Optimal control of two scales stochastic systems by BSDEs

Giuseppina Guatteri ${ }^{1} \quad$ Gianmario Tessitore ${ }^{2}$
1 Dipartimento di Matematica
Politecnico di Milano
${ }^{2}$ Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca

9th International Colloquium on BSDEs and Mean Field Systems Annecy, June 27-July 1

Example: two scale system of reaction-diffusion equations

We consider the following system of controlled SPDEs:

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t} \mathcal{X}^{\epsilon}(t, x)=\frac{\partial^{2}}{\partial x^{2}} \mathcal{X}^{\epsilon}(t, x)+b\left(\mathcal{X}^{\epsilon}(t, x), \mathcal{Q}^{\epsilon}(t, x), u(t, x)\right)+\right. \\
& +\sigma\left(x, \mathcal{X}^{\epsilon}(t, x)\right) \frac{\partial}{\partial t} \mathcal{W}^{1}(t, x), \\
& \epsilon \frac{\partial}{\partial t} \mathcal{Q}^{\epsilon}(t, x)=\left(\frac{\partial^{2}}{\partial x^{2}}-m\right) \mathcal{Q}^{\epsilon}(t, x)+\rho(x) r(u(t, x))+\epsilon^{1 / 2} \rho(x) \frac{\partial}{\partial t} \mathcal{W}^{2}(t, x), \\
& \mathcal{X}^{\epsilon}(t, 0)=\mathcal{X}^{\epsilon}(t, 1)=\mathcal{Q}^{\epsilon}(t, 0)=\mathcal{Q}^{\epsilon}(t, 1)=0,
\end{aligned}
$$

where $x \in[0,1]$ and $\mathcal{W}^{1}, \mathcal{W}^{2}$ are independent space-time white noises.

Example: two scale system of reaction-diffusion equations
We consider the following system of controlled SPDEs:

$$
\left\{\begin{aligned}
\frac{\partial}{\partial t} \mathcal{X}^{\epsilon}(t, x)=\frac{\partial^{2}}{\partial x^{2}} \mathcal{X}^{\epsilon}(t, x)+b\left(\mathcal{X}^{\epsilon}(t, x),\right. & \left.\mathcal{Q}^{\epsilon}(t, x), u(t, x)\right)+ \\
& +\sigma\left(x, \mathcal{X}^{\epsilon}(t, x)\right) \frac{\partial}{\partial t} \mathcal{W}^{1}(t, x)
\end{aligned} \quad \begin{array}{rl}
\\
\epsilon \frac{\partial}{\partial t} \mathcal{Q}^{\epsilon}(t, x)=\left(\frac{\partial^{2}}{\partial x^{2}}-m\right) \mathcal{Q}^{\epsilon}(t, x)+\rho(x) r(u(t, x))+\epsilon^{1 / 2} \rho(x) \frac{\partial}{\partial t} \mathcal{W}^{2}(t, x), \\
\mathcal{X}^{\epsilon}(t, 0)=\mathcal{X}^{\epsilon}(t, 1)=\mathcal{Q}^{\epsilon}(t, 0)=\mathcal{Q}^{\epsilon}(t, 1)=0
\end{array}\right.
$$

where $x \in[0,1]$ and $\mathcal{W}^{1}, \mathcal{W}^{2}$ are independent space-time white noises.
Together with the cost:

$$
J^{\epsilon}(u)=\mathbb{E} \int_{0}^{1} \int_{0}^{1} \ell\left(\mathcal{X}^{\epsilon}(t, x), \mathcal{Y}^{\epsilon}(t, x), u(t, x)\right) d x d t+\mathbb{E} \int_{0}^{1} h\left(\mathcal{X}^{\epsilon}(1, x)\right) d x
$$

Example: two scale system of reaction-diffusion equations
We consider the following system of controlled SPDEs:

$$
\left\{\begin{array}{l}
\begin{array}{l}
\frac{\partial}{\partial t} \mathcal{X}^{\epsilon}(t, x)=\frac{\partial^{2}}{\partial x^{2}} \mathcal{X}^{\epsilon}(t, x)+b\left(\mathcal{X}^{\epsilon}(t, x),\right. \\
\left.\mathcal{Q}^{\epsilon}(t, x), u(t, x)\right)+ \\
\\
\\
\quad+\sigma\left(x, \mathcal{X}^{\epsilon}(t, x)\right) \frac{\partial}{\partial t} \mathcal{W}^{1}(t, x)
\end{array} \\
\epsilon \frac{\partial}{\partial t} \mathcal{Q}^{\epsilon}(t, x)=\left(\frac{\partial^{2}}{\partial x^{2}}-m\right) \mathcal{Q}^{\epsilon}(t, x)+\rho(x) r(u(t, x))+\epsilon^{1 / 2} \rho(x) \frac{\partial}{\partial t} \mathcal{W}^{2}(t, x) \\
\mathcal{X}^{\epsilon}(t, 0)=\mathcal{X}^{\epsilon}(t, 1)=\mathcal{Q}^{\epsilon}(t, 0)=\mathcal{Q}^{\epsilon}(t, 1)=0
\end{array}\right.
$$

where $x \in[0,1]$ and $\mathcal{W}^{1}, \mathcal{W}^{2}$ are independent space-time white noises.
Together with the cost:

$$
J^{\epsilon}(u)=\mathbb{E} \int_{0}^{1} \int_{0}^{1} \ell\left(\mathcal{X}^{\epsilon}(t, x), \mathcal{Y}^{\epsilon}(t, x), u(t, x)\right) d x d t+\mathbb{E} \int_{0}^{1} h\left(\mathcal{X}^{\epsilon}(1, x)\right) d x
$$

We are interested into the limit, as $\epsilon \searrow 0$, of the value function

$$
V^{\epsilon}=\inf _{u} J^{\epsilon}(u)
$$

Abstract formulation

We consider a two scale system of controlled ∞-dimensional SDEs:

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0},
\end{gathered}
$$

Abstract formulation

We consider a two scale system of controlled ∞-dimensional SDEs:

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0} \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- ϵ is a small parameter

Abstract formulation

We consider a two scale system of controlled ∞-dimensional SDEs:

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0},
\end{gathered}
$$

- ϵ is a small parameter
- X is the slow variable and takes values in the Hilbert space H

Abstract formulation

We consider a two scale system of controlled ∞-dimensional SDEs:

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- ϵ is a small parameter
- X is the slow variable and takes values in the Hilbert space H
- Q is the fast variable and takes values in the Hilbert space K

Abstract formulation

We consider a two scale system of controlled ∞-dimensional SDEs:

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- ϵ is a small parameter
- X is the slow variable and takes values in the Hilbert space H
- Q is the fast variable and takes values in the Hilbert space K
- $\left(W_{t}^{i}\right)_{t \geq 0}, i=1,2$, are indep. cylindrical Wiener processes.

Abstract formulation

We consider a two scale system of controlled ∞-dimensional SDEs:

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0} \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- ϵ is a small parameter
- X is the slow variable and takes values in the Hilbert space H
- Q is the fast variable and takes values in the Hilbert space K
$\rightarrow\left(W_{t}^{i}\right)_{t \geq 0}, i=1,2$, are indep. cylindrical Wiener processes.
Notice that if $\hat{Q}_{s}^{\epsilon, u}:=Q_{\epsilon S}^{\epsilon, u}$ and $\hat{W}_{s}^{2, \epsilon}:=\frac{1}{\sqrt{\epsilon}} W_{\epsilon S}^{2, \epsilon}$ then

$$
d \hat{Q}_{s}^{\epsilon, u}=\left(B \hat{Q}_{s}^{\epsilon, u}+F\left(X_{\epsilon s}^{\epsilon, u} \hat{Q}_{s}^{\epsilon, u}\right)+G \rho\left(u_{\epsilon s}\right)\right) d t+G d \hat{W}_{s}^{2, \epsilon}
$$

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- $A: D(A) \subset H \rightarrow H$ and $B: D(B) \subset K \rightarrow K$ are unbounded linear operators generating C_{0} - semigroups.

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0} \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- $A: D(A) \subset H \rightarrow H$ and $B: D(B) \subset K \rightarrow K$ are unbounded linear operators generating C_{0} - semigroups.
- G is a bounded linear operator

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- $A: D(A) \subset H \rightarrow H$ and $B: D(B) \subset K \rightarrow K$ are unbounded linear operators generating C_{0} - semigroups.
- G is a bounded linear operator
- R is a bounded invertible linear operator

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0},
\end{gathered}
$$

- $A: D(A) \subset H \rightarrow H$ and $B: D(B) \subset K \rightarrow K$ are unbounded linear operators generating $C_{0}-$ semigroups.
- G is a bounded linear operator
- R is a bounded invertible linear operator
- u is a control adapted to the filtration generated by $\left(W^{1}, W^{2}\right)$ it take values in a suitable topological space U

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0},
\end{gathered}
$$

- F and b Lipschitz and Gateaux differentiable

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0} \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- F and b Lipschitz and Gateaux differentiable
- b and ρ are bounded

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0} \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

- F and b Lipschitz and Gateaux differentiable
- b and ρ are bounded
- the semigroups generated by A and B are Hilbert Schmidt and their Hilbert Schmidt norms grow as $s^{-\gamma}$ when $s \searrow 0$ with $0 \leq \gamma<1 / 2$.

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0}, \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0},
\end{gathered}
$$

- F and b Lipschitz and Gateaux differentiable
- b and ρ are bounded
- the semigroups generated by A and B are Hilbert Schmidt and their Hilbert Schmidt norms grow as $s^{-\gamma}$ when $s \searrow 0$ with $0 \leq \gamma<1 / 2$.
- $B+F$ is dissipative with respect to Q e.g.

$$
\left\langle\left(q-q^{\prime}\right), B\left(q-q^{\prime}\right)+F\left(x, q-q^{\prime}\right)\right\rangle \leq-\eta\left|q-q^{\prime}\right|^{2}, \quad \eta>0 .
$$

We consider the following optimal control problem

$$
J^{\epsilon}(u)=\mathbb{E}\left[\int_{0}^{1} I\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, u}\right)\right]
$$

and the value function $V^{\epsilon}\left(x_{0}, q_{0}\right)=\inf _{u} J^{\epsilon}(u)$

We consider the following optimal control problem

$$
J^{\epsilon}(u)=\mathbb{E}\left[\int_{0}^{1} I\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, u}\right)\right]
$$

and the value function $V^{\epsilon}\left(x_{0}, q_{0}\right)=\inf _{u} J^{\epsilon}(u)$
Our purpose is to characterize :

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}\left(x_{0}, q_{0}\right)=V\left(x_{0}, q_{0}\right)
$$

We consider the following optimal control problem

$$
J^{\epsilon}(u)=\mathbb{E}\left[\int_{0}^{1} I\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, u}\right)\right]
$$

and the value function $V^{\epsilon}\left(x_{0}, q_{0}\right)=\inf _{u} J^{\epsilon}(u)$
Our purpose is to characterize :

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}\left(x_{0}, q_{0}\right)=V\left(x_{0}, q_{0}\right)
$$

- [O. Alvarez and M. Bardi, 2001-2007]: same problem in finite dimensional spaces by convergence of viscosity solutions of the corresponding HJB equations.

