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Introduction to Forward-Backward SDE I
The general form of (decoupled) FBSDE dXt = a(t,Xt) dt+ b(t,Xt) dWt, X0 = x0,

−dYt = f(t,Xt, Yt, Zt) dt− Zt dWt,
YT = ξ = g(XT ),

For Xt = Wt : {
−dYt = f(t, Yt, Zt) dt− Zt dWt,
YT = ξ = g(WT ),

which is called standard BSDE.
I f(t,Xt, Yt, Zt) : [0, T ]× Ω × Rn × Rm × Rm×d → Rm is the

driver function, ξ is the square-integrable terminal condition
I The solution (Y,Z) (a pair of adapted processes) exists

uniquely provided that a, b, f, g are Lipschitz in all variables
[E. Pardoux and S. Peng, 1990]

I Well-known result: There are functions y(t, x) and z(t, x) such
that Yt = y(t,Xt) and Zt = z(t,Xt)
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Introduction to Forward-Backward SDE II

I Relation to PDE:
Xt,x
T : solution of XT starting from x at time t

YT : terminal value which is equal to g(Xt,x
T )

The solution (Y t,xt , Zt,xt ) of Forward-Backward-SDEs can be
represented as

Y t,xt = u(t, x), Zt,xt = (∇u(t, x))b(t, x) ∀t ∈ [0, T ),

which is the solution of the semilinear parabolic PDE of the
form

∂u

∂t
+

n∑
i

ai∂iu+
1

2

n∑
i,j

(bbT )i,j∂
2
i,ju+ f(t, x, u, (∇u)b) = 0

with the terminal condition u(T, x) = g(x)
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Motivation
Numerical methods for the high dimensional BSDEs:

(1) Fully history recursive multilevel Picard method: [E et al. 2019, Hutzenthaler et al. 2020 ]

and the following references therein
(2) Deep-learning based numerical methods

I Deep BSDE algorithm [E et al. 2017, Han et al.2018]: global loss function
Problem: (sometimes) no convergence or stuck in a local minimum

I Backward resolution algorithm [Huré et al. 2020]: local loss function
Problem: not for high-dimensional BSDEs with solution in a complex
structure

I Picard algorithm [Chassagneux et al. 2021]: a sequence of linear-quadratic
optimization problems
Problem: not for high-dimensional BSDEs with solution in a very complex
structure

I (Stochastic) control based algorithms
[Andersson et al. 2022, Ji et al. 2020a, 2020b, 2021]: relationship between (F)BSDEs
and control problems
Problem: only for the (F)BSDEs stemming from the control problems

I many others...
Two-step procedure of backward schemes:

(1) Time discretisation: one-step θ-method [Zhao et al. 2012]; multi-step schemes
[Chassagneux 2014, Teng et al. 2020, Teng et al. 2021, Zhao et al. 2010, Zhao et al. 2014]

(2) Approximation of the resulting conditional expectations: e.g., (Least-squares)
Monte Carlo, cubature method, regression tree, Fourier cosine method, spatial
approximation, Gradient boosting
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Reference equation of Y
Consider one-dimension: m = n = d = 1 and the uniform time partition

∆t = {ti|ti ∈ [0, T ], i = 0, 1, · · · , NT , ti < ti+1, t0 = 0, tNT = T},

∆t := h = T
NT

, ti = t0 + ih, i = 0, 1, · · · , NT
Let (Yt, Zt) be the adapted solution

Yt = YT +

∫ T

t
f(s,Xs) ds−

∫ T

t
Zs dWs, Xs = (Xs, Ys, Zs),

we thus have

Yi = Yi+1 +

∫ ti+1

ti

f(s,Xs) ds−
∫ ti+1

ti

Zs dWs, t ∈ [0, T )

Taking conditional expectation Ei[·](= E[·|Fti ]) yields

Yi = Ei[Yi+1] +

∫ ti+1

ti

Ei[f(s,Xs)] ds.

