Exploration vs Exploitation in Reinforcement Learning: Dilemma of the Controller in an Uncertain World

Tanut (Nash) Treetanthiploet*

Joint work with Lukasz Szpruch*,† and Yufei Zhang*

*The Alan Turing Institute, London, †The University of Edinburgh, Edinburgh

•The London School of Economics and Political Science, London

The 9th International Colloquium on BSDEs and Mean Field Systems,

June-July 2022

Stochastic Control Problem with Linear Dynamics

Let $\theta^\star=(A^\star,B^\star)\in\mathbb{R}^{d\times d} imes\mathbb{R}^{p imes d}$ and consider the control problem

$$J(lpha; heta^\star) = \mathbb{E}\left[\int_0^T f(t,X_t^{ heta^\star,lpha},lpha_t)\,\mathrm{d}t + g(X_T^{ heta^\star,lpha})
ight],$$

where

$$\mathrm{d}X_t^{\theta^\star,\alpha} = \left(A^\star X_t^{\theta^\star,\alpha} + B^\star \alpha_t\right) \mathrm{d}t + \mathrm{d}W_t, \quad X_0^{\theta^\star,\alpha} = x_0.$$

Stochastic Control Problem with Linear Dynamics

Let $\theta^\star = (A^\star, B^\star) \in \mathbb{R}^{d \times d} \times \mathbb{R}^{p \times d}$ and consider the control problem

$$J(\alpha; \theta^{\star}) = \mathbb{E}\left[\int_{0}^{T} f(t, X_{t}^{\theta^{\star}, \alpha}, \alpha_{t}) dt + g(X_{T}^{\theta^{\star}, \alpha})\right],$$

where

$$\mathrm{d}X_t^{\theta^\star,\alpha} = \left(A^\star X_t^{\theta^\star,\alpha} + B^\star \alpha_t\right) \mathrm{d}t + \mathrm{d}W_t, \quad X_0^{\theta^\star,\alpha} = x_0.$$

[Guo, Hu and Zhang, 2021] There exists $\phi^{\theta^\star}:[0,T] imes\mathbb{R}^d o\mathbb{R}^p$ such that

$$\alpha_t^{\star} := \phi^{\theta^{\star}}(t, X_t^{\theta^{\star}, \alpha^{\star}}) = \mathop{\arg\min}_{\alpha \in \mathcal{H}^2_{\mathbb{F}}(\Omega; \mathbb{R}^p)} J(\alpha; \theta^{\star}).$$

Stochastic Control Problem with Linear Dynamics

Let $\theta^\star = (A^\star, B^\star) \in \mathbb{R}^{d \times d} \times \mathbb{R}^{p \times d}$ and consider the control problem

$$J(\alpha; \theta^{\star}) = \mathbb{E}\left[\int_{0}^{T} f(t, X_{t}^{\theta^{\star}, \alpha}, \alpha_{t}) dt + g(X_{T}^{\theta^{\star}, \alpha})\right],$$

where

$$\mathrm{d}X_t^{\theta^\star,\alpha} = \left(A^\star X_t^{\theta^\star,\alpha} + B^\star \alpha_t\right) \mathrm{d}t + \mathrm{d}W_t, \quad X_0^{\theta^\star,\alpha} = x_0.$$

[Guo, Hu and Zhang, 2021] There exists $\phi^{\theta^\star}:[0,T] imes\mathbb{R}^d o\mathbb{R}^p$ such that

$$\alpha_t^{\star} := \phi^{\theta^{\star}}(t, X_t^{\theta^{\star}, \alpha^{\star}}) = \underset{\alpha \in \mathcal{H}^2_{\mathbb{F}}(\Omega; \mathbb{R}^p)}{\arg \min} J(\alpha; \theta^{\star}).$$

We do not know θ^* and thus cannot find ϕ^{θ^*} .

Episodic Learning problem

Let $\varphi_m: \Omega \times [0, T] \times \mathbb{R}^d \to \mathbb{R}^p$ be a sequence of random (feedback) function that the agent executes for each episode.