We consider the following optimal control problem

$$
J^{\epsilon}(u)=\mathbb{E}\left[\int_{0}^{1} I\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, u}\right)\right]
$$

and the value function $V^{\epsilon}\left(x_{0}, q_{0}\right)=\inf _{u} J^{\epsilon}(u)$
Our purpose is to characterize :

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}\left(x_{0}, q_{0}\right)=V\left(x_{0}, q_{0}\right)
$$

- [O. Alvarez and M. Bardi, 2001-2007]: same problem in finite dimensional spaces by convergence of viscosity solutions of the corresponding HJB equations.
- [G. Guatteri and G.T.2018-2021]: ∞-dimensional case, BSDE approach, cylindrical noise, limitations on the form of the state equation.

We consider the following optimal control problem

$$
J^{\epsilon}(u)=\mathbb{E}\left[\int_{0}^{1} I\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, u}\right)\right]
$$

and the value function $V^{\epsilon}\left(x_{0}, q_{0}\right)=\inf _{u} J^{\epsilon}(u)$
Our purpose is to characterize :

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}\left(x_{0}, q_{0}\right)=V\left(x_{0}, q_{0}\right)
$$

- [O. Alvarez and M. Bardi, 2001-2007]: same problem in finite dimensional spaces by convergence of viscosity solutions of the corresponding HJB equations.
- [G. Guatteri and G.T.2018-2021]: ∞-dimensional case, BSDE approach, cylindrical noise, limitations on the form of the state equation.
- [A. Swieck 2020]: ∞-dimensional case, by convergence of viscosity solutions, general state equation but trace class noise.

We consider the following optimal control problem

$$
J^{\epsilon}(u)=\mathbb{E}\left[\int_{0}^{1} I\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, u}\right)\right]
$$

and the value function $V^{\epsilon}\left(x_{0}, q_{0}\right)=\inf _{u} J^{\epsilon}(u)$
Our purpose is to characterize :

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}\left(x_{0}, q_{0}\right)=V\left(x_{0}, q_{0}\right)
$$

- [O. Alvarez and M. Bardi, 2001-2007]: same problem in finite dimensional spaces by convergence of viscosity solutions of the corresponding HJB equations.
- [G. Guatteri and G.T.2018-2021]: ∞-dimensional case, BSDE approach, cylindrical noise, limitations on the form of the state equation.
- [A. Swieck 2020]: ∞-dimensional case, by convergence of viscosity solutions, general state equation but trace class noise.
Also see, Kabanov-Pergamenchicov, Goldys, Yang, Zhou...

BSDE reformulation of the problem

For $\epsilon>0$ fixed we rewrite the state equation as:

$$
\begin{aligned}
& d X_{t}^{\epsilon, u}=A X_{t}^{\epsilon, u} d t+R\left[R^{-1} b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+d W_{t}^{1}\right], \\
& \left.d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G\left[\frac{1}{\sqrt{\epsilon}} \rho\left(u_{t}\right)\right) d t+d W_{t}^{2}\right]
\end{aligned}
$$

BSDE reformulation of the problem

For $\epsilon>0$ fixed we rewrite the state equation as:

$$
\begin{aligned}
& d X_{t}^{\epsilon, u}=A X_{t}^{\epsilon, u} d t+R\left[R^{-1} b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+d W_{t}^{1}\right], \\
& \left.d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G\left[\frac{1}{\sqrt{\epsilon}} \rho\left(u_{t}\right)\right) d t+d W_{t}^{2}\right]
\end{aligned}
$$

and introduce the Hamiltonian

$$
\psi(x, q, z, \xi)=\inf _{u \in U}\{l(x, q, u)+z b(x, q, u)+\xi \rho(u)\}
$$

BSDE reformulation of the problem

For $\epsilon>0$ fixed we rewrite the state equation as:

$$
\begin{aligned}
d X_{t}^{\epsilon, u} & =A X_{t}^{\epsilon, u} d t+R\left[R^{-1} b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+d W_{t}^{1}\right] \\
d Q_{t}^{\epsilon, u} & \left.=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G\left[\frac{1}{\sqrt{\epsilon}} \rho\left(u_{t}\right)\right) d t+d W_{t}^{2}\right]
\end{aligned}
$$

and introduce the Hamiltonian

$$
\psi(x, q, z, \xi)=\inf _{u \in U}\{I(x, q, u)+z b(x, q, u)+\xi \rho(u)\}
$$

Consider the 'forward-backward' system (we denote $\left.R^{-*}=\left(R^{-1}\right)^{*}\right)$:

$$
\begin{aligned}
d X_{t}^{\epsilon} & =A X_{t}+R d W_{t}^{1}, X_{0}^{\epsilon}=x_{0} \\
\epsilon d Q_{t}^{\epsilon} & =\left(B Q_{t}^{\epsilon}+F\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}\right)\right) d t+\epsilon^{1 / 2} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0} \\
-d Y_{t}^{\epsilon} & =\psi\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}, R^{-*} Z_{t}^{\epsilon}, \Xi_{t}^{\epsilon} / \sqrt{\epsilon}\right) d t-Z_{t}^{\epsilon} d W_{t}^{1}-\Xi_{t}^{\epsilon} d W_{t}^{2}, Y_{1}^{\epsilon}=h\left(X_{1}^{\epsilon}\right)
\end{aligned}
$$

BSDE reformulation of the problem

For $\epsilon>0$ fixed we rewrite the state equation as:

$$
\begin{aligned}
d X_{t}^{\epsilon, u} & =A X_{t}^{\epsilon, u} d t+R\left[R^{-1} b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right) d t+d W_{t}^{1}\right] \\
d Q_{t}^{\epsilon, u} & \left.=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G\left[\frac{1}{\sqrt{\epsilon}} \rho\left(u_{t}\right)\right) d t+d W_{t}^{2}\right]
\end{aligned}
$$

and introduce the Hamiltonian

$$
\psi(x, q, z, \xi)=\inf _{u \in U}\{I(x, q, u)+z b(x, q, u)+\xi \rho(u)\}
$$

Consider the 'forward-backward' system (we denote $\left.R^{-*}=\left(R^{-1}\right)^{*}\right)$:

$$
\begin{aligned}
d X_{t}^{\epsilon} & =A X_{t}+R d W_{t}^{1}, X_{0}^{\epsilon}=x_{0} \\
\epsilon d Q_{t}^{\epsilon} & =\left(B Q_{t}^{\epsilon}+F\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}\right)\right) d t+\epsilon^{1 / 2} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0} \\
-d Y_{t}^{\epsilon} & =\psi\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}, R^{-*} Z_{t}^{\epsilon}, \Xi_{t}^{\epsilon} / \sqrt{\epsilon}\right) d t-Z_{t}^{\epsilon} d W_{t}^{1}-\Xi_{t}^{\epsilon} d W_{t}^{2}, Y_{1}^{\epsilon}=h\left(X_{1}^{\epsilon}\right)
\end{aligned}
$$

then

$$
V(\epsilon)=Y_{0}^{\epsilon}
$$

The parametrized ergodic BSDE

We freeze the slow variables $X_{t}=x \in H$ and $Z_{t}=z \in H^{*}$ and 'stretch' time (roughly speaking we set $\widehat{Q}_{s}=Q_{\epsilon S}, \widehat{W}_{s}^{2}=e^{-1 / 2} W_{\epsilon S}^{2}, s \in[0,1 / \epsilon]$).

The parametrized ergodic BSDE

We freeze the slow variables $X_{t}=x \in H$ and $Z_{t}=z \in H^{*}$ and 'stretch' time (roughly speaking we set $\widehat{Q}_{s}=Q_{\epsilon S}, \widehat{W}_{s}^{2}=e^{-1 / 2} W_{\epsilon S}^{2}, s \in[0,1 / \epsilon]$). More precisely we consider the fast equation with frozen slow parameter

$$
d \widehat{Q}_{s}^{x}=B \widehat{Q}_{s}^{x}+F\left(x, \widehat{Q}_{s}^{x}\right) d s+G d \widehat{W}_{s}^{2} ; \quad Q_{0}^{x}=q_{0}
$$

The parametrized ergodic BSDE

We freeze the slow variables $X_{t}=x \in H$ and $Z_{t}=z \in H^{*}$ and 'stretch' time (roughly speaking we set $\widehat{Q}_{s}=Q_{\epsilon S}, \widehat{W}_{s}^{2}=e^{-1 / 2} W_{\epsilon S}^{2}$, $s \in[0,1 / \epsilon]$). More precisely we consider the fast equation with frozen slow parameter

$$
d \widehat{Q}_{s}^{x}=B \widehat{Q}_{s}^{x}+F\left(x, \widehat{Q}_{s}^{x}\right) d s+G d \widehat{W}_{s}^{2} ; \quad Q_{0}^{x}=q_{0} .
$$

together with an ergodic BSDE in the following sense

The parametrized ergodic BSDE

We freeze the slow variables $X_{t}=x \in H$ and $Z_{t}=z \in H^{*}$ and 'stretch' time (roughly speaking we set $\widehat{Q}_{s}=Q_{\epsilon S}, \widehat{W}_{s}^{2}=e^{-1 / 2} W_{\epsilon S}^{2}$, $s \in[0,1 / \epsilon]$). More precisely we consider the fast equation with frozen slow parameter

$$
d \widehat{Q}_{s}^{x}=B \widehat{Q}_{s}^{x}+F\left(x, \widehat{Q}_{s}^{x}\right) d s+G d \widehat{W}_{s}^{2} ; \quad Q_{0}^{x}=q_{0} .
$$

together with an ergodic BSDE in the following sense
Theorem (Fuhrman, Hu, T. '07)
$\forall x \in H, z \in H^{*}, \exists!$ solution $\left(Y^{x, z}, \Xi^{x, z}, \lambda(x, z)\right)$ of the infinite horizon ergodic BSDE

$$
-d \check{Y}_{t}^{x, z}=\left[\psi\left(x, \widehat{Q}^{x}, z, \check{\Xi}_{t}^{x, z}\right)-\lambda(x, z)\right] d t-\check{\underline{\Xi}}_{t}^{x, z} d \widehat{W}_{t}^{2}, \quad \forall t \geq 0
$$

