Convergence rate of RBSDE by penalisation method and its application to American Option

Wanqing WANG ${ }^{1}$, Supervised by Emmanuel GOBET ${ }^{1}$, Mingyu XU ${ }^{2}$
${ }^{1}$ CMAP, Ecole Polytechnique
${ }^{2}$ Fudan University

June 27, BSDE 2022, Annecy

Introduction

American Option

Given the payoff process S and the maturity T, the fair price of the American option is

$$
Y_{t}=\underset{\tau \in \mathcal{T}_{t, T}}{\operatorname{ess} \sup } \mathbb{E}_{t}^{\mathbb{Q}}\left[e^{-r(\tau-t)} S_{\tau}\right]
$$

which is equivalent to a solution of Reflected Backward Stochastic Differential Equation problem(RBSDE in short)(see [EKP $\left.{ }^{+} 97\right]$).

RBSDE

The equation writes as

$$
\left\{\begin{array}{l}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) \mathbf{d} s+K_{T}-K_{t}-\int_{t}^{T} Z_{s} \mathbf{d} B_{s}, \quad \forall 0 \leq t \leq T \\
Y_{t} \geq S_{t}, 0 \leq t \leq T \\
\int_{0}^{T}\left(Y_{t}-S_{t}\right) \mathbf{d} K_{t}=0
\end{array}\right.
$$

where we call the triple (Y, Z, K) the solution w.r.t. (ξ, f, S) with $\xi \geq S_{T}$.

Motivation

Define the Penalised BSDE as following:

PBSDE:

$$
Y_{t}^{\lambda}=\xi+\int_{t}^{T} f\left(s, Y_{s}^{\lambda}, Z_{s}^{\lambda}\right) \mathbf{d} s+\lambda \int_{t}^{T}\left(Y_{s}^{\lambda}-S_{s}\right)^{-} \mathbf{d} s-\int_{t}^{T} Z_{s}^{\lambda} \mathbf{d} B_{s}
$$

The penalisation is usually used to prove the existence problem and $Y^{\lambda} \nearrow Y\left(\right.$ see $\left.\left[E K P^{+} 97\right]\right)$.
Q: What about the convergence rate?

(1) Introduction

(2) Penalisation
(3) Example

4 Approximation

Notation and Hypothesis

For some $p \geq 2$,

- $\mathbb{L}^{p}=\left\{\zeta ; \mathbb{E}\left[|\zeta|^{p}\right]<\infty\right\} ;$
- $\mathscr{S}^{p}=\left\{\phi ;\left\{\phi_{t}, 0 \leq t \leq T\right\}\right.$ is continuous s.t. $\left.\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\phi_{t}\right|^{p}\right]<\infty\right\}$;
- $\mathbb{H}^{p}=\left\{\phi ;\left\{\phi_{t}, 0 \leq t \leq T\right\} \in\right.$ is predictable s.t. $\left.\mathbb{E}\left[\left(\int_{0}^{T}\left|\phi_{t}\right|^{2} \mathbf{d} t\right)^{p / 2}\right]<\infty\right\} ;$
$\left(\mathbf{H}_{1}\right)$ Standard assumption for RBSDE;
$\left(\mathrm{H}_{2}\right)$ The barrier S

$$
S_{t}=S_{0}+\int_{0}^{t} U_{s} \mathbf{d} s+\int_{0}^{t} V_{s} \mathbf{d} B_{s}+A_{t}
$$

with $U, V, A \in \mathscr{S}^{p}$ and A non-decreasing;
$\left(\mathbf{H}_{3}\right)$ In the financial market, the liquidation X^{0} and the risky assets $X:=\left(X^{1}, \cdots, X^{d}\right)^{\top}$ satisfy $\mathbf{d} X_{t}^{0}=X_{t}^{0} r_{t} \mathbf{d} t$ and

$$
\frac{\mathbf{d} X_{t}^{i}}{X_{t}^{i}}=\mu_{t}^{i} \mathbf{d} t+\sum_{j=1}^{d} \sigma_{t}^{i j} \mathbf{d} B_{t}^{j}
$$

and r interest rate and σ is invertible, μ, σ, r can be stochastic.