• At the end of the *m*-th episode, the agent observes $(X_t^m)_{t \in [0,T]}$;

$$dX_t^m = (A^*X_t^m + B^*\varphi_m(\cdot, t, X_t^m)) dt + dW_t^m, \quad X_0^m = x_0$$

and experience the (expected) cost

$$J(\varphi_m; \theta^*) := \mathbb{E}^{\mathbf{W}^m} \left[\int_0^T f(t, X_t^m, \varphi_m(\cdot, t, X_t^m)) dt + g(X_T^m) \right].$$

• Design φ_{m+1} from the previous observations, $(X^n)_{n=1}^m$.

Episodic Learning problem

Let $\varphi_m: \Omega \times [0, T] \times \mathbb{R}^d \to \mathbb{R}^p$ be a sequence of random (feedback) function that the agent executes for each episode.

• At the end of the *m*-th episode, the agent observes $(X_t^m)_{t\in[0,T]}$;

$$\mathrm{d}X_t^m = \left(A^\star X_t^m + B^\star \varphi_m(\cdot, t, X_t^m)\right) \mathrm{d}t + \mathrm{d}W_t^m, \quad X_0^m = x_0$$

and experience the (expected) cost

$$J(\varphi_m; \theta^*) := \mathbb{E}^{\mathbf{W}^m} \left[\int_0^T f(t, X_t^m, \varphi_m(\cdot, t, X_t^m)) dt + g(X_T^m) \right].$$

• Design φ_{m+1} from the previous observations, $(X^n)_{n=1}^m$.

The agent objective is to minimise

$$\operatorname{Reg}(N) = \sum_{m=1}^{N} \left(J(\varphi_m; \theta^{\star}) - J(\phi^{\theta^{\star}}; \theta^{\star}) \right).$$

Suppose that before the *m*-th episode, the posterior of θ^* is $N(\hat{\theta}_{m-1}, V_{m-1})$. At the *m*-th episode, the agent observes (X_t^m) satisfying

$$\mathrm{d}X_t^m = \theta^* Z_t^m \, \mathrm{d}t + \mathrm{d}W_t^m, \quad X_0^m = x_0, \text{ with } Z_t^m = \begin{pmatrix} X_t^m \\ \varphi_m(\cdot, t, X_t^m) \end{pmatrix}.$$

Suppose that before the *m*-th episode, the posterior of θ^* is $N(\hat{\theta}_{m-1}, V_{m-1})$. At the *m*-th episode, the agent observes (X_t^m) satisfying

$$\mathrm{d}X_t^m = \theta^\star Z_t^m \, \mathrm{d}t + \mathrm{d}W_t^m, \quad X_0^m = x_0, \text{ with } Z_t^m = \begin{pmatrix} X_t^m \\ \varphi_m(\cdot, t, X_t^m) \end{pmatrix}.$$

Let consider a discretisation $(\Delta X^m_{t_1}, \Delta X^m_{t_2}, ..., \Delta X^m_{t_K})$ where

$$\Delta X_{t_k}^m = \theta^* Z_{t_k}^m \Delta t + \Delta W_{t_k} \sim N(\theta^* Z_{t_k}^m \Delta t, \Delta t)$$

Suppose that before the *m*-th episode, the posterior of θ^* is $N(\hat{\theta}_{m-1}, V_{m-1})$. At the *m*-th episode, the agent observes (X_t^m) satisfying

$$\mathrm{d} X_t^m = \theta^\star Z_t^m \, \mathrm{d} t + \mathrm{d} W_t^m, \quad X_0^m = x_0, \ \text{with} \ Z_t^m = \begin{pmatrix} X_t^m \\ \varphi_m(\cdot,t,X_t^m) \end{pmatrix}.$$

Let consider a discretisation $(\Delta X_{t_1}^m, \Delta X_{t_2}^m, ..., \Delta X_{t_{\nu}}^m)$ where

$$\Delta X_{t_k}^m = \theta^* Z_{t_k}^m \Delta t + \Delta W_{t_k} \sim N(\theta^* Z_{t_k}^m \Delta t, \Delta t)$$