The parametrized ergodic BSDE

We freeze the slow variables $X_{t}=x \in H$ and $Z_{t}=z \in H^{*}$ and 'stretch' time (roughly speaking we set $\widehat{Q}_{s}=Q_{\epsilon S}, \widehat{W}_{s}^{2}=e^{-1 / 2} W_{\epsilon S}^{2}$, $s \in[0,1 / \epsilon]$). More precisely we consider the fast equation with frozen slow parameter

$$
d \widehat{Q}_{s}^{x}=B \widehat{Q}_{s}^{x}+F\left(x, \widehat{Q}_{s}^{\times}\right) d s+G d \widehat{W}_{s}^{2} ; \quad Q_{0}^{x}=q_{0} .
$$

together with an ergodic BSDE in the following sense
Theorem (Fuhrman, Hu, T. '07)
$\forall x \in H, z \in H^{*}, \exists!$ solution $\left(Y^{x, z}, \Xi^{x, z}, \lambda(x, z)\right)$ of the infinite horizon ergodic BSDE

$$
-d \check{Y}_{t}^{x, z}=\left[\psi\left(x, \widehat{Q}^{x}, z, \check{\underline{\Xi}}_{t}^{x, z}\right)-\lambda(x, z)\right] d t-\check{\underline{\Xi}}_{t}^{x, z} d \widehat{W}_{t}^{2}, \quad \forall t \geq 0
$$

Moreover $\left|\check{Y}_{t}^{\times, q_{0}, p}\right| \leq c\left(1+\left|\widehat{Q}_{t}^{x, q_{0}}\right|\right)$ where $c>0$ only depends on the Lipschitz constants of ψ with respect to q and on the dissipativity constant of $B+F(x, \cdot)$.

Moreover $\lambda(x, z)$ is the value function of a control problem with state equation

$$
d \widehat{Q}_{s}^{x, u}=\left(B \widehat{Q}_{s}^{x, u}+F\left(x, \widehat{Q}_{s}^{x, u}\right)\right) d s+G \rho\left(u_{s}\right) d s+G d \widehat{W}_{s}^{2}, \quad \widehat{Q}_{0}^{u}=q_{0}
$$

and ergodic cost

$$
J(x, z, u)=\liminf _{T \rightarrow 0} \frac{1}{T} \mathbb{E} \int_{0}^{T}\left[z b\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)+I\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)\right] d s
$$

where the control u is defined on $[0, \infty[$ and takes its values in U.

Moreover $\lambda(x, z)$ is the value function of a control problem with state equation

$$
d \widehat{Q}_{s}^{\times, u}=\left(B \widehat{Q}_{s}^{x, u}+F\left(x, \widehat{Q}_{s}^{x, u}\right)\right) d s+G \rho\left(u_{s}\right) d s+G d \widehat{W}_{s}^{2}, \quad \widehat{Q}_{0}^{u}=q_{0}
$$

and ergodic cost

$$
J(x, z, u)=\liminf _{T \rightarrow 0} \frac{1}{T} \mathbb{E} \int_{0}^{T}\left[z b\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)+I\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)\right] d s
$$

where the control u is defined on $[0, \infty[$ and takes its values in U.

- λ is Lipschitz in z (with constant L not depending on x) and in x.

Moreover $\lambda(x, z)$ is the value function of a control problem with state equation

$$
d \widehat{Q}_{s}^{x, u}=\left(B \widehat{Q}_{s}^{\times, u}+F\left(x, \widehat{Q}_{s}^{\times, u}\right)\right) d s+G \rho\left(u_{s}\right) d s+G d \widehat{W}_{s}^{2}, \quad \widehat{Q}_{0}^{u}=q_{0}
$$

and ergodic cost

$$
J(x, z, u)=\liminf _{T \rightarrow 0} \frac{1}{T} \mathbb{E} \int_{0}^{T}\left[z b\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)+I\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)\right] d s
$$

where the control u is defined on $[0, \infty[$ and takes its values in U.

- λ is Lipschitz in z (with constant L not depending on x) and in x.
- λ is concave with respect to p.

Moreover $\lambda(x, z)$ is the value function of a control problem with state equation

$$
d \widehat{Q}_{s}^{x, u}=\left(B \widehat{Q}_{s}^{\times, u}+F\left(x, \widehat{Q}_{s}^{\times, u}\right)\right) d s+G \rho\left(u_{s}\right) d s+G d \widehat{W}_{s}^{2}, \quad \widehat{Q}_{0}^{u}=q_{0}
$$

and ergodic cost

$$
J(x, z, u)=\liminf _{T \rightarrow 0} \frac{1}{T} \mathbb{E} \int_{0}^{T}\left[z b\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)+I\left(x, \widehat{Q}_{s}^{x, u}, u_{s}\right)\right] d s
$$

where the control u is defined on $[0, \infty[$ and takes its values in U.

- λ is Lipschitz in z (with constant L not depending on x) and in x.
- λ is concave with respect to p.

For further results on Ergodic BSDEs see [Richou '08] [Debussche, Hu, T. '11], [Hu, Madec, Richou '15], [Hu, Tang '18], [Hu, Lemonnier '19], [Hu Cohen], [Guatteri, Cosso, T. '18], [Guatteri T. ']

Reduced system - Main result in the non-degenerate case

We can now introduce the limit forward-backward system:

$$
\left\{\begin{aligned}
d X_{t} & =A X_{t} d t+d W_{t}^{1}, \quad X_{0}=x_{0} \\
d \bar{Y}_{t} & =-\lambda\left(X_{t}, R^{-*} \bar{Z}_{t}\right) d t+\bar{Z} d W_{t}^{1}, \quad t \in[0,1), \quad \bar{Y}_{1}=h\left(X_{1}\right),
\end{aligned}\right.
$$

Reduced system - Main result in the non-degenerate case

We can now introduce the limit forward-backward system:

$$
\left\{\begin{aligned}
d X_{t} & =A X_{t} d t+d W_{t}^{1}, \quad X_{0}=x_{0} \\
d \bar{Y}_{t} & =-\lambda\left(X_{t}, R^{-*} \bar{Z}_{t}\right) d t+\bar{Z} d W_{t}^{1}, \quad t \in[0,1), \quad \bar{Y}_{1}=h\left(X_{1}\right),
\end{aligned}\right.
$$

Recall the f.b. system for the original, two scales problem:

$$
\left\{\begin{aligned}
d X_{t} & =A X_{t}+R d W_{t}^{1}, \quad t \in[0,1] \\
\epsilon d Q_{t}^{\epsilon} & =\left(B Q_{t}^{\epsilon}+F\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}\right)\right) d t+\sqrt{\epsilon} G d W_{t}^{2}, \\
-d Y_{t}^{\epsilon} & =\psi\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}, R^{-*} Z_{t}^{\epsilon}, \Xi_{t}^{\epsilon} / \sqrt{\epsilon}\right) d t-Z_{t}^{\epsilon} d W_{t}^{1}-\Xi_{t}^{\epsilon} d W_{t}^{2}, \\
X_{0}^{\epsilon} & =x_{0} \quad Q_{0}^{\epsilon}=q_{0}, \quad Y_{1}^{\epsilon}=h\left(X_{1}\right) .
\end{aligned}\right.
$$

Reduced system - Main result in the non-degenerate case

We can now introduce the limit forward-backward system:

$$
\left\{\begin{aligned}
d X_{t} & =A X_{t} d t+d W_{t}^{1}, \quad X_{0}=x_{0} \\
d \bar{Y}_{t} & =-\lambda\left(X_{t}, R^{-*} \bar{Z}_{t}\right) d t+\bar{Z} d W_{t}^{1}, \quad t \in[0,1), \quad \bar{Y}_{1}=h\left(X_{1}\right),
\end{aligned}\right.
$$

Recall the f.b. system for the original, two scales problem:

$$
\left\{\begin{aligned}
d X_{t} & =A X_{t}+R d W_{t}^{1}, \quad t \in[0,1] \\
\epsilon d Q_{t}^{\epsilon} & =\left(B Q_{t}^{\epsilon}+F\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}\right)\right) d t+\sqrt{\epsilon} G d W_{t}^{2}, \\
-d Y_{t}^{\epsilon} & =\psi\left(X_{t}^{\epsilon}, Q_{t}^{\epsilon}, R^{-*} Z_{t}^{\epsilon}, \Xi_{t}^{\epsilon} / \sqrt{\epsilon}\right) d t-Z_{t}^{\epsilon} d W_{t}^{1}-\Xi_{t}^{\epsilon} d W_{t}^{2}, \\
X_{0}^{\epsilon} & =x_{0} \quad Q_{0}^{\epsilon}=q_{0}, \quad Y_{1}^{\epsilon}=h\left(X_{1}\right) .
\end{aligned}\right.
$$

Theorem (Main result)

$$
\lim _{\epsilon \rightarrow 0}\left|Y_{0}^{\epsilon}-\bar{Y}_{0}\right|=0
$$

Proof (Sketch): The idea is to freeze the slow equation to give time to the fast equation to behave as the optimal ergodic state.