Applying θ-method [Zhao et al. 2012] gives

Yi = Ei[Yi+1] + hθ1f(ti,Xi) + h(1− θ1)Ei[f(ti+1,Xi+1)] +R
Yi
θ , θ1 ∈ [0, 1]

which is implicit (Newton’s method or Picard iteration)
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Reference equation of Z

Recall

Yi = Yi+1 +

∫ ti+1

ti

f(s,Xs) ds−
∫ ti+1

ti

Zs dWs, t ∈ [0, T ),

Multiplying ∆Wi+1 := Wti+1
−Wti and taking the conditional

expectations we obtain

− Ei[Yi+1∆Wi+1] =

∫ ti+1

ti

Ei[f(s,Xs)∆Ws] ds−
∫ ti+1

ti

Ei[Zs] ds,

Applying the θ-method gives

−Ei[Yi+1∆Wi+1] = h(1− θ2)Ei[f(ti+1,Xi+1)∆Wi+1]− hθ3Zi,

− h(1− θ3)Ei[Zi+1] +RZiθ , θ2, θ3 ∈ [0, 1]

which is explicit.
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The semi-discretisation in time

(Y ∆t
i , Z∆t

i ) : the approximation to (Yi, Zi)

Given Y ∆t

NT
and Z∆t

NT
, then Y ∆t

i and Z∆t
i can be computed for

i = NT − 1, · · · , 0

For i = NT − 1, · · · , 0 :

Z∆t
i =

θ−1
3

h
Ei[Y

∆t
i+1∆Wi+1] + θ−1

3 (1− θ2)Ei[f(ti+1,X∆t
i+1)∆Wi+1]

− θ−1
3 (1− θ3)Ei[Z

∆t
i+1],

Y ∆t
i = Ei[Y

∆t
i+1] + hθ1f(ti,X∆t

i ) + h(1− θ1)Ei[f(ti+1,X∆t
i+1)].

Different schemes by choosing different values for θk, k = 1, 2, 3,

I θ1 = θ2 = θ3 = 1
2 : second-order provided that g is continuously

differentiable

I θ1 = θ2 = θ3 = 1 : first-order and ZNT is not needed
[Li et al., 2017, Zhao et al. 2012, Zhao et al. 2013]
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Non-parametric regression I

Consider non-parametric regression model

Y = η(X) + ε,

where ε has a zero expectation and a constant variance. It is well-known that

E[Y |X = x] = η(x).

The estimator, η̂(x) is represented by an XGBRegressor model.

Given a dataset (samples), (x̂M, ŷM),M = 1, · · · ,M, an XGBRegressor model can
be fitted on the data and reused to determine (predict) E[Y |X = x] for an arbitrary x.

Example: θ2 = 1, θ3 = 1
Consider

Z∆t
i = E

[
1

h
Y ∆t
i+1∆Wi+1|X∆t

i

]
, i = NT − 1, · · · , 0.
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Non-parametric regression II
Aim is to find the deterministic functions z∆t

i (x) represented by XGBRegressors such
that

Z∆t
i = z∆t

i (X∆t
i ) ≈ R̂zi (X∆t

i )

Starting from T with samples (x̂NT−1,M, 1
h
ŷNT ,M∆ŵNT ,M), the XGBRegressor

R̂zNT−1 is fitted for Z∆t
NT−1, i.e., the function

z∆t
NT−1(x) = E

[
1

h
Y ∆t
NT

∆WNT |X
∆t
NT−1 = x

]
,

is estimated and presented by the XGBRegressor R̂zNT−1.

I The dataset ẑNT−1,M,M = 1, · · · ,M of Z∆t
NT−1 can be predicted via the

XGBRegressor R̂zNT−1 with the dataset x̂NT−1,M

I In the same manner, the dataset ẑNT−1,M are used to construct the
XGBRegressor R̂zNT−2 and generate the dataset ẑNT−2,M of Z∆t

NT−2 at the
time tNT−2 and so on

I At t = 0, the initial value x0 is known. Based on the XGBRegressor R̂z0 we
obtain the solution Z∆t

0 = z∆t
0 (x0)

L. Teng, BSDE2022 - 9th colloquium on Backward Stochastic Differential Equations and Mean Field Systems 11/29



XGBoost regression I
Regularized learning objective
Consider d = 1 and omit the index of the time step, e.g., x̂M := x̂i,M.