Therefore,

$$\begin{split} &\pi\left(\theta^{\star}\big|\mathcal{F}_{m-1}, (\Delta X_{t_{k}}^{m})_{k=1}^{K}, (Z_{t_{k}}^{m})_{k=1}^{K}\right) \\ &\propto \exp\left(-\frac{1}{2}(\theta^{\star} - \hat{\theta}_{m-1})V_{m-1}^{-1}(\theta^{\star} - \hat{\theta}_{m-1})^{\top}\right) \prod_{k=1}^{K} \exp\left(-\frac{1}{2\Delta t}(\Delta X_{t_{k}}^{m} - \theta^{\star}Z_{t_{k}}^{m}\Delta t)^{2}\right) \\ &\propto \exp\left(-\frac{1}{2}\theta^{\star}\left(V_{m-1}^{-1} + \sum_{t=1}^{K}Z_{t_{k}}^{m}(Z_{t_{k}}^{m})^{\top}\Delta t\right)\theta^{\star\top} + \theta^{\star}\left(V_{m-1}^{-1}\hat{\theta}_{m-1}^{\top} + \sum_{t=1}^{K}Z_{t_{k}}^{m}\Delta X_{t_{k}}^{m}\right)\right). \end{split}$$

In particular, if we send $\Delta t \rightarrow 0$, the posterior is

$$\begin{split} &\pi\left(\theta^{\star}\big|\mathcal{F}_{m-1},(X_{t}^{m})_{t\in[0,T]},(Z_{t}^{m})_{t\in[0,T]}\right)\\ &\propto \exp\left(-\frac{1}{2}\theta^{\star}\left(V_{m-1}^{-1}+\int_{0}^{T}Z_{t}^{m}(Z_{t}^{m})^{\top}\mathrm{d}t\right)\theta^{\star\top}+\theta^{\star}\left(V_{m-1}^{-1}\hat{\theta}_{m-1}^{\top}+\int_{0}^{T}Z_{t}^{m}\mathrm{d}X_{t}^{m}\right)\right). \end{split}$$

In particular, if we send $\Delta t \rightarrow 0$, the posterior is

$$\begin{split} &\pi\left(\theta^{\star}\big|\mathcal{F}_{m-1},(X_t^m)_{t\in[0,T]},(Z_t^m)_{t\in[0,T]}\right)\\ &\propto \exp\left(-\frac{1}{2}\theta^{\star}\left(V_{m-1}^{-1}+\int_0^T Z_t^m(Z_t^m)^{\top}\mathrm{d}t\right)\theta^{\star\top}+\theta^{\star}\left(V_{m-1}^{-1}\hat{\theta}_{m-1}^{\top}+\int_0^T Z_t^m\mathrm{d}X_t^m\right)\right). \end{split}$$

In particular, the posterior of θ^{\star} after the *m*-th episode is $N(\hat{\theta}_m, V_m)$ where

$$V_m^{-1} = V_0^{-1} + \sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top \mathrm{d}t, \quad \text{and} \quad \hat{\theta}_m = \left(\hat{\theta}_0 V_0^{-1} + \sum_{n=1}^m \int_0^T Z_t^n \mathrm{d}X_t^n\right) V_m.$$

In particular, if we send $\Delta t \rightarrow 0$, the posterior is

$$\begin{split} &\pi\left(\theta^{\star}\big|\mathcal{F}_{m-1},(X_{t}^{m})_{t\in[0,T]},(Z_{t}^{m})_{t\in[0,T]}\right)\\ &\propto \exp\left(-\frac{1}{2}\theta^{\star}\left(V_{m-1}^{-1}+\int_{0}^{T}Z_{t}^{m}(Z_{t}^{m})^{\top}\mathrm{d}t\right)\theta^{\star\top}+\theta^{\star}\left(V_{m-1}^{-1}\hat{\theta}_{m-1}^{\top}+\int_{0}^{T}Z_{t}^{m}\mathrm{d}X_{t}^{m}\right)\right). \end{split}$$

In particular, the posterior of θ^{\star} after the *m*-th episode is $N(\hat{\theta}_m, V_m)$ where

$$V_m^{-1} = V_0^{-1} + \sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top dt, \quad \text{and} \quad \hat{\theta}_m = \left(\hat{\theta}_0 V_0^{-1} + \sum_{n=1}^m \int_0^T Z_t^n dX_t^n \right) V_m.$$

In comparison to the classical statistics theory, one may see

- $\hat{\theta}_m$ as a (regularised) maximum likelihood estimator.
- V_m^{-1} as a (regularised) Fisher Information.