Proof (Sketch): The idea is to freeze the slow equation to give time to the fast equation to behave as the optimal ergodic state.
For notational simplicity we set $R=I_{H}$. We have to estimate:

$$
\begin{aligned}
Y_{0}^{\epsilon}-\bar{Y}_{0}= & \int_{0}^{1}\left(\psi\left(X_{t}, Q_{t}^{\epsilon}, Z_{t}^{\epsilon}, \bar{\Xi}_{t}^{\epsilon} / \sqrt{\epsilon}\right)-\lambda\left(X_{t}, \bar{Z}_{t}\right)\right) d t \\
& +\int_{0}^{1}\left(Z_{t}^{\epsilon}-\bar{Z}_{t}\right) d W_{t}^{1}+\int_{0}^{1} \bar{\Xi}_{t}^{\epsilon} d W_{t}^{2}
\end{aligned}
$$

Proof (Sketch): The idea is to freeze the slow equation to give time to the fast equation to behave as the optimal ergodic state.
For notational simplicity we set $R=I_{H}$. We have to estimate:

$$
\begin{aligned}
Y_{0}^{\epsilon}-\bar{Y}_{0}= & \int_{0}^{1}\left(\psi\left(X_{t}, Q_{t}^{\epsilon}, Z_{t}^{\epsilon}, \bar{\Xi}_{t}^{\epsilon} / \sqrt{\epsilon}\right)-\lambda\left(X_{t}, \bar{Z}_{t}\right)\right) d t \\
& +\int_{0}^{1}\left(Z_{t}^{\epsilon}-\bar{Z}_{t}\right) d W_{t}^{1}+\int_{0}^{1} \bar{\Xi}_{t}^{\epsilon} d W_{t}^{2}
\end{aligned}
$$

Since the difference $\int_{0}^{1}\left(\psi\left(X_{t}, Q_{t}^{\epsilon}, \bar{Z}_{t}, \bar{\Xi}_{t}^{\epsilon} / \sqrt{\epsilon}\right)-\psi\left(X_{t}, Q_{t}^{\epsilon}, Z_{t}^{\epsilon}, \bar{\Xi}_{t}^{\epsilon} / \sqrt{\epsilon}\right) d t\right.$ can be easily treated by a change of probability we are left with

$$
\int_{0}^{1}\left(\psi\left(X_{t}, Q_{t}^{\epsilon}, \bar{Z}_{t}, \bar{\Xi}_{t}^{\epsilon} / \sqrt{\epsilon}\right)-\lambda\left(X_{t}, \bar{Z}_{t}\right)\right) d t+\int_{0}^{1}\left(Z_{t}^{\epsilon}-\bar{Z}_{t}\right) d W_{t}^{1}+\int_{0}^{1} \bar{\Xi}_{t}^{\epsilon} d W_{t}^{2}
$$

We start a discretization procedure. Let $t_{k}=k 2^{-N}, k=0,1, \ldots, 2^{N}-1$ and define for $t_{k} \leq t<t_{k+1}$:

$$
X_{t}^{N}=X_{t_{k}}, \quad Z^{N}(t)=2^{N} \int_{t_{k-1}}^{t_{k}} \bar{Z}_{s} d s
$$

We start a discretization procedure. Let $t_{k}=k 2^{-N}, k=0,1, \ldots, 2^{N}-1$ and define for $t_{k} \leq t<t_{k+1}$:

$$
X_{t}^{N}=X_{t_{k}}, \quad Z^{N}(t)=2^{N} \int_{t_{k-1}}^{t_{k}} \bar{Z}_{s} d s
$$

Fixed k we consider the system (with stretched time) for $s \geq t_{k} / \epsilon$:

$$
\begin{gathered}
d \widehat{Q}_{s}^{N, k}=\left(B \widehat{Q}_{s}^{N, k}+F\left(X_{t_{k}}, \widehat{Q}_{s}^{N, k}\right)\right) d s+G d \widehat{W}_{s}^{2}, \quad Q_{t_{k} / \epsilon}^{N, k}=Q_{t_{k} / \epsilon}^{N, k-1} \\
-d \check{Y}_{s}^{N, k}=\left[\psi\left(X_{t_{k}}, \widehat{Q}_{s}^{N, k}, Z_{t_{k}}^{N}, \check{\Xi} N s, k\right)-\lambda\left(X_{t_{k}}, Z_{t_{k}}^{N}\right)\right] d s-\check{\Xi}_{t}^{N, k} d \widehat{W}_{t}^{2}
\end{gathered}
$$

We start a discretization procedure. Let $t_{k}=k 2^{-N}, k=0,1, \ldots, 2^{N}-1$ and define for $t_{k} \leq t<t_{k+1}$:

$$
X_{t}^{N}=X_{t_{k}}, \quad Z^{N}(t)=2^{N} \int_{t_{k-1}}^{t_{k}} \bar{Z}_{s} d s
$$

Fixed k we consider the system (with stretched time) for $s \geq t_{k} / \epsilon$:

$$
\begin{gathered}
d \widehat{Q}_{s}^{N, k}=\left(B \widehat{Q}_{s}^{N, k}+F\left(X_{t_{k}}, \widehat{Q}_{s}^{N, k}\right)\right) d s+G d \widehat{W}_{s}^{2}, \quad Q_{t_{k} / \epsilon}^{N, k}=Q_{t_{k} / \epsilon}^{N, k-1} \\
-d \check{Y}_{s}^{N, k}=\left[\psi\left(X_{t_{k}}, \widehat{Q}_{s}^{N, k}, Z_{t_{k}}^{N}, \check{\Xi} N s, k\right)-\lambda\left(X_{t_{k}}, Z_{t_{k}}^{N}\right)\right] d s-\check{\Xi}_{t}^{N, k} d \widehat{W}_{t}^{2}
\end{gathered}
$$

The above system is composed by a

- a forward-dissipative equation (for \hat{Q}) with initial time t_{k} / ϵ
- a backward-ergodic equation (for $(\check{Y}, \check{\Xi}, \lambda)$)

We start a discretization procedure. Let $t_{k}=k 2^{-N}, k=0,1, \ldots, 2^{N}-1$ and define for $t_{k} \leq t<t_{k+1}$:

$$
X_{t}^{N}=X_{t_{k}}, \quad Z^{N}(t)=2^{N} \int_{t_{k-1}}^{t_{k}} \bar{Z}_{s} d s
$$

Fixed k we consider the system (with stretched time) for $s \geq t_{k} / \epsilon$:

$$
\begin{gathered}
d \widehat{Q}_{s}^{N, k}=\left(B \widehat{Q}_{s}^{N, k}+F\left(X_{t_{k}}, \widehat{Q}_{s}^{N, k}\right)\right) d s+G d \widehat{W}_{s}^{2}, \quad Q_{t_{k} / \epsilon}^{N, k}=Q_{t_{k} / \epsilon}^{N, k-1} \\
-d \check{Y}_{s}^{N, k}=\left[\psi\left(X_{t_{k}}, \widehat{Q}_{s}^{N, k}, Z_{t_{k}}^{N}, \check{\Xi} N s, k\right)-\lambda\left(X_{t_{k}}, Z_{t_{k}}^{N}\right)\right] d s-\check{\Xi}_{t}^{N, k} d \widehat{W}_{t}^{2}
\end{gathered}
$$

The above system is composed by a

- a forward-dissipative equation (for \hat{Q}) with initial time t_{k} / ϵ
- a backward-ergodic equation (for $(\check{Y}, \stackrel{\Xi}{\Xi}, \lambda)$)

It admits a unique solution $\left(\widehat{Y}^{N, k}, \widehat{\bar{E}}^{N, k}, \lambda\left(X_{t_{k}}^{N}, Z_{t_{k}}^{N}\right)\right.$) with

$$
\left|\check{Y}_{s}^{N, k}\right| \leq c\left(1+\left|\widehat{Q}_{s}^{N, k}\right|\right)
$$

If join the processes setting $\widehat{Q}_{s}^{N}=\widehat{Q}_{s}^{N, k}, \doteq_{s}^{\check{\Xi} N}=\check{\Xi}_{s}^{\check{N}, k}$ for $s \in\left[t_{k} / \epsilon, t_{k+1} / \epsilon[\right.$.

If join the processes setting $\widehat{Q}_{s}^{N}=\widehat{Q}_{s}^{N, k}, \check{\Xi}_{s}^{N}=\check{\Xi}_{s}^{\check{\check{N}}, k}$ for $s \in\left[t_{k} / \epsilon, t_{k+1} / \epsilon[\right.$. integrating in $\left[t_{k} / \epsilon, t_{k+1} / \epsilon[\right.$ we get:

If join the processes setting $\widehat{Q}_{s}^{N}=\widehat{Q}_{s}^{N, k}, \check{\Xi}_{s}^{N}=\check{\Xi}_{s}^{\check{N}, k}$ for $s \in\left[t_{k} / \epsilon, t_{k+1} / \epsilon[\right.$. integrating in $\left[t_{k} / \epsilon, t_{k+1} / \epsilon[\right.$ we get:

$$
\begin{gathered}
\check{Y}_{t_{k+1} / \epsilon}^{N, k}-\check{Y}_{t_{k} / \epsilon}^{N, k}=\int_{t_{k} / \epsilon}^{t_{k+1} / \epsilon}\left[\psi\left(X_{\epsilon s}^{N}, \widehat{Q}_{s}^{N}, Z_{\epsilon s}^{N}, \check{\Xi}_{s}^{N}\right)-\lambda\left(X_{\epsilon S}^{N}, Z_{\epsilon S}^{N}\right)\right] d s \\
+\int_{t_{k} / \epsilon}^{t_{k+1} / \epsilon} \check{\Xi}_{s}^{N} d \widehat{W}_{s}^{2} .
\end{gathered}
$$

If join the processes setting $\widehat{Q}_{s}^{N}=\widehat{Q}_{s}^{N, k}, \check{\Xi}_{s}^{N}=\check{\Xi}_{s}^{\check{N}, k}$ for $s \in\left[t_{k} / \epsilon, t_{k+1} / \epsilon[\right.$. integrating in $\left[t_{k} / \epsilon, t_{k+1} / \epsilon[\right.$ we get:

$$
\begin{gathered}
\check{Y}_{t_{k+1} / \epsilon}^{N, k}-\check{Y}_{t_{k} / \epsilon}^{N, k}=\int_{t_{k} / \epsilon}^{t_{k+1} / \epsilon}\left[\psi\left(X_{\epsilon s}^{N}, \widehat{Q}_{s}^{N}, Z_{\epsilon s}^{N}, \check{\Xi}_{s}^{N}\right)-\lambda\left(X_{\epsilon s}^{N}, Z_{\epsilon s}^{N}\right)\right] d s \\
+\int_{t_{k} / \epsilon}^{t_{k+1} / \epsilon} \check{\Xi}_{s}^{N} d \widehat{W}_{s}^{2} .
\end{gathered}
$$

