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Stochastic Control Problem with Linear Dynamics

Let 6% = (A*, B*) € R9*9 x RP*9 and consider the control problem

.
J(@;6") =E [/0 F(£. X ap) dt + (X2 |

where

AXP = (AXT + Bray)de+ AW, XY = xo.
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Let 6% = (A*, B*) € R9*9 x RP*9 and consider the control problem

.
J(@;6") =E [/0 F(£. X ap) dt + (X2 |

where

AXP = (AXT + Bray)de+ AW, XY = xo.

[Guo, Hu and Zhang, 2021] There exists ¢?" : [0, T] x RY — RP such that

of =" (6, XY = argmin J(o; 0%).
a€EHE(SRP)
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Stochastic Control Problem with Linear Dynamics

Let 6% = (A*, B*) € R9*9 x RP*9 and consider the control problem

.
J(@;6") =E [/0 F(£. X ap) dt + (X2 |

where

AXP = (AXT + Bray)de+ AW, XY = xo.

[Guo, Hu and Zhang, 2021] There exists ¢?" : [0, T] x RY — RP such that

of =" (6, XY = argmin J(o; 0%).
a€EHE(SRP)

We do not know #* and thus cannot find ¢?".
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Episodic Learning problem

Let o, Q x [0, T] x RY — RP be a sequence of random (feedback) function
that the agent executes for each episode.

@ At the end of the m-th episode, the agent observes (X{")¢co,7];
dX[" = (A" X[ + B pom(-, t, X"))dt + AW, X" =xo

and experience the (expected) cost

)
Hom: 0*) = EV /0 F(E X, ol X)) dE+ g(X) |

@ Design 41 from the previous observations, (X")™,.
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Episodic Learning problem

Let o, Q x [0, T] x RY — RP be a sequence of random (feedback) function
that the agent executes for each episode.

@ At the end of the m-th episode, the agent observes (X{")¢co,7];
dX[" = (A" X[ + B pom(-, t, X"))dt + AW, X" =xo

and experience the (expected) cost

)
Hom: 0*) = EV /0 F(E X, ol X)) dE+ g(X) |

@ Design 41 from the previous observations, (X")™,.

The agent objective is to minimise

N

Reg(N) = Y (J(omi 6) = J(8":0"))

m=1
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Statistical Estimate from Bayesian inference

A~

Suppose that before the m-th episode, the posterior of 8* is N(0,,_1, Vin—1).
At the m-th episode, the agent observes (X;") satisfying

Xm
m __ pgx7m m m_— i ;= .
dX" =07z dt + AW, Xg" = xo, with Z[7 = (som(wfaxr’"))'
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Statistical Estimate from Bayesian inference

Suppose that before the m-th episode, the posterior of 6* is N(Apn_1, Vin_1)
At the m-th episode, the agent observes (X;") satisfying

Xm
m __ pgx7m m m_— i ;= .
dX" =07z dt + AW, Xg" = xo, with Z[7 = (som(wfaxt’"))'

Let consider a discretisation (AX], AX[", ..., AX][") where

AXT = 0*ZI At + AW, ~ N(0*ZAt, At)
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Statistical Estimate from Bayesian inference

Suppose that before the m-th episode, the posterior of 6* is N(Apn_1, Vin_1)
At the m-th episode, the agent observes (X;") satisfying

Xm
m __ pgx7m m m_— i ;= .
dX" =07z dt + AW, Xg" = xo, with Z[7 = (@m(-vt’xr’"))

Let consider a discretisation (AX], AX[", ..., AX][") where

AXT = 0*ZI At + AW, ~ N(0*ZAt, At)

Therefore,

Q (9* ’}-"’—17 (AXtT)kK:b (Zt’:)szl)

 exp <—7(9 B )V 1 (07 = 1) )Hexp( L(BX — G*Z[L’At)2>

P K
1., -
o< exp <—29 <V 11+szk Z) At>9 +0" < '9; 1+szkAth>>'
k=1

k=1
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Statistical Estimate from Bayesian inference

In particular, if we send At — 0, the posterior is

7 (07| Fm1, (XM ecpo. 11, (Z7)eepo. 1)

T T
o exp (—%0* ( o +/ Z["(Z[")Tdt> 0" + 6 (vnj_llél,l +/ Z{"dX{")) .
0 0
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Statistical Estimate from Bayesian inf

In particular, if we send At — 0, the posterior is

7 (0" | Fn—1, (X" eepo, 11 (Z7)eco, 1)
T T
o exp (—%9* (v,;_l1 +/ Z["(Z[")Tdt> 0" + 6 (v;_llél,l +/ Z{"dX{")) .
0 0