Sub-optimality of the Greedy policy

Consider the case when $\theta = (B_1, B_2)$ and

$$J(\alpha;\theta) = \mathbb{E}\left[\int_0^T (\alpha_{1,t}^2 + \alpha_{2,t}^2) dt + (X_T^{\theta,\alpha})^2\right],$$

where

$$dX_t^{\theta,\alpha} = (B_1\alpha_{1,t} + B_2\alpha_{2,t}) dt + dW_t, \quad X_0^{\theta,\alpha} = x_0.$$

The optimal policy is

$$\phi^{\theta}(t,x) = -\left(1 + (B_1^2 + B_2^2)(T-t)\right)^{-1} \binom{B_1x}{B_2x}.$$

Sub-optimality of the Greedy policy

Consider the case when $\theta = (B_1, B_2)$ and

$$J(\alpha;\theta) = \mathbb{E}\left[\int_0^T (\alpha_{1,t}^2 + \alpha_{2,t}^2) dt + (X_T^{\theta,\alpha})^2\right],$$

where

$$\mathrm{d} X_t^{\theta,\alpha} = \left(B_1\alpha_{1,t} + B_2\alpha_{2,t}\right)\mathrm{d} t + \mathrm{d} W_t, \quad X_0^{\theta,\alpha} = x_0.$$

The optimal policy is

$$\phi^{\theta}(t,x) = -\left(1 + (B_1^2 + B_2^2)(T-t)\right)^{-1} {B_1 x \choose B_2 x}.$$

$$\hat{\theta}_m = (\hat{B}_{1,m}, 0) \Rightarrow \phi^{\hat{\theta}_m}(t, x) = \begin{pmatrix} K_t^m \\ 0 \end{pmatrix} x \Rightarrow \hat{\theta}_{m+1} = (\hat{B}_{1,m+1}, 0)$$

• Decisions are always sub-optimal provided that $B_2^{\star} \neq 0$.

Sensitivity in Parameter Estimate

Performance Gap

Let $\theta = (A, B)$ and $J(\phi; \theta) := \mathbb{E}\left[\int_0^T f(t, X_t^{\theta, \phi}, \phi(t, X_t^{\theta, \phi})) dt + g(X_T^{\theta, \phi})\right]$, where

$$\mathrm{d}X_t^{\theta,\phi} = (AX_t^{\theta,\phi} + B\phi(t,X_t))\,\mathrm{d}t + \mathrm{d}W_t, \quad X_0^{\theta^*,\phi} = x_0.$$

Define $\phi^{\theta} := \arg\min_{\phi} J(\phi; \theta)$. Then for a strong convex cost f and g,

$$J(\phi^{\theta}; \theta^{\star}) - J(\phi^{\theta^{\star}}; \theta^{\star}) \lesssim \|\theta - \theta^{\star}\|.$$

[Guo, Hu and Zhang, 2021]

If f and g satisfies additional smoothness condition, then

$$J(\phi^{\theta}; \theta^{\star}) - J(\phi^{\theta^{\star}}; \theta^{\star}) \lesssim \|\theta - \theta^{\star}\|^{2}.$$

[Szpruch, Treetanthiploet and Zhang, 2021]

From Estimation Error to Learning

Recall that the posterior of θ^* after the *m*-th episode is $N(\hat{\theta}_m, V_m)$ with

$$V_{m}^{-1} = V_{0}^{-1} + \sum_{n=1}^{m} \int_{0}^{T} Z_{t}^{n} (Z_{t}^{n})^{\top} dt$$

$$\hat{\theta}_{m} = \left(\hat{\theta}_{0} V_{0}^{-1} + \sum_{n=1}^{m} \int_{0}^{T} Z_{t}^{n} dX_{t}^{n}\right) V_{m} \qquad ; \quad Z_{t}^{n} = \begin{pmatrix} X_{t}^{n} \\ \varphi_{n}(\cdot, t, X_{t}^{n}) \end{pmatrix}.$$

Therefore,

$$\|\hat{ heta}_m - heta^\star\|^2 \lesssim \|V_m\| pprox \left(\Lambda_{\mathsf{min}} \left(\sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top \mathrm{d}t
ight)
ight)^{-1}.$$