Using a given dataset with M samples

D =
{

(x̂M, ẐM)| |D| = M, x̂M, ẐM ∈ R
}

a tree ensemble model consists of K regression trees can be constructed to predict
the output

ẑM = η̂(x̂M) =
K∑
k=1

f̃k(x̂M), f̃k ∈ S,

where S = {f̃(x) = ωq(x), q : R→ T̂ , ω ∈ RT̂ } is the space of regression trees.
q : the tree structure that maps an example to the corresponding leaf index
ωj : score on the j-th leaf, T̂ : the number of leaves
Train the model by optimizing the mean squared error (MSE)

L(ẑM, ẐM) =
1

M

M∑
M=1

(ẑM − ẐM)2.

with the regularization term [Chen and Guestrin 2016]

Ω(f̃) = γT̂ +
1

2
λ ‖w‖2 = γT̂ +

1

2
λ

T̂∑
j=1

w2
j

which controls the model complexity, γ, λ are positive regularization parameters
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XGBoost regression II
The regularized objective (loss function) is thus given by

L(η) =
M∑
M=1

L(ẑM, ẐM) +
K∑
k=1

Ω(f̃k). (1)

Gradient Tree Boosting [Chen and Guestrin 2016]

The gradient descent is used to minimize the loss function (1) iteratively by greedily
adding f̃k

L(k) =
M∑
M=1

L(ẐM, ẑkM) +
k∑
j=1

Ω(f̃j)

=
M∑
M=1

L(ẐM, ẑ
(k−1)
M + f̃k(x̂Z)) +

k∑
j=1

Ω(f̃j),

where ẑkM =
∑k
j=1 f̃j(xM), and k = 1, · · · ,K.

Taking the second-order approximation one obtains

L(k) ≈
M∑
M=1

(
L(ẐM, ẑ

(k−1)
M ) + gMf̃k(x̂M) +

1

2
hMf̃2

k (x̂M)

)
+

k∑
j=1

Ω(f̃j),

where gM = ∂ẑ(k−1)L(ẐM, ẑ(k−1)) and hM = ∂2
ẑ(k−1)L(ẐM, ẑ(k−1)) are first and

second order gradients, respectively.
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Tree building algorithm I
By removing the constant terms one obtains the objective at k-th step

L̃(k) =
M∑
M=1

(
gMf̃k(x̂M) +

1

2
hMf̃2

k (x̂M)

)
+ Ω(f̃k),

which needs to be optimized by finding a f̃k. Define the index set

Ij = {M|q(x̂M) = j}

which contains the indices of data points mapped to the j-th leaf. Further reformulation
reads

L̃(k) =
M∑
M=1

(
gMf̃k(x̂M) +

1

2
hMf̃2

k (x̂M)

)
+ γT̂ +

1

2
λ

T̂∑
j=1

w2
j

=
T̂∑
j=1

 ∑
M∈Ij

gM

wj +
1

2

 ∑
M∈Ij

hM + λ

w2
j

+ γT̂ .

For a fixed tree structure q(x̂), one can easily compute the optimal wj of leaf j as

w∗j = −

∑
M∈Ij gM∑

M∈Ij hM + λ
.
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Tree building algorithm II
The optimal value of the objective reads thus

L̃(k)(q) = −
1

2

T̂∑
j=1

(
∑
M∈Ij gM)2∑
M∈Ij hM + λ

+ γT̂ ,

which can be used as a scoring function to measure the quality of q.
A greedy algorithm

I Start with the root (depth 0)
I Add a split for each leaf node, the change of objective reads

Lgain =
1

2

(
(
∑
M∈IL gM)2∑
M∈IL hM + λ

+
(
∑
M∈IR gM)2∑
M∈IR hM + λ

−
(
∑
M∈I gM)2∑
M∈I hM + λ

)
− γ

where I = IL ∪ IR, IL and IR denote index sets of left and right nodes after
splitting, respectively.

I Comparisons over index set =⇒ The best split along the feature
Trade-off between simplicity and predictiveness

I The best split have negative gain =⇒ stop
I Grow a tree to maximum depth, and prune all the splits with negative gain
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Error estimates I
XGBoost regression error: Rxgb Error of iterative method: Rimpl

ŷNT ,M = g(x̂NT ,M), ẑNT ,M = gx(x̂NT ,M),

For i = NT − 1, · · · , 0 , M = 1, · · · ,M :

z
∆t
i (x̂i,M) =E

x̂i,M
i

[
θ−1
3

h
Yi+1∆Wi+1 + θ

−1
3 (1− θ2)f(ti+1,Xi+1)∆Wi+1 − θ

−1
3 (1− θ3)Zi+1

]
+R

Zi
xgb

y
∆t
i (x̂i,M) = E

x̂i,M
i

[
Yi+1 + h(1− θ1)f(ti+1,Xi+1)