Therefore, summing up:

$$
\begin{aligned}
0= & \sum_{k=1}^{2^{N}}\left(\check{Y}_{t_{k} / \epsilon}^{N, k}-\check{Y}_{t_{k+1}}^{N, k}\right)+\int_{0}^{1 / \epsilon} \check{\Xi}_{s}^{N} d \widehat{W}_{s}^{2}+ \\
& -\int_{0}^{1 / \epsilon} \psi\left(X_{\epsilon S}^{N}, \widehat{Q}_{s}^{N}, Z_{\epsilon s}^{N}, \check{\Xi}_{s}^{N}\right) d s+\int_{0}^{1 / \epsilon} \lambda\left(X_{\epsilon S}^{N}, Z_{\epsilon s}^{N}\right) d s
\end{aligned}
$$

Recall that we had to estimate (after stretching of time, that is for:
$\left.\widehat{Q}_{s}^{\epsilon}:=Q_{\epsilon S}^{\epsilon}, \hat{\bar{\Xi}}_{s}^{\epsilon}:=\bar{\Xi}_{\epsilon S}^{\epsilon} / \sqrt{\epsilon}\right)$

$$
\begin{aligned}
Y_{0}^{\epsilon}-\bar{Y}_{0} & =\epsilon \int_{0}^{1 / \epsilon}\left(\psi\left(X_{\epsilon s}, \widehat{Q}_{s}^{\epsilon}, \bar{Z}_{\epsilon S}, \widehat{\bar{\Xi}}_{s}^{\epsilon}\right)-\lambda\left(X_{\epsilon s}, \bar{Z}_{\epsilon s}\right)\right) d s \\
& +\sqrt{\epsilon} \int_{0}^{1 / \epsilon}\left(Z_{\epsilon s}^{\epsilon}-\bar{Z}_{\epsilon s}\right) d \widehat{W}_{t}^{1}+\epsilon \int_{0}^{1 / \epsilon} \widehat{\bar{\Xi}}_{s}^{\epsilon} d \widehat{W}_{s}^{2} .
\end{aligned}
$$

Recall that we had to estimate (after stretching of time, that is for:
$\left.\widehat{Q}_{s}^{\epsilon}:=Q_{\epsilon s}^{\epsilon}, \widehat{\bar{\Xi}}_{s}^{\epsilon}:=\bar{\Xi}_{\epsilon s}^{\epsilon} / \sqrt{\epsilon}\right)$

$$
\begin{aligned}
Y_{0}^{\epsilon}-\bar{Y}_{0} & =\epsilon \int_{0}^{1 / \epsilon}\left(\psi\left(X_{\epsilon S}, \widehat{Q}_{s}^{\epsilon}, \bar{Z}_{\epsilon S}, \widehat{\bar{\Xi}}_{s}^{\epsilon}\right)-\lambda\left(X_{\epsilon s}, \bar{Z}_{\epsilon s}\right)\right) d s \\
& +\sqrt{\epsilon} \int_{0}^{1 / \epsilon}\left(Z_{\epsilon S}^{\epsilon}-\bar{Z}_{\epsilon s}\right) d \widehat{W}_{t}^{1}+\epsilon \int_{0}^{1 / \epsilon} \widehat{\bar{\Xi}}_{s}^{\epsilon} d \widehat{W}_{s}^{2} .
\end{aligned}
$$

Adding (ϵ times) the above null term we get:

$$
\begin{aligned}
Y_{0}^{\epsilon}-\bar{Y}_{0}= & \epsilon \int_{0}^{1 / \epsilon} \mathcal{R}_{s}^{\epsilon, N} d s+\epsilon \sum_{k=1}^{N}\left(\check{Y}_{t_{k} / \epsilon}^{N, k}-\check{Y}_{t_{k+1} / \epsilon}^{N, k}\right) \\
& +\epsilon \int_{0}^{1 / \epsilon}\left(\Xi_{s}^{N}-\widehat{\bar{\Xi}}_{s}^{\epsilon}\right) d \widehat{W}_{s}^{2}+\epsilon^{\frac{1}{2}} \int_{0}^{1 / \epsilon}\left(Z_{\epsilon s}^{\epsilon}-\bar{Z}_{\epsilon s}\right) d W_{t}^{1} \\
& +\epsilon \int_{0}^{1 / \epsilon}\left[\psi\left(X_{\epsilon t}^{N}, \widehat{Q}_{t}^{N}, Z_{\epsilon t}^{N}, \widehat{\Xi}_{s}^{\epsilon}\right)-\psi\left(X_{\epsilon t}^{N}, \widehat{Q}_{s}^{N}, Z_{\epsilon s}^{N}, \check{\Xi} N s\right)\right] d s \\
& +\epsilon \int_{0}^{1 / \epsilon}\left[\psi\left(X_{\epsilon s}, \widehat{Q}_{s}^{\epsilon}, Z_{\epsilon s}^{\epsilon}, \widehat{\Xi}_{s}^{\epsilon}\right)-\psi\left(X_{\epsilon s}, \widehat{Q}_{s}^{\epsilon}, \bar{Z}_{\epsilon s}, \widehat{\Xi}_{s}^{\epsilon}\right)\right] d s
\end{aligned}
$$

where $\left|\mathcal{R}_{s}^{\epsilon, N}\right| \leq L\left(\left|X_{\epsilon s}^{\epsilon}-X_{\epsilon S}^{N}\right|+\left|\widehat{Q}_{s}^{\epsilon}-\widehat{Q}_{s}^{N}\right|+\left|\bar{Z}_{\epsilon S}-Z_{\epsilon S}^{N}\right|\right)$

We can get rid of the last two terms by Girsanov change of probability. Namely we prove that

$$
\begin{equation*}
Y_{0}^{\epsilon}-\bar{Y}_{0}=\widetilde{\mathbb{E}}^{\epsilon} \int_{0}^{1} \mathcal{R}_{t / \epsilon}^{\epsilon, N} d t+\epsilon \widetilde{\mathbb{E}}^{\epsilon} \sum_{k=1}^{N}\left(\check{Y}_{t_{k} / \epsilon}^{N, k}-\check{Y}_{t_{k+1} / \epsilon}^{N, k}\right) \tag{1}
\end{equation*}
$$

where we denote by $\widetilde{\mathbb{E}}^{\epsilon}$ the expectation with respect to the Girsanov probability $\widetilde{\mathbb{P}}^{\epsilon}$ that we obtain when absorbing the last two term in the stochastic integrals
It is crucial to notice that

$$
d \widetilde{\mathbb{P}}^{\epsilon}=\mathcal{E}\left(\delta^{\epsilon, N}(.)\right)_{1} d \mathbb{P}
$$

where the perturbations $\delta^{\epsilon, N}$ are bbd, uniformly in ϵ and N.

Since $\left|\mathcal{R}_{s}^{\epsilon, N}\right| \leq L\left(\left|X_{\epsilon S}^{\epsilon}-X_{\epsilon S}^{N}\right|+\left|\widehat{Q}_{s}^{\epsilon}-\widehat{Q}_{s}^{N}\right|+\left|\bar{Z}_{\epsilon s}-Z_{\epsilon S}^{N}\right|\right)$ and $\delta^{\epsilon, N}$ is bdd. unif. in ϵ, N we can estimate the 'error' in the new probability. Namely

$$
\widetilde{\mathbb{E}}^{\epsilon} \int_{0}^{1} \mathcal{R}_{t / \epsilon}^{\epsilon, N} d t \rightarrow 0 \text { as } N \rightarrow \infty \text { uniformly with respect to } \epsilon
$$

Since $\left|\mathcal{R}_{s}^{\epsilon, N}\right| \leq L\left(\left|X_{\epsilon S}^{\epsilon}-X_{\epsilon S}^{N}\right|+\left|\widehat{Q}_{s}^{\epsilon}-\widehat{Q}_{s}^{N}\right|+\left|\bar{Z}_{\epsilon s}-Z_{\epsilon s}^{N}\right|\right)$ and $\delta^{\epsilon, N}$ is bdd. unif. in ϵ, N we can estimate the 'error' in the new probability. Namely

$$
\widetilde{\mathbb{E}}^{\epsilon} \int_{0}^{1} \mathcal{R}_{t / \epsilon}^{\epsilon, N} d t \rightarrow 0 \text { as } N \rightarrow \infty \text { uniformly with respect to } \epsilon
$$

Coming to the last term $\epsilon \widetilde{\mathbb{E}}^{\epsilon} \sum_{k=1}^{N}\left(\check{Y}_{t_{k} / \epsilon}^{N, k}-\check{Y}_{t_{k+1} / \epsilon}^{N, k}\right)$ we recall that

- $\left|\check{Y}_{s}^{N, k}\right| \leq c\left(1+\left|\widehat{Q}_{s}^{N}\right|\right)$
- $\widetilde{\mathbb{E}}^{\epsilon} \sup _{s \geq 0}\left|\widehat{Q}_{s}^{N}\right|^{2} \leq C$ (by dissipativity of the fast equation).