From Estimation Error to Learning

Recall that the posterior of θ^* after the m-th episode is $N(\hat{\theta}_m, V_m)$ with

$$V_{m}^{-1} = V_{0}^{-1} + \sum_{n=1}^{m} \int_{0}^{T} Z_{t}^{n} (Z_{t}^{n})^{\top} dt$$

$$\hat{\theta}_{m} = \left(\hat{\theta}_{0} V_{0}^{-1} + \sum_{n=1}^{m} \int_{0}^{T} Z_{t}^{n} dX_{t}^{n}\right) V_{m} ; \quad Z_{t}^{n} = \begin{pmatrix} X_{t}^{n} \\ \varphi_{n}(\cdot, t, X_{t}^{n}) \end{pmatrix}.$$

Therefore,

$$\|\hat{\theta}_m - \theta^\star\|^2 \lesssim \|V_m\| \approx \left(\Lambda_{\min}\left(\sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top \mathrm{d}t\right)\right)^{-1}.$$

- Phase Exploration: Dedicating some episodes for exploration.
- Noisy Exploration: Taking optimal policies with noise for exploration.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Phase Exploration

Let $\{a_1, a_2, ..., a_p\} \subseteq \mathbb{R}^p$ be linearly independent and

$$\phi^e(t,x) := \mathsf{a}_k \quad ; \quad t \in \left[(k-1) \big(\tfrac{T}{p} \big), k \big(\tfrac{T}{p} \big) \right).$$

Since $a_1 a_1^{\top} + a_2 a_2^{\top} + \cdots + a_n a_n^{\top}$ is a strictly positive definite matrix,

$$\Lambda_{\min}\left(\int_0^T \begin{pmatrix} X_t^{\theta^\star,\phi^e} \\ \phi^e(t,X_t^{\theta^\star,\phi^e}) \end{pmatrix} \begin{pmatrix} X_t^{\theta^\star,\phi^e} \\ \phi^e(t,X_t^{\theta^\star,\phi^e}) \end{pmatrix}^\top \mathrm{d}t \right) \ \gtrsim \ 1.$$

Phase Exploration Greedy Exploitation (PEGE)

- 1: for k = 1, 2, ... do

- 2: Execute the feedback policy ϕ^e . 3: **for** $l=1,2,...,\mathfrak{m}(k)$ **do** 4: Execute the feedback policy $\phi^{\hat{\theta}_m}$.
- 5: end for
- 6: end for

Exploration—Exploitation trade-off (Phase-based)

Let $\kappa(m)$ be the cycle corresponding to the m-th episode.

Since
$$\Lambda_{\min}\left(\sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^{\top} dt\right) \gtrsim \kappa(m)$$
,

$$\|\widehat{\theta}_m - \theta^\star\|^2 \lesssim \left(\Lambda_{\min}\left(\sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top \mathrm{d}t\right)\right)^{-1} \lesssim \kappa(m)^{-1}.$$

Exploration—Exploitation trade-off (Phase-based)

Let $\kappa(m)$ be the cycle corresponding to the m-th episode.

Since
$$\Lambda_{\min}\left(\sum_{n=1}^m \int_0^T Z_t^n(Z_t^n)^{\top} dt\right) \gtrsim \kappa(m)$$
,

$$\|\hat{\theta}_m - \theta^\star\|^2 \lesssim \left(\Lambda_{\min}\left(\sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top \mathrm{d}t\right)\right)^{-1} \lesssim \kappa(m)^{-1}.$$

Suppose that $J(\phi^{\theta}; \theta^{\star}) - J(\phi^{\theta^{\star}}; \theta^{\star}) \lesssim \|\theta - \theta^{\star}\|^{2r}$. Then

$$\operatorname{Reg}(N) = \sum_{m=1}^{N} \left(J(\varphi_m; \theta^*) - J(\phi^{\theta^*}; \theta^*) \right)$$

$$\leq \sum_{m=1|\varphi_m = \phi^e}^{N} \left(J(\phi^e; \theta^*) - J(\phi^{\theta^*}; \theta^*) \right) + \sum_{m=1|\varphi_m \neq \phi^e}^{N} \left(J(\phi^{\hat{\theta}_m}; \theta^*) - J(\phi^{\theta^*}; \theta^*) \right)$$

$$\lesssim \kappa(N) + \sum_{m=1}^{N} \|\hat{\theta}_m - \theta^*\|^{2r} \lesssim \kappa(N) + \sum_{m=1}^{N} \kappa(m)^{-r} \quad \Rightarrow \quad \kappa^*(m) \sim m^{\frac{1}{1+r}},$$

with $\operatorname{Reg}(N) \approx \mathcal{O}(N^{\frac{1}{1+r}})$. Using $m \approx \sum_{k=1}^{\kappa(m)} \mathfrak{m}(k)$, we obtain $\mathfrak{m}^*(k) \sim k^r$.

