition function:

Flx.ape) = | Leonton-na i x=0
5 Ay [y 1e<#({1})+2na if x=1.

@ Large e: eager to change of operator
@ u({0}): proportion of SN users that are not customers of C
e 1 > 0: efficiency of ad for incentive to become or remain a customer of C

e Reward function: for x e X ={0,1},a¢ A={0,1},

f(x,a) = x-ca,

@ ¢ > 0: ad cost



Application

Lifted to deterministic control problem on [0, 1]

e State variable: p; = proportion of SN users that are customers of C

e (Relaxed) control variable: g; = probability of displaying an ad to SN users
(sending an ad to g; proportion of the SN users)

—

[ pt +qr min(n,1-p;), teN.

e Value function on [0,1]:

V(p) = swiﬂt(pr—cqt), pe[0,1].

q t=0



Application

Disjunction depending on the ratio cost/efficiency of ad

Bang-Bang.
Always g = 1 Randomized strategy: Do nothing (g = 0).
qe[0,1] 5
except at the end ’ n
f f f
0 B _B_
Ad very cheap. 1-8 Ad too expensive.

Three cases according to the position of % relative to 8 and %

— We next focus on the case: 3 < § <15



Optimal control

a* (p)
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Optimal increment of p;

Pt+1 — Pt
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Optimal increment of p;

Pt+1 — Pt
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Optimal increment of p;
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Optimal increment of p;
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Optimal increment of p;
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Optimal increment of p;
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Optimal increment of p;

Pt+1 — Pt
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Application

Optimal increment of p;

Pt+1 — Pt

P1 | P2 1

B
Caseﬁ<§<m.

T T T

1-n 1-n

-n(1-8)

Pt

Variational optimal state (in red).



Conclusion

Summary of main results

o CMKV-MDP lifted to optimization problem on space of laws with relaxed controls:

@ Dynamic Programming Bellman fixed point equation characterizing the value
function

@ c-optimal randomized feedback policy a-

e Examples of explicit resolution of the lifted MDP

e N-agent MDP o CMKV-MDP with explicit rate of convergence.

e (Approximate) optimal randomized feedback control of CMKV-MDP — Quantitative
approximation of optimal control for the N-agent MDP



Conclusion

Some remarks

e Open loop vs feedback controls vs randomized feedback controls

@ In standard MDP, it is well-known that: sup. over
open-loop/feedback/randomized feedback controls give same value

@ Here with mean-field dependence, we have:

Sup. over open-loop control = Sup. over randomized feedback control

> Sup. over feedback control.

@ This differs from continuous time McKean-Vlasov control where
randomization does not yield greater gain
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Thank you for your attention
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