]
+ hθ1f̂i,M(ti,Xi) + R

Yi
impl + R

Yi
xgb,

where E
x̂i,M
i [Y] denotes calculated conditional expectation E[Y|X = x̂i,M] using the constructed

XGBRegressor models with the samples of Y.
It can be shown that

R
Zi
xgb ≤ 2(V ar

z
i + L̂min(q̂

zi )) and RYixgb ≤ 2(V ar
y
i + L̂min(q̂

yi )),

where V arzi and V aryi are the constant variances of εzi and εyi , respectively.

Time complexity analysis It can be shown that

O(Kd̃MdNT +MdNT logB)

where d̃ : maximum depth, B : maximum number of rows in each block (memory units in which data stored)
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Error estimates II
Time-discretization errors:

εYi,θ : = Yi − Y ∆t
i ,

εZi,θ : = Zi − Z∆t
i ,

εfi,θ : = f(ti,Xi)− f(ti,X∆t
i ).

The deterministic functions Z∆t
i = z∆t

i (X∆t
i ) and Y ∆t

i = y∆t
i (X∆t

i ) are
approximated by the XGBRegressors, resulting in the approximations ŷ∆t

i , ẑ∆t
i with

Ŷ ∆t
i = ŷ∆t

i (X∆t
i ) and Ẑ∆t

i = ẑ∆t
i (X∆t

i ),

respectively.

Thus, global errors read:

εYi : = Yi − Ŷ ∆t
i ,

εZi : = Zi − Ẑ∆t
i ,

εfi : = f(ti,Xi)− f(ti, X̂∆t
i ).
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Error estimates III
Assumption 1: some non-degeneracy conditions on a and b

I The local truncation errors RYi
θ

and RZi
θ

are bounded by C(∆ti)
3 when θi = 1

2
, i = 1, 2, 3, and

otherwise by C(∆ti)
2 [Li et al., 2017, Zhao et al. 2012, Zhao et al. 2013]

I Assume that Xi = X
∆t
i

I Picard iterations which converges for any initial guess when ∆ti is small enough provided that the
Lipschitz assumptions on the driver

Theorem
Under Assumption 1, if f ∈ C2,4,4,4

b
, g ∈ C4+α

b
for some α ∈ (0, 1), a and b are bounded, a, b ∈ C2,4

b
,

and given

E
xNT−1

NT−1
[|εZNT |2] ∼ O((∆t)

2
), E

xNT−1

NT−1
[|εYNT |2] ∼ O((∆t)

2
),

It holds then

E
x0
0

[
|εYi |2 +

(8θ23(θ2 − 1)2 + (1− θ3)2θ22)∆t

2(1− θ3)2 + 2θ23

|εZi |2
]
≤ Q(∆t)

2

+ Q̃

NT∑
i+1

NT (VarYj )2

T
+
T (VarZj )2

NT

 ,
0 ≤ i ≤ NT − 1, where Q is a constant which only depend on T, x0 and the bounds of f, g and a, b, Q̃ is a
constant depending on T, x0 and L, and VarYi and VarZi are the bounded constants, and M is the number of
samples. [Teng 2022]
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Option pricing with different interest rate (100d) I
dSt,d = µSt,d dt + σSt,ddWt,d, d = 1, · · ·D,

where σ > 0 and µ ∈ R,Wt,d are independent.{
−dYt = f(t,Xt, Yt, Zt) dt− Zt dWt
YT = max

(
maxd=1,··· ,D(ST,d)−K1, 0

)
− 2 max

(
maxd=1,··· ,D(ST,d)−K2, 0

)
with

f(t, x, y, z) = −Rly −
µ− Rl

σ

D∑
d=1

zd + (R
b − Rl) max

0,
1

σ

D∑
d=1

zd − y


T = 0.5, S0 = 100, µ = 0.6, σ = 0.02, Rl = 0.04, Rb = 0.06, K1 = 120, K2 = 150, the reference
priceY0 = 21.2988 [E et al. 2019]

0 200 400 600 800 1000
Ky

0

5

10

15

20

25

30

35

M
SE

XGBoost MSE

Train
Test

The XGBoost model for Y until Ky = 1000.