Regret of the PEGE algorithm

Regret of the PEGE algorithm

Suppose that $J(\phi^{\theta}; \theta^{\star}) - J(\phi^{\theta^{\star}}; \theta^{\star}) \lesssim \|\theta - \theta^{\star}\|^{2r}$. Then for the PEGE algorithm with $\mathfrak{m}(k) = \lfloor k^r \rfloor, \forall k \in \mathbb{N}$, there exists a constant $C \geq 0$ such that for all $\delta \in (0,1)$, the regret satisfies with probability at least $1-\delta$,

$$\operatorname{Reg}(N) \leq C \Big(N^{\frac{1}{1+r}} \big((\ln N)^r + \big(\ln(\frac{1}{\delta})\big)^r \big) + \big(\ln(\frac{1}{\delta})\big)^{1+r} \Big), \quad \forall N \geq 2$$

Consequently,

$$\mathbb{E}[\operatorname{Reg}(N)] \leq CN^{\frac{1}{1+r}}(\ln N)^r, \quad \forall N \geq 2.$$

When r = 1, $Reg(N) = \tilde{\mathcal{O}}(\sqrt{N})$.

Noisy Exploration and LQ-Regularised Control

Let consider the optimal solution of the LQ-Regularised control;

$$J(\nu;\theta) = \mathbb{E}\left[\int_0^T \left(\int f(t,\tilde{X}_t^{\theta,\nu},a)\nu_t(\mathrm{d}a) + \varrho \mathcal{H}(\nu_t)\right) \mathrm{d}t + g(\tilde{X}_T^{\theta^*,\nu})\right],$$

when f and g are quadratic, $\mathcal{H}(
u) := \int \ln \left(\frac{\mathrm{d}
u}{\mathrm{d} \mu_{Leb}} \right) \mathrm{d}
u$ and

$$\mathrm{d}\tilde{X}_t^{\theta,\nu} = \int (A\tilde{X}_t^{\theta,\nu} + Ba)\nu_t(\mathrm{d}a)\,\mathrm{d}t + \mathrm{d}W_t, \quad \tilde{X}_0^{\theta,\nu} = x_0.$$

The optimal feedback measure is $\nu^{\theta}(t,x) = N(\phi^{\theta}(t,x),\lambda^2)$ for some $\lambda > 0$.

Noisy Exploration and LQ-Regularised Control

Let consider the optimal solution of the LQ-Regularised control;

$$J(\nu;\theta) = \mathbb{E}\left[\int_0^T \left(\int f(t,\tilde{X}_t^{\theta,\nu},a)\nu_t(\mathrm{d}a) + \varrho \mathcal{H}(\nu_t)\right) \mathrm{d}t + g(\tilde{X}_T^{\theta^*,\nu})\right],$$

when f and g are quadratic, $\mathcal{H}(
u) := \int \ln \left(\frac{\mathrm{d}
u}{\mathrm{d} \mu_{Leb}} \right) \mathrm{d}
u$ and

$$\mathrm{d}\tilde{X}_t^{\theta,\nu} = \int (A\tilde{X}_t^{\theta,\nu} + Ba)\nu_t(\mathrm{d}a)\,\mathrm{d}t + \mathrm{d}W_t, \quad \tilde{X}_0^{\theta,\nu} = x_0.$$

The optimal feedback measure is $\nu^{\theta}(t,x) = N(\phi^{\theta}(t,x),\lambda^2)$ for some $\lambda > 0$.