Since $\left|\mathcal{R}_{s}^{\epsilon, N}\right| \leq L\left(\left|X_{\epsilon s}^{\epsilon}-X_{\epsilon s}^{N}\right|+\left|\widehat{Q}_{s}^{\epsilon}-\widehat{Q}_{s}^{N}\right|+\left|\bar{Z}_{\epsilon s}-Z_{\epsilon s}^{N}\right|\right)$ and $\delta^{\epsilon, N}$ is bdd. unif. in ϵ, N we can estimate the 'error' in the new probability. Namely

$$
\widetilde{\mathbb{E}}^{\epsilon} \int_{0}^{1} \mathcal{R}_{t / \epsilon}^{\epsilon, N} d t \rightarrow 0 \text { as } N \rightarrow \infty \text { uniformly with respect to } \epsilon
$$

Coming to the last term $\epsilon \widetilde{\mathbb{E}}^{\epsilon} \sum_{k=1}^{N}\left(\check{Y}_{t_{k} / \epsilon}^{N, k}-\check{Y}_{t_{k+1} / \epsilon}^{N, k}\right)$ we recall that

- $\left|\check{Y}_{s}^{N, k}\right| \leq c\left(1+\left|\widehat{Q}_{s}^{N}\right|\right)$
- $\widetilde{\mathbb{E}}^{\epsilon} \sup _{s \geq 0}\left|\widehat{Q}_{s}^{N}\right|^{2} \leq C$ (by dissipativity of the fast equation).
thus

$$
\left|\epsilon \widetilde{\mathbb{E}}^{\epsilon} \sum_{k=1}^{N}\left(\widehat{Y}_{t_{k} / \epsilon}^{N, k}-\widehat{Y}_{t_{k+1} / \epsilon}^{N, k}\right)\right| \leq \epsilon \sum_{k=1}^{N} \widetilde{\mathbb{E}}^{\epsilon}\left(1+\left|\widehat{Q}_{t_{k} / \epsilon}^{N}\right|+\left|\widehat{Q}_{t_{k+1} / \epsilon}^{N}\right|\right) \leq \widetilde{C} \epsilon N
$$

Since $\left|\mathcal{R}_{s}^{\epsilon, N}\right| \leq L\left(\left|X_{\epsilon s}^{\epsilon}-X_{\epsilon s}^{N}\right|+\left|\widehat{Q}_{s}^{\epsilon}-\widehat{Q}_{s}^{N}\right|+\left|\bar{Z}_{\epsilon s}-Z_{\epsilon s}^{N}\right|\right)$ and $\delta^{\epsilon, N}$ is bdd. unif. in ϵ, N we can estimate the 'error' in the new probability. Namely

$$
\widetilde{\mathbb{E}}^{\epsilon} \int_{0}^{1} \mathcal{R}_{t / \epsilon}^{\epsilon, N} d t \rightarrow 0 \text { as } N \rightarrow \infty \text { uniformly with respect to } \epsilon
$$

Coming to the last term $\epsilon \widetilde{\mathbb{E}}^{\epsilon} \sum_{k=1}^{N}\left(\check{Y}_{t_{k} / \epsilon}^{N, k}-\check{Y}_{t_{k+1} / \epsilon}^{N, k}\right)$ we recall that

- $\left|\check{Y}_{s}^{N, k}\right| \leq c\left(1+\left|\widehat{Q}_{s}^{N}\right|\right)$
- $\widetilde{\mathbb{E}}^{\epsilon} \sup _{s \geq 0}\left|\widehat{Q}_{s}^{N}\right|^{2} \leq C$ (by dissipativity of the fast equation).
thus

$$
\left|\epsilon \widetilde{\mathbb{E}}^{\epsilon} \sum_{k=1}^{N}\left(\widehat{Y}_{t_{k} / \epsilon}^{N, k}-\widehat{Y}_{t_{k+1} / \epsilon}^{N, k}\right)\right| \leq \epsilon \sum_{k=1}^{N} \widetilde{\mathbb{E}}^{\epsilon}\left(1+\left|\widehat{Q}_{t_{k} / \epsilon}^{N}\right|+\left|\widehat{Q}_{t_{k+1} / \epsilon}^{N}\right|\right) \leq \widetilde{C} \epsilon N
$$

At last we sum up all results to get

$$
\left|Y_{0}^{\epsilon}-\bar{Y}_{0}\right| \leq \widetilde{\mathbb{E}}^{\epsilon} \int_{0}^{1}\left|\mathcal{R}_{t / \epsilon}^{\epsilon, N}\right| d t+\epsilon N(1+C)
$$

So our claim follow choosing N large and then ϵ close to 0 ,

Degenerate case - small noise regularization

Let us come back to the original problem

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R\left(X_{t}^{\epsilon, u}\right) d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0} \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

We allow R to depend on X and to be degenerate

Degenerate case - small noise regularization

Let us come back to the original problem

$$
\begin{gathered}
d X_{t}^{\epsilon, u}=\left(A X_{t}^{\epsilon, u}+b\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}, u_{t}\right)\right) d t+R\left(X_{t}^{\epsilon, u}\right) d W_{t}^{1}, X_{0}^{\epsilon, u}=x^{0} \\
d Q_{t}^{\epsilon, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, u}+F\left(X_{t}^{\epsilon, u}, Q_{t}^{\epsilon, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2}, Q_{0}^{\epsilon}=q_{0}
\end{gathered}
$$

We allow R to depend on X and to be degenerate
Given a H-valued cylindrical Wiener process $\left(B_{t}\right)$ and a small constant η we introduce the following small-noise regularization of the problem

$$
\begin{gathered}
d X_{t}^{\epsilon, \eta, u}=\left(A X_{t}^{\epsilon, \eta, u}+b\left(X_{t}^{\epsilon, \eta, u}, Q_{t}^{\epsilon, \eta, u}, u_{t}\right)\right) d t+R\left(X_{t}^{\epsilon, \eta, u}\right) d W_{t}^{1}+\eta d B_{t} \\
d Q_{t}^{\epsilon, \eta, u}=\frac{1}{\epsilon}\left(B Q_{t}^{\epsilon, \eta, u}+F\left(X_{t}^{\epsilon, \eta, u}, Q_{t}^{\epsilon, \eta, u}\right)+G \rho\left(u_{t}\right)\right) d t+\frac{1}{\sqrt{\epsilon}} G d W_{t}^{2} .
\end{gathered}
$$

By direct estimates, using in a crucial way the dissipativity of $B+F(x, \cdot)$ and the boundedness of b and ρ, we have:

$$
\mathbb{E} \int_{0}^{1}\left[\left|Q_{t}^{\epsilon, u, \eta}-Q_{t}^{\epsilon, u}\right|+\left|X_{t}^{\epsilon, u, \eta}-X_{t}^{\epsilon, u}\right|\right] d t \rightarrow 0
$$

as $\eta \rightarrow 0$ uniformly with respect to $\epsilon>0$ and to the control u.

By direct estimates, using in a crucial way the dissipativity of $B+F(x, \cdot)$ and the boundedness of b and ρ, we have:

$$
\mathbb{E} \int_{0}^{1}\left[\left|Q_{t}^{\epsilon, u, \eta}-Q_{t}^{\epsilon, u}\right|+\left|X_{t}^{\epsilon, u, \eta}-X_{t}^{\epsilon, u}\right|\right] d t \rightarrow 0
$$

as $\eta \rightarrow 0$ uniformly with respect to $\epsilon>0$ and to the control u.
Therefore if we introduce again the cost J and the its value function:

$$
J^{\epsilon, \eta}(u)=\mathbb{E}\left[\int_{0}^{T} I\left(X_{t}^{\epsilon, \eta, u}, Q_{t}^{\epsilon, \eta, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, \eta, u}\right)\right], V^{\epsilon, \eta}=\inf _{u} J^{\epsilon, \eta}(u) .
$$

By direct estimates, using in a crucial way the dissipativity of $B+F(x, \cdot)$ and the boundedness of b and ρ, we have:

$$
\mathbb{E} \int_{0}^{1}\left[\left|Q_{t}^{\epsilon, u, \eta}-Q_{t}^{\epsilon, u}\right|+\left|X_{t}^{\epsilon, u, \eta}-X_{t}^{\epsilon, u}\right|\right] d t \rightarrow 0
$$

as $\eta \rightarrow 0$ uniformly with respect to $\epsilon>0$ and to the control u.
Therefore if we introduce again the cost J and the its value function:
$J^{\epsilon, \eta}(u)=\mathbb{E}\left[\int_{0}^{T} I\left(X_{t}^{\epsilon, \eta, u}, Q_{t}^{\epsilon, \eta, u}, u_{t}\right) d t+h\left(X_{1}^{\epsilon, \eta, u}\right)\right], V^{\epsilon, \eta}=\inf _{u} J^{\epsilon, \eta}(u)$.
It holds:

$$
V^{\epsilon, \eta} \rightarrow V^{\epsilon}
$$

uniformly with respect to the parameter $\epsilon>0$.

For the regularized problem we can use the above results. Let:

$$
\begin{aligned}
d X_{t}^{\epsilon, \eta}= & A X_{t}^{\epsilon, \eta} d t+R\left(X_{t}^{\epsilon, \eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\epsilon, \eta}=x_{0}, \\
\epsilon d Q_{t}^{\epsilon, \eta}= & \left(B Q_{t}^{\epsilon, \eta}+F\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}\right) d t+\epsilon^{1 / 2} G d W_{t}^{2}, Q_{0}^{\epsilon, \eta}=q_{0} .\right. \\
-d Y_{t}^{\epsilon, \eta}= & \psi\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}, \eta^{-1} Z_{t}^{2, \epsilon, \eta}, \epsilon^{-1 / 2} \bar{\Xi}_{t}^{\epsilon, \eta}\right) d t \\
& -Z_{t}^{1, \epsilon, \eta} d W_{t}^{1}-Z_{t}^{2, \epsilon, \eta} d B_{t}-\Xi_{t}^{\epsilon, \eta} d W_{t}^{2}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) .
\end{aligned}
$$

where as before $\psi(x, q, z, \xi)=\inf _{u \in U}\{I(x, q, u)+z b(x, q, u)+\xi \rho(u)\}$.

For the regularized problem we can use the above results. Let:

$$
\begin{aligned}
d X_{t}^{\epsilon, \eta}= & A X_{t}^{\epsilon, \eta} d t+R\left(X_{t}^{\epsilon, \eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\epsilon, \eta}=x_{0}, \\
\epsilon d Q_{t}^{\epsilon, \eta}= & \left(B Q_{t}^{\epsilon, \eta}+F\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}\right) d t+\epsilon^{1 / 2} G d W_{t}^{2}, Q_{0}^{\epsilon, \eta}=q_{0} .\right. \\
-d Y_{t}^{\epsilon, \eta}= & \psi\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}, \eta^{-1} Z_{t}^{2, \epsilon, \eta}, \epsilon^{-1 / 2} \bar{\Xi}_{t}^{\epsilon, \eta}\right) d t \\
& -Z_{t}^{1, \epsilon, \eta} d W_{t}^{1}-Z_{t}^{2, \epsilon, \eta} d B_{t}-\bar{\Xi}_{t}^{\epsilon, \eta} d W_{t}^{2}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) .
\end{aligned}
$$

where as before $\psi(x, q, z, \xi)=\inf _{u \in U}\{I(x, q, u)+z b(x, q, u)+\xi \rho(u)\}$.
Then $Y_{0}^{\epsilon, \eta}=V^{\epsilon, \eta}$.