In particular, the posterior of 8* after the m-th episode is N(@m, Vi) where

m T m T
V= v0*1+2/ z/(zhH"dt, and 0= <éov01+2/ Zt"dXt”> Vi J
n=1"0 n=1"0
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Statistical Estimate from Bayesian in

In particular, if we send At — 0, the posterior is

7 (0" | Fn—1, (X" eepo, 11 (Z7)eco, 1)
T T
o exp (—%9* (v,;_l1 +/ Z["(Z[")Tdt) 0" +0* (v;_llél,l +/ Z{"dX{")) )
0 0

In particular, the posterior of 8* after the m-th episode is N(@m, Vi) where

m T m T
V= v0*1+2/ z/(zhH"dt, and 0= <éov01+2/ Z;’dX{’> Vi J
n=1"0 n=1"0

In comparison to the classical statistics theory, one may see
@ O, as a (regularised) maximum likelihood estimator.

@ V1 asa (regularised) Fisher Information.
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Sub-optimality of the Greedy policy

Consider the case when 6 = (By, By) and

)

;
J(;0) =E l/ (a2, +a3,)dt + (XP)?
0

where
AXP® = (Biay s + Boay)dt +dW,, X0 = x.

The optimal policy is

o= (3 mT - 0) " (B7)
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Sub-optimality of the Greedy policy

Consider the case when 6 = (By, By) and

)

;
J(;0) =E l/ (a2, +a3,)dt + (XP)?
0

where
AXP® = (Biay s + Boay)dt +dW,, X0 = x.

The optimal policy is
-1 [ Bix
¢(t,x) = — (1+ (B} + B3)(T — t)) (le).

m

R R . K R R
B = (Bum,0) = ¢ (t,x) = ( : )x ~ i1 = (Bumi1,0) J

@ Decisions are always sub-optimal provided that By # 0.
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Sensitivity in Parameter Estimate

Performance Gap

Let 0 = (A, B) and J(6:0) := E | [;" £(£,X/"%, 6(t, X{*)) dt + g(X7?)]
where X
AX7? = (AXP? 4+ Bo(t, X)) dt +dW,, X% = x.

Define ¢/ := arg min, J(¢;¢). Then for a strong convex cost f and g,
J(8%0%) = J(¢”;0%) S 10— 67

[Guo, Hu and Zhang, 2021]

If f and g satisfies additional smoothness condition, then

J(8%:0%) — J(¢”;6%) S 116 — 0%

[Szpruch, Treetanthiploet and Zhang, 2021]

Tanut Treetanthiploet From Control Theory to RL BSDE 2022 7/15



From Estimation Error to Learning

Recall that the posterior of 6* after the m-th episode is N(@m, Vin) with
m T
Vit = Vot + > / zZr(zn) " dt
n=1"0 . Zn — ( le )
~ ~ m T Y L @n('at>X1{1) -
Om = <90 Vit / z;ax:) Vin
n=1"0

Therefore,

m T -1
10m — 07|12 < (| Vil = (/\min (Z/O Zt"(Zt")Tdt>) . J
n=1
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From Estimation Error to Learning

Recall that the posterior of 6* after the m-th episode is N(@m, Vin) with
m T
Vit = Vot + > / zZr(zn) " dt
n=1"0 . Zn — ( th )
~ ~ m T Y L @n('at>Xt.{1) -
Om = <90 Vit / z;ax:) Vin
n=1"0

Therefore,

m T -1
10m — 07|12 < (| Vil = (/\min (Z/O Zt"(Zt")Tdt>> . J
n=1

@ Phase Exploration: Dedicating some episodes for exploration.

@ Noisy Exploration: Taking optimal policies with noise for exploration.
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Phase Exploration

Let {a1,a2,...,3,} C R” be linearly independent and

ot x)i=an i te [(k=1)(3).k(Z)).

T
P

.
T 0*’¢E 0*,¢e
Amin / Xt 0% ¢ Xt 0" 4¢ dt] = 1.
o \¢°(t. Xy 7)) \ee(t, Xy 7))

Phase Exploration Greedy Exploitation (PEGE)

Since aja; + aa, + -+ apa, is a strictly positive definite matrix,

1: for k=1,2,... do

2 Execute the feedback policy ¢°.

3 for I =1,2,...,m(k) do X k-th cycle
4: Execute the feedback policy ¢”m.