Learning with Regularised Control

- 1: for m = 1, 2, ... do
- 2: Solve a regularised control problem with $\hat{\theta}_m$ and hyper-parameter ϱ_m to obtain ν_m .
- 3: Execute ν_m through a random execution φ_m .
- 4: Use an observed process $X^m = X^{\theta,\varphi_m}$.
- 5: end for

Exploration—Exploitation trade-off (Noisy Exploration)

Let $\xi_m(t) = \sum_{i=1}^K \zeta_{i,m} \mathbf{1}_{t \in [(i-1)h,ih)}$ where $\zeta_{i,m} \sim_{IID} N(0,1)$ and consider a policy

$$\varphi_m(t,x) = \phi^{\hat{\theta}_m}(t,x) + \lambda_m \xi_m(t).$$

$$\|\hat{\theta}_m - \theta^\star\|^2 \lesssim \left(\Lambda_{\min}\left(\sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top \mathrm{d}t\right)\right)^{-1} \lesssim \left(\sum_{n=1}^m \lambda_n^2\right)^{-1}.$$

Exploration—Exploitation trade-off (Noisy Exploration)

Let $\xi_m(t) = \sum_{i=1}^K \zeta_{i,m} \mathbf{1}_{t \in [(i-1)h,ih)}$ where $\zeta_{i,m} \sim_{IID} N(0,1)$ and consider a policy

$$\varphi_m(t,x) = \phi^{\hat{\theta}_m}(t,x) + \lambda_m \xi_m(t).$$

$$\|\hat{\theta}_m - \theta^\star\|^2 \lesssim \left(\Lambda_{\min}\left(\sum_{n=1}^m \int_0^T Z_t^n (Z_t^n)^\top \mathrm{d}t\right)\right)^{-1} \lesssim \left(\sum_{n=1}^m \lambda_n^2\right)^{-1}.$$

We can now quantify the regret when $J(\phi^{\theta}; \theta^{\star}) - J(\phi^{\theta^{\star}}; \theta^{\star}) \lesssim \|\theta - \theta^{\star}\|^2$ by

$$\begin{aligned} \mathsf{Reg}(\textit{N}) &= \sum_{m=1}^{\textit{N}} \left(J(\varphi_m; \theta^\star) - J(\phi^{\theta^\star}; \theta^\star) \right) \\ &= \sum_{m=1}^{\textit{N}} \left(J(\varphi_m; \theta^\star) - J(\phi^{\hat{\theta}_m}; \theta^\star) \right) + \sum_{m=1}^{\textit{N}} \left(J(\phi^{\hat{\theta}_m}; \theta^\star) - J(\phi^{\theta^\star}; \theta^\star) \right) \\ &\lesssim \sum_{m=1}^{\textit{N}} \lambda_m^2 + \sum_{m=1}^{\textit{N}} \left(\sum_{m=1}^{m} \lambda_n^2 \right)^{-1} \quad \Rightarrow \quad \lambda_m^2 \sim m^{-1/2} \quad \text{with} \quad \mathsf{Reg}(\textit{N}) \approx \mathcal{O}(\sqrt{\textit{N}}). \end{aligned}$$

Regret of the Regularised Control Algorithm

Regret of the Regularised Control Algorithm

Suppose that f and g are quadratic. Then by choosing an appropriate $(\varrho_m)_{m\in\mathbb{N}}$ and execution increment, there exists a constant $C\geq 0$ such that for all $\delta\in(0,1)$, the regret for learning with regularised control satisfies with probability at least $1-\delta$,

$$\operatorname{\mathsf{Reg}}(N) \leq C \sqrt{N} \operatorname{\mathsf{Poly}}\Big(\operatorname{\mathsf{In}} N, \operatorname{\mathsf{In}} \big(\frac{1}{\delta} \big) \Big).$$

and $\mathbb{E}[\text{Reg}(N)] \leq C\sqrt{N}\text{Poly}(\ln N)$.

NB. This result also holds for a different regularised control problem where the divergence between episodes is penalised to the Hamiltonian to ensure that our policy does not change too much between episodes.

References:

- L. Szpruch, T. Treetanthiploet, and Y. Zhang, Exploration-exploitation trade-off for continuous-time episodic reinforcement learning with linear-convex models, arXiv preprint arXiv:2112.10264, (2021).
- L. Szpruch, T. Treetanthiploet, and Y. Zhang, Linear-quadratic reinforcement learning via relaxed controls, to be appeared.