For the regularized problem we can use the above results. Let:

$$
\begin{aligned}
d X_{t}^{\epsilon, \eta}= & A X_{t}^{\epsilon, \eta} d t+R\left(X_{t}^{\epsilon, \eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\epsilon, \eta}=x_{0}, \\
\epsilon d Q_{t}^{\epsilon, \eta}= & \left(B Q_{t}^{\epsilon, \eta}+F\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}\right) d t+\epsilon^{1 / 2} G d W_{t}^{2}, Q_{0}^{\epsilon, \eta}=q_{0} .\right. \\
-d Y_{t}^{\epsilon, \eta}= & \psi\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}, \eta^{-1} Z_{t}^{2, \epsilon, \eta}, \epsilon^{-1 / 2} \bar{\Xi}_{t}^{\epsilon, \eta}\right) d t \\
& -Z_{t}^{1, \epsilon, \eta} d W_{t}^{1}-Z_{t}^{2, \epsilon, \eta} d B_{t}-\Xi_{t}^{\epsilon, \eta} d W_{t}^{2}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) .
\end{aligned}
$$

where as before $\psi(x, q, z, \xi)=\inf _{u \in U}\{I(x, q, u)+z b(x, q, u)+\xi \rho(u)\}$.
Then $Y_{0, \eta}^{\epsilon, \eta}=V^{\epsilon, \eta}$.
Moreover if

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\eta}=x_{0}, \\
-d Y_{t}^{\eta} & =\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right)
\end{aligned}
$$

- The Degenerate case

-Small noise regularization
For the regularized problem we can use the above results. Let:

$$
\begin{aligned}
d X_{t}^{\epsilon, \eta}= & A X_{t}^{\epsilon, \eta} d t+R\left(X_{t}^{\epsilon, \eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\epsilon, \eta}=x_{0}, \\
\epsilon d Q_{t}^{\epsilon, \eta}= & \left(B Q_{t}^{\epsilon, \eta}+F\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}\right) d t+\epsilon^{1 / 2} G d W_{t}^{2}, Q_{0}^{\epsilon, \eta}=q_{0} .\right. \\
-d Y_{t}^{\epsilon, \eta}= & \psi\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}, \eta^{-1} Z_{t}^{2, \epsilon, \eta}, \epsilon^{-1 / 2} \bar{\Xi}_{t}^{\epsilon, \eta}\right) d t \\
& -Z_{t}^{1, \epsilon, \eta} d W_{t}^{1}-Z_{t}^{2, \epsilon, \eta} d B_{t}-\Xi_{t}^{\epsilon, \eta} d W_{t}^{2}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) .
\end{aligned}
$$

where as before $\psi(x, q, z, \xi)=\inf _{u \in U}\{I(x, q, u)+z b(x, q, u)+\xi \rho(u)\}$.
Then $Y_{0}^{\epsilon, \eta}=V^{\epsilon \epsilon \eta}$.
Moreover if

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\eta}=x_{0} \\
-d Y_{t}^{\eta} & =\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right)
\end{aligned}
$$

then, for all $\eta>0$:

$$
\lim _{\epsilon \rightarrow 0} Y_{0}^{\epsilon, \eta}=\lim _{\epsilon \rightarrow 0} V^{\epsilon, \eta}=Y_{0}^{\eta}
$$

- The Degenerate case

-Small noise regularization
For the regularized problem we can use the above results. Let:

$$
\begin{aligned}
d X_{t}^{\epsilon, \eta}= & A X_{t}^{\epsilon, \eta} d t+R\left(X_{t}^{\epsilon, \eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\epsilon, \eta}=x_{0} \\
\epsilon d Q_{t}^{\epsilon, \eta}= & \left(B Q_{t}^{\epsilon, \eta}+F\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}\right) d t+\epsilon^{1 / 2} G d W_{t}^{2}, Q_{0}^{\epsilon, \eta}=q_{0}\right. \\
-d Y_{t}^{\epsilon, \eta}= & \psi\left(X_{t}^{\epsilon, \eta}, Q_{t}^{\epsilon, \eta}, \eta^{-1} Z_{t}^{2, \epsilon, \eta}, \epsilon^{-1 / 2} \Xi_{t}^{\epsilon, \eta}\right) d t \\
& -Z_{t}^{1, \epsilon, \eta} d W_{t}^{1}-Z_{t}^{2, \epsilon, \eta} d B_{t}-\Xi_{t}^{\epsilon, \eta} d W_{t}^{2}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right)
\end{aligned}
$$

where as before $\psi(x, q, z, \xi)=\inf _{u \in U}\{l(x, q, u)+z b(x, q, u)+\xi \rho(u)\}$.
Then $Y_{0}^{\epsilon, \eta}=V^{\epsilon, \eta}$.
Moreover if

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, X_{0}^{\eta}=x_{0} \\
-d Y_{t}^{\eta} & =\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right)
\end{aligned}
$$

then, for all $\eta>0$:

$$
\lim _{\epsilon \rightarrow 0} Y_{0}^{\epsilon, \eta}=\lim _{\epsilon \rightarrow 0} V^{\epsilon, \eta}=Y_{0}^{\eta}
$$

Finally interchanging the limits (since $V^{\epsilon, \eta} \rightarrow V^{\epsilon}$ uniformly in ϵ)

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}=\lim _{\eta \rightarrow 0} Y_{0}^{\eta}
$$

Limit control problem

We concentrate on the convergence of the reduced f . b . system

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, \quad X_{0}^{\eta}=x_{0}, \\
-d Y_{t}^{\eta} & =\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right)
\end{aligned}
$$

Limit control problem

We concentrate on the convergence of the reduced f . b . system

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, \quad X_{0}^{\eta}=x_{0}, \\
-d Y_{t}^{\eta} & =\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) .
\end{aligned}
$$

Idea: represent λ as the Hamiltonian of a control problem

Limit control problem

We concentrate on the convergence of the reduced f . b . system

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, \quad X_{0}^{\eta}=x_{0}, \\
-d Y_{t}^{\eta} & =\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) .
\end{aligned}
$$

Idea: represent λ as the Hamiltonian of a control problem
The following uniform bound is crucial and follows representing $Z^{2, \eta}$ as the gradient of Y^{η} with respect to the initial datum x_{0}

$$
\left|Z_{t}^{2, \eta}\right| \leq c|\eta|
$$

L The Degenerate case

LLimit control problem

Limit control problem

We concentrate on the convergence of the reduced f . b. system

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, \quad X_{0}^{\eta}=x_{0}, \\
-d Y_{t}^{\eta} & =\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right)
\end{aligned}
$$

Idea: represent λ as the Hamiltonian of a control problem
The following uniform bound is crucial and follows representing $Z^{2, \eta}$ as the gradient of Y^{η} with respect to the initial datum x_{0}

$$
\left|Z_{t}^{2, \eta}\right| \leq c|\eta|
$$

Recall that λ is the optimal value of a parametrized ergodic control problem

$$
\begin{gathered}
d \widehat{Q}_{s}^{u}=\left(B \widehat{Q}_{s}^{u}+F\left(x, \widehat{Q}_{s}^{u}\right)\right) d s+G \rho\left(u_{s}\right) d s+G d \widehat{W}_{s}^{2}, \quad \widehat{Q}_{0}^{u}=q_{0} \\
J(x, z, u)=\liminf _{T \rightarrow 0} \frac{1}{T} \mathbb{E} \int_{0}^{T}\left[z b\left(x, Q_{s}^{u}, u\right)+I\left(x, Q_{s}^{u}, u\right)\right] d s
\end{gathered}
$$

So we know that $\lambda(x, z)$ has the following properties:

1. λ is concave with respect to z

So we know that $\lambda(x, z)$ has the following properties:

1. λ is concave with respect to z
2. λ is Lipschitz in z with Lipschitz constant L not depending on x

So we know that $\lambda(x, z)$ has the following properties:

1. λ is concave with respect to z
2. λ is Lipschitz in z with Lipschitz constant L not depending on x
3. λ is Lipschitz in x with constant growing as z
the third is bad news!

So we know that $\lambda(x, z)$ has the following properties:

1. λ is concave with respect to z
2. λ is Lipschitz in z with Lipschitz constant L not depending on x
3. λ is Lipschitz in x with constant growing as z
the third is bad news!
but

So we know that $\lambda(x, z)$ has the following properties:

1. λ is concave with respect to z
2. λ is Lipschitz in z with Lipschitz constant L not depending on x
3. λ is Lipschitz in x with constant growing as z
the third is bad news!
but
since λ appears only as $\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right)$ and $\left|\eta^{-1} Z_{t}^{2, \eta}\right|$ is uniformly bounded we can replace λ with $\tilde{\lambda}$ such that

- $\tilde{\lambda}$ coincides with λ on a ball and points 1. and 2. still hold,

So we know that $\lambda(x, z)$ has the following properties:

1. λ is concave with respect to z
2. λ is Lipschitz in z with Lipschitz constant L not depending on x
3. λ is Lipschitz in x with constant growing as z
the third is bad news!
but
since λ appears only as $\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right)$ and $\left|\eta^{-1} Z_{t}^{2, \eta}\right|$ is uniformly bounded we can replace λ with $\tilde{\lambda}$ such that

- $\tilde{\lambda}$ coincides with λ on a ball and points 1. and 2. still hold,
- $\tilde{\lambda}$ is Lipschitz in x uniformly with respect to z,

So we know that $\lambda(x, z)$ has the following properties:

1. λ is concave with respect to z
2. λ is Lipschitz in z with Lipschitz constant L not depending on x
3. λ is Lipschitz in x with constant growing as z
the third is bad news!
but
since λ appears only as $\lambda\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right)$ and $\left|\eta^{-1} Z_{t}^{2, \eta}\right|$ is uniformly bounded we can replace λ with $\tilde{\lambda}$ such that

- $\tilde{\lambda}$ coincides with λ on a ball and points 1. and 2. still hold,
- $\tilde{\lambda}$ is Lipschitz in x uniformly with respect to z,
- $\tilde{\lambda}(x, z) \approx \kappa_{1}-\kappa_{2}|z|$ for $|z|$ large.