5 end for

6: end for
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Exploration—Exploitation trade-off (Phase-based)

Let x(m) be the cycle corresponding to the m-th episode.
Since Amin (zg":l I Z:(Z:)Tdt) > k(m),

m T -1
Hém — 9*H2 < (/\min <Z/o an(Zt")Tdt)) < K;(m)*l.
n=1
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Exploration—Exploitation trade-off (Phase-based)

Let x(m) be the cycle corresponding to the m-th episode.
Since Amin (zg":l I Z:(Z:)Tdt) > k(m),

m T -1
Hém — 9*H2 < (/\min <Z/o an(Zt")Tdt)) < K;(m)*l.
n=1

Suppose that J(¢%;0%) — J(¢°";607) < |0 — 0 ||*. Then

Reg(N) = Z (Jpmi07) = (8" ;0%))

m=1

N N N .
< Y (e -deie)+ YD (Ut - a6 i6Y)
m=1|pm=¢* m=1|pm#¢*

N N 1
SH(N)+ D 10m =01 S w(N) + Y w(m)™" = £"(m) ~ mi,
m=1

m=1

1
with Reg(N) ~ O(N1+r). Using m = Z:(:"f) m(k), we obtain m* (k) ~ k".
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Regret of the PEGE algorithm

Regret of the PEGE algorithm

Suppose that J(¢?; 6%) — J(¢%";0*) < ||0 — 6%||>". Then for the PEGE
algorithm with m(k) = |k"|,Vk € N, there exists a constant C > 0 such
that for all § € (0, 1), the regret satisfies with probability at least 1 — 4,

Reg(N) < C(/vl%r((m N)" + (In(1))") + (m(%))”’), YN > 2

Consequently,

E[Reg(N)] < CNT7 (In N)", VN > 2.

When r = 1, Reg(N) = O(V/'N).
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Noisy Exploration and LQ-Regularised Control

Let consider the optimal solution of the LQ-Regularised control;

J(v;0) =E

/0 ! ( / F(t, XV 2)ve(da) + QH(I/t)) dt + g()?f.*”’)] ,

when f and g are quadratic, H(v) := [In (de’L’eb)dV and

X = /(A)?f’” + Ba)vy(da)dt +dW;, X" =x.

The optimal feedback measure is 1(t, x) = N(¢%(t, x), A\?) for some A > 0.
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Noisy Exploration and LQ-Regularised Control

Let consider the optimal solution of the LQ-Regularised control;

J(;0)=E /OT (/ F(t, X2V a)ve(da) + QH(I/t)) dt +g()~<$.*”’)] ,

when f and g are quadratic, H(v) := [In ( b)dy and

dX{" = /(A)?f’” + Ba)uy(da)dt +dW,, X = xo

The optimal feedback measure is 1(t, x) = N(¢%(t, x), A\?) for some A > 0.

Learning with Regularised Control

1. form=1,2,... do

2 Solve a regularised control problem with 6, and hyper-parameter g,, to obtain v/,.
3: Execute v, through a random execution ¢p,.
4

5

Use an observed process X™ = X%¢m,
: end for

— = — = = ANl
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Exploration—Exploitation trade-off (Noisy Exploration)

Let £,(t) = Z,K:1 Ci.mLieq(i—1)n.in) Where Ci m ~yp N(0,1) and consider a policy

Pm(t,X) = 77 (,X) + AmEm(t). ]

m T -1 m -1
10m — 0% < (/\min (Z/O Z{’(Z{’)Tdt>> < (Zﬁ) :
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Exploration—Exploitation trade-off (Noisy Exploration)

Let £,(t) = Z,K:1 Ci.mLieq(i—1)n.in) Where Ci m ~yp N(0,1) and consider a policy

om(t,x) = ¢77(£,%) + Am€m(t)-

m T -1 m -1
16m — 67|* < (/\m;n (Z/O Z{’(Z{’)Tdt>> < (Z ﬁ) :
n=1 n=1

We can now quantify the regret when J(¢%;6%) — J(¢°";6%) < ||0 — 0% || by

Reg(M) = 3 (Jlomit) — J(&""0%)

EN: (J(som;éi*) — J(¢°;0%) ) + EN: ( ¢’ 0%) J(¢9*;9*))
m;l m=1
)

N m -1
P (Z Ag) = X, ~m Y2 with Reg(N)=~ O(VN).
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Regret of the Regularised Control Algorithm

Regret of the Regularised Control Algorithm

Suppose that f and g are quadratic. Then by choosing an appropriate
(0m)men and execution increment, there exists a constant C > 0 such that
for all § € (0,1), the regret for learning with regularised control satisfies
with probability at least 1 — 9§,

Reg(V) < CV/NPoly(In N, In (3)).

and E[Reg(N)] < Cv/NPoly(In N).

NB. This result also holds for a different regularised control problem where the
divergence between episodes is penalised to the Hamiltonian to ensure that our policy
does not change too much between episodes.
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