0 20 40 60 80 100
Ky

17.5

20.0

22.5
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27.5

30.0

32.5

35.0

M
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XGBoost MSE
Train
Test

The enlargement of the learning curves on the
left hand side until Ky = 100.

The MSEs of the XGBoost models for different numbers of trees, NT = 10,M = 10000 and the learning rate is 0.9
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Option pricing with different interest rate (100d) II

The error errory := 1
10

∑10
k=1 |Y0 − Y∆t

0,k |

The standard deviation
√

1
9

∑10
k=1
|Y∆t

0,k
− Y∆t

0 |2 with Y∆t
0 = 1

10

∑10
k=1 Y

∆t
0,k

d = 100 Ref. price M = 10000 M = 20000 M = 50000 M = 100000
T = 0.5 [E et al. 2019] errory (Std. dev.) errory (Std. dev.) errory (Std. dev.) errory (Std. dev.)
NT Y0 avg. runtime avg. runtime avg. runtime avg. runtime

10 21.2988
0.13725(0.13335) 0.13911(0.09088) 0.12952(0.06001) 0.18669(0.04351)

9.10 19.37 54.06 131.17

20 21.2988
0.20207(0.21176) 0.14609(0.16716) 0.05542(0.03960) 0.08281(0.01219)

25.03 51.73 139.14 324.49

30 21.2988
0.33619(0.43693) 0.14689(0.15127) 0.04741(0.05735) 0.04096(0.05090)

40.94 84.17 224.13 519.47

I The relative error of 0.0039 in 566 seconds with the Deep BSDE in [E et al. 2017]
I The relative errors 0.00222 and 0.000192 can be achieved in runtime 224.13 and 519.47, respectively
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The Allen-Cahn equation


dXt =

√
2 dWt,

−dYt =
(
Yt − Y 3

t

)
dt− Zt dWt,

YT = arctan
(
max

d̂∈{1,2,··· ,d}X
d̂
T

)
.

[Beck et al. 2021]

T = 0.3, NT = 10 Ref. value M = 2000 M = 5000
[E et al. 2019] errory (Std. dev.) errory (Std. dev.)

d avg. runtime avg. runtime

10 0.89060
0.00279(0.00342) 0.00175(0.00233)

0.19 0.33

50 1.01830
0.00141(0.00187) 0.00076(0.00076)

0.45 1.18

100 1.04510
0.00265(0.00147) 0.00098(0.00113)

0.85 2.21

200 1.06220
0.00101(0.00130) 0.00074(0.00097)

1.69 4.31

300 1.07217
0.00247(0.00171) 0.00075(0.00044)

2.53 6.74

500 1.08124
0.00134(0.00110) 0.00071(0.00034)

4.37 11.79

1000 1.09100
0.00111(0.00142) 0.00051(0.00103)

9.25 25.33

5000 1.10691
0.00162(0.00086) 0.00174(0.00012)

69.51 129.90

10000 1.11402
0.00049(0.00087) 0.00037(0.00017)

151.89 670.24
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The Burgers-type equation
 dXt = d√

2
dWt,

−dYt =
(
Yt − 2+d

2d

) (∑d
d̂=1

Zd̂t

)
dt− Zt dWt,

with the analytical solution



Yt =
exp

(
t+ 1
d

∑d
d̂=1

Xd̂t

)
1+exp

(
t+ 1
d

∑d
d̂=1

Xd̂t

) ,

Zt = σ
d

exp

(
t+ 1
d

∑d
d̂=1

Xd̂t

)
(

1+exp

(
t+ 1
d

∑d
d̂=1

Xd̂t

))2 1d.

d = 100 Theoretical M = 10000 M = 20000 M = 50000 M = 100000
T = 0.5 solution errory (Std. dev.) errory (Std. dev.) errory (Std. dev.) errory (Std. dev.)