Let $\tilde{\lambda}_{*}$ the Legendre transform of $\tilde{\lambda}$ (recall that $\tilde{\lambda}$ is concave, this justifies the negative signs):

$$
\tilde{\lambda}_{*}(x, a):=\inf _{z \in H^{*}}\{-z a-\tilde{\lambda}(x, z)\}, \quad x, a \in H
$$

Let $\tilde{\lambda}_{*}$ the Legendre transform of $\tilde{\lambda}$ (recall that $\tilde{\lambda}$ is concave, this justifies the negative signs):

$$
\tilde{\lambda}_{*}(x, a):=\inf _{z \in H^{*}}\{-z a-\tilde{\lambda}(x, z)\}, \quad x, a \in H
$$

It turns out that $\tilde{\lambda}_{*}$ is Lipschitz continuous with respect to x. Indeed:

$$
\left|\tilde{\lambda}_{*}(x, a)-\tilde{\lambda}_{*}\left(x^{\prime}, a\right)\right| \leq \sup _{z \in H^{*}}\left|\tilde{\lambda}(x, z)-\tilde{\lambda}\left(x^{\prime}, z\right)\right| .
$$

Let $\tilde{\lambda}_{*}$ the Legendre transform of $\tilde{\lambda}$ (recall that $\tilde{\lambda}$ is concave, this justifies the negative signs):

$$
\tilde{\lambda}_{*}(x, a):=\inf _{z \in H^{*}}\{-z a-\tilde{\lambda}(x, z)\}, \quad x, a \in H
$$

It turns out that $\tilde{\lambda}_{*}$ is Lipschitz continuous with respect to x. Indeed:

$$
\left|\tilde{\lambda}_{*}(x, a)-\tilde{\lambda}_{*}\left(x^{\prime}, a\right)\right| \leq \sup _{z \in H^{*}}\left|\tilde{\lambda}(x, z)-\tilde{\lambda}\left(x^{\prime}, z\right)\right| .
$$

Taking into account Lipschitzianity of $\tilde{\lambda}$ with respect to z we get:

$$
\tilde{\lambda}_{*}(x, a)=-\infty \text { if }|a|>L
$$

Let $\tilde{\lambda}_{*}$ the Legendre transform of $\tilde{\lambda}$ (recall that $\tilde{\lambda}$ is concave, this justifies the negative signs):

$$
\tilde{\lambda}_{*}(x, a):=\inf _{z \in H^{*}}\{-z a-\tilde{\lambda}(x, z)\}, \quad x, a \in H
$$

It turns out that $\tilde{\lambda}_{*}$ is Lipschitz continuous with respect to x. Indeed:

$$
\left|\tilde{\lambda}_{*}(x, a)-\tilde{\lambda}_{*}\left(x^{\prime}, a\right)\right| \leq \sup _{z \in H^{*}}\left|\tilde{\lambda}(x, z)-\tilde{\lambda}\left(x^{\prime}, z\right)\right|
$$

Taking into account Lipschitzianity of $\tilde{\lambda}$ with respect to z we get:

$$
\tilde{\lambda}_{*}(x, a)=-\infty \text { if }|a|>L
$$

That yields the following simplification in the Fenchel duality:

$$
\tilde{\lambda}(x, z):=\inf _{a \in H:|\alpha| \leq L}\left\{-z a-\tilde{\lambda}_{*}(x, a)\right\}
$$

Resuming we have

$$
\begin{aligned}
& \quad d X_{t}^{\eta}=A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, \quad X_{0}^{\eta}=x_{0}, \\
& -d Y_{t}^{\eta}=\tilde{\lambda}\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) . \\
& \text { with } \tilde{\lambda}(x, z):=\inf _{a \in H:|\alpha| \leq L\left\{-z a-\tilde{\lambda}_{*}(x, a)\right\} .}
\end{aligned}
$$

Resuming we have

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, \quad X_{0}^{\eta}=x_{0}, \\
-d Y_{t}^{\eta} & =\tilde{\lambda}\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right)
\end{aligned}
$$

with $\tilde{\lambda}(x, z):=\inf _{a \in H:|\alpha| \leq L}\left\{-z a-\tilde{\lambda}_{*}(x, a)\right\}$.
So Y^{η} solves a BSDE with Hamiltonian nonlinearity thus we can characterize it by:

Resuming we have

$$
\begin{aligned}
d X_{t}^{\eta} & =A X_{t}^{\eta} d t+R\left(X_{t}^{\eta}\right) d W_{t}^{1}+\eta d B_{t}, \quad X_{0}^{\eta}=x_{0}, \\
-d Y_{t}^{\eta} & =\tilde{\lambda}\left(X_{t}^{\eta}, \eta^{-1} Z_{t}^{2, \eta}\right) d t-Z_{t}^{1, \eta} d W_{t}^{1}-Z_{t}^{2, \eta} d B_{t}, \quad Y_{1}^{\epsilon, \eta}=h\left(X_{1}^{\epsilon, \eta}\right) .
\end{aligned}
$$

with $\tilde{\lambda}(x, z):=\inf _{a \in H:|\alpha| \leq L}\left\{-z a-\tilde{\lambda}_{*}(x, a)\right\}$.
So Y^{η} solves a BSDE with Hamiltonian nonlinearity thus we can characterize it by:

$$
Y_{0}^{\eta}=\inf _{|\alpha| \leq L} \overline{\mathbb{E}}\left(h\left(X_{1}^{\eta, \alpha}\right)-\int_{t}^{1} \tilde{\lambda}_{*}\left(X_{\ell}^{\eta, \alpha}, \alpha_{\ell}\right) d \ell\right)
$$

where $X^{\eta, \alpha}$ solves:

$$
d X_{s}^{\eta, \alpha}=A X_{s}^{\eta, \alpha} d s-\alpha_{s} d s+R\left(X_{s}^{\eta, \alpha}\right) d W_{s}^{1}+\eta d B_{t}, \quad X_{0}=x_{0}
$$

and α is a $\left(B, W^{1}\right)$ adapted H-valued (bounded) control.

Passing to the limit as $\eta \rightarrow 0$ we have the final characterization

Theorem (Guatteri, T. 2022)

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}=\lim _{\eta \rightarrow 0} Y_{0}^{\eta}=\inf _{|\alpha| \leq L} \overline{\mathbb{E}}\left(h\left(X_{1}^{\alpha}\right)-\int_{t}^{1} \tilde{\lambda}_{*}\left(X_{\ell}^{\alpha}, \alpha_{\ell}\right) d \ell\right)
$$

where X^{α} solves:

$$
d X_{s}^{\alpha}=A X_{s}^{\eta, \alpha} d s-\alpha_{s} d s+R\left(X_{s}^{\eta, \alpha}\right) d W_{s}^{1}, \quad X_{0}=x_{0} .
$$

BSDEs with 'reflection' in the martingale term

From the control interpretation of the limit we may go back to BSDEs. The control problem is singular we have to use randomization technique (see [Kharroubi-Pham '15], and also Bandini, Cosso, Guatteri, Fuhrman and many others).

BSDEs with 'reflection' in the martingale term

From the control interpretation of the limit we may go back to BSDEs. The control problem is singular we have to use randomization technique (see [Kharroubi-Pham '15], and also Bandini, Cosso, Guatteri, Fuhrman and many others).
Let $\left(\mathcal{W}_{t}\right)$ be a cilindrycal H valued Wiener process independent on $\left(W_{t}^{1}\right)$ and let $\left(\mathcal{X}_{t}\right)$ be the solution to the forward equaution

$$
d \mathcal{X}_{t}=A \mathcal{X}_{t} d t+\mathcal{W}_{t} d t+R\left(\mathcal{X}_{t}\right) d W_{,}^{1} \mathcal{X}_{0}=x_{0}
$$

The Degenerate case

-Representation by Constrained BSDEs

BSDEs with 'reflection' in the martingale term

From the control interpretation of the limit we may go back to BSDEs. The control problem is singular we have to use randomization technique (see [Kharroubi-Pham '15], and also Bandini, Cosso, Guatteri, Fuhrman and many others).
Let $\left(\mathcal{W}_{t}\right)$ be a cilindrycal H valued Wiener process independent on $\left(W_{t}^{1}\right)$ and let $\left(\mathcal{X}_{t}\right)$ be the solution to the forward equaution

$$
d \mathcal{X}_{t}=A \mathcal{X}_{t} d t+\mathcal{W}_{t} d t+R\left(\mathcal{X}_{t}\right) d W_{,}^{1} \quad \mathcal{X}_{0}=x_{0}
$$

and $(\mathcal{Y}, \mathcal{Z}, \mathcal{K})$ be the maximal solution of the constrained BSDE:

$$
-d \mathcal{Y}_{t}=\tilde{\lambda}_{*}\left(\mathcal{X}_{t}, \mathcal{W}_{t}\right) d t-d \mathcal{K}_{t}+\mathcal{Z}_{t} d W_{t}^{1}
$$

where $\left(\mathcal{K}_{t}\right)$ is non decreasing. Notice that the solution is adapted to the filtration generated by $\left(\mathcal{W}, W^{1}\right)$.

The Degenerate case

-Representation by Constrained BSDEs

BSDEs with 'reflection' in the martingale term

From the control interpretation of the limit we may go back to BSDEs. The control problem is singular we have to use randomization technique (see [Kharroubi-Pham '15], and also Bandini, Cosso, Guatteri, Fuhrman and many others).
Let $\left(\mathcal{W}_{t}\right)$ be a cilindrycal H valued Wiener process independent on $\left(W_{t}^{1}\right)$ and let $\left(\mathcal{X}_{t}\right)$ be the solution to the forward equaution

$$
d \mathcal{X}_{t}=A \mathcal{X}_{t} d t+\mathcal{W}_{t} d t+R\left(\mathcal{X}_{t}\right) d W_{,}^{1} \quad \mathcal{X}_{0}=x_{0}
$$

and $(\mathcal{Y}, \mathcal{Z}, \mathcal{K})$ be the maximal solution of the constrained BSDE:

$$
-d \mathcal{Y}_{t}=\tilde{\lambda}_{*}\left(\mathcal{X}_{t}, \mathcal{W}_{t}\right) d t-d \mathcal{K}_{t}+\mathcal{Z}_{t} d W_{t}^{1}
$$

where $\left(\mathcal{K}_{t}\right)$ is non decreasing. Notice that the solution is adapted to the filtration generated by $\left(\mathcal{W}, W^{1}\right)$.
We can conclude:

$$
\lim _{\epsilon \rightarrow 0} V^{\epsilon}=\mathcal{Y}_{0}
$$

Thank you for your attention!