Y0 errorz (Std. dev.) errorz (Std. dev.) errorz (Std. dev.) errorz (Std. dev.)
NT Z0 avg. runtime avg. runtime avg. runtime avg. runtime

10
0.5 0.05486(0.03434) 0.05570(0.02464) 0.05545(0.01359) 0.05203(0.01430)

0.17678 1d 0.00601(0.00412) 0.00529(0.00505) 0.00460(0.00244) 0.00454(0.00135)
10.66 22.23 59.58 152.96

20
0.5 0.01625(0.00038) 0.01629(0.00019) 0.01650(0.00010) 0.01640(0.00009)

0.17678 1d 0.00641(0.00881) 0.00560(0.00629) 0.00454(0.00381) 0.00387(0.00235)
27.11 55.67 146.40 369.11

30
0.5 0.00712(0.00010) 0.00712(0.00005) 0.00714(0.00005) 0.00713(0.00003)

0.17678 1d 0.00785(0.00494) 0.00526(0.00509) 0.00519(0.00259) 0.00424(0.00289)
43.55 88.39 234.21 583.45

I d = 20 is considered in [E et al. 2017] and approximations of Z are not given
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A challenging problem I

 dXt = 1√
d

Id dWt,

−dYt =
(
1 + T−t

2d

)
A(Xt) + B(Xt) + C cos

(∑d
d̂=1

d̂ Zd̂
)
dt− Zt dWt, [Chassagneux et al. 2021]

with

A(x) =
1

d

d∑
d̂=1

sin(x
d̂
)1
{xd̂<0}

, B(x) =
1

d

d∑
d̂=1

x
d̂
1
{xd̂≥0}

, C =
(d + 1)(2d + 1)

12
,

and the analytic solution

Yt =
T − t
d

d∑
d̂=1

(
sin(X

d̂
t )1
{Xd̂t <0}

+X
d̂
t 1{Xd̂t ≥0}

)
+ cos

 d∑
d̂=1

d̂ Z
d̂

 .

I [E et al. 2017] fails when d ≥ 3

I [Huré et al. 2020] and [Chassagneux et al. 2021] fail when d ≥ 8
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A challenging problem II

T = 1
M = 10000 M = 50000 M = 100000 M = 200000

errory (Std. dev.) errory (Std. dev.) errory (Std. dev.) errory (Std. dev.)
avg. runtime avg. runtime avg. runtime avg. runtime

NT d = 1, Y0 = 1.3776, Kz = 10, Ky = 100

10
0.00371(0.00501) 0.00153(0.00188) 0.00096(0.00112) 0.00118(0.00169)

0.72 2.94 5.80 11.62

20
0.00565(0.00649) 0.00127(0.00121) 0.00173(0.00220) 0.00087(0.00128)

1.51 6.25 12.36 24.77

30
0.00526(0.00598) 0.00112(0.00170) 0.00159(0.00191) 0.00134(0.00141)

2.31 9.54 18.86 37.98
NT d = 2, Y0 = 0.5707, Kz = 8, Ky = 150

10
0.00893(0.01154) 0.00505(0.00622) 0.00278(0.00359) 0.00258(0.00337)

1.10 4.69 9.21 18.69

20
0.01156(0.01370) 0.00376(0.00437) 0.00317(0.00386) 0.00327(0.00340)

2.31 10.01 19.81 40.05

30
0.01167(0.01772) 0.00558(0.00607) 0.00325(0.00425) 0.00177(0.00252)

3.52 15.32 30.34 61.56
NT d = 5, Y0 = 0.8466, Kz = 2, Ky = 150

10
0.02626(0.03105) 0.01533(0.01038) 0.01191(0.00681) 0.00917(0.00545)

1.68 7.91 16.02 32.79

20
0.01854(0.02541) 0.01101(0.01310) 0.00537(0.00761) 0.00398(0.00489)

3.58 17.27 34.72 70.96

30
0.02439(0.03115) 0.00687(0.00947) 0.00718(0.01015) 0.00452(0.00437)

5.48 26.49 53.30 108.78

L. Teng, BSDE2022 - 9th colloquium on Backward Stochastic Differential Equations and Mean Field Systems 25/29



A challenging problem III

T = 1 Theoretical Numerical

errory (Std. dev.) Kz = Ky avg. runtimeM = 20000 solution approximation
d

Y0 Y∆t
0NT

8
1.16032 1.16830 0.01047(0.00931) 12 5.47

20
10 −0.21489 −0.21517 0.02435(0.03030) 40 14.19
20
20

0.25904 0.2555 0.02838(0.03492) 16 32.55
30
50 −0.47055 −0.47437 0.00667(0.00778) 10 1805.75
400
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Thank you for your
attention!
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