Background

Reflected BSDE

- El karoui et al. (1997): $Y^{\lambda} \nearrow Y$ in \mathscr{S}^{2};
- Lepeltier (2004): $Y^{\lambda} \rightarrow Y$ in \mathbb{H}^{2} for double reflected barrier;
- Jeanblanc (2004): $Y^{\lambda} \rightarrow Y$ at $1 / \lambda$ in \mathscr{S}^{2} for double reflected constant barrier;
- Reisinger (2013): $Y^{\lambda} \rightarrow Y$ at $1 / \lambda$ for convex payoff using PDE;

Suppose $h:=\frac{T}{N}$.

Reflected FSDE on convex domain

- Liu (1993): $Y^{\lambda, h} \rightarrow Y$ at $h^{1 / 4-a}$ in \mathscr{S}^{2} if $\lambda \sim O\left(h^{-1 / 2}\right)$;
- Petterson (1997): $Y^{\lambda, h} \rightarrow Y$ at $\sqrt[4]{h \log \left(\frac{1}{h}\right)}$ in \mathscr{S}^{2} if $\lambda \leq O\left(h^{-1}\right)$;

Main result

Theorem 1

Suppose \mathbf{H}_{2} is fulfilled by S and besides \mathbf{H}_{1}, suppose $f(t, y, z)$ is decreasing on y, assume

$$
\alpha:=\underset{t \in[0, T]}{\operatorname{ess} \sup }\left(f\left(t, S_{t}, V_{t}\right)+U_{t}\right)^{-}<\infty
$$

then the penalisation term is dominated by

$$
\left(Y_{t}^{\lambda}-S_{t}\right)^{-} \leq \frac{\alpha}{\lambda}, \quad \forall 0 \leq t \leq T, \quad \text { a.s. }
$$

Remark
Decreasing: if $y_{1}<y_{2}, f\left(t, y_{1}\right)>f\left(t, y_{2}\right)$. If not, one can apply Itô formula on $e^{\nu t} Y_{t}$ with choosing $\nu>C_{L i p}^{f}$, then

$$
\alpha^{\nu}:=\underset{t \in[0, T]}{\operatorname{ess} \sup } e^{\nu t}\left(f\left(t, S_{t}, V_{t}\right)+U_{t}\right)^{-} .
$$

Main result

Theorem 2

Under \mathbf{H}_{1} and \mathbf{H}_{2}, if α is well defined as before, then by the comparison theorem

$$
0 \leq Y_{t}-Y_{t}^{\lambda} \leq \frac{\alpha}{\lambda}, \quad \forall 0 \leq t \leq T, \text { a.s.. }
$$

Example of Call/Put in Linear Market

Assume there is no dividend, in the linear market,

$$
f(t, y, z)=-r_{t} y-z \sigma_{t}^{-1}\left(\mu_{t}-r_{t}\right)
$$

For the Call option,

$$
\mathbf{d} S_{t}=\mathbf{d}\left(X_{t}-K\right)^{+}=\mu_{t} X_{t} \mathbf{1}_{S_{t}>K} \mathbf{d} t+\sigma_{t} X_{t} \mathbf{1}_{S_{t}>K} \mathbf{d} B_{t}+\frac{1}{2} \mathbf{d} L_{t}
$$

SO

$$
\begin{aligned}
& \left(f\left(t, S_{t}, V_{t}\right)+U_{t}\right)^{-} \\
& =\left(-r_{t}\left(X_{t}-K\right)^{+}-\mathbf{1}_{\left\{X_{t}>K\right\}} X_{t}\left(\mu_{t}-r_{t}\right)+\mathbf{1}_{\left\{X_{t}>K\right\}} \mu_{t} X_{t}\right)^{-} \\
& =\left(r_{t} K \mathbf{1}_{\left\{X_{t}>K\right\}}\right)^{-}=\left|r_{t}^{-}\right| K \mathbf{1}_{\left\{X_{t}>K\right\}} \leq\left|r^{-}\right|_{\infty} K .
\end{aligned}
$$

then $\alpha:=\left|r^{-}\right|_{\infty} K$.

Example of Call/Put in Linear Market

1. This α is true for all stochastic parameters if r is bounded from below!
2. What happens if $\alpha=0$? Two explanations:

- from Theorem $1 \& 2, S_{t} \leq Y_{t}^{\lambda}=Y_{t}, \forall t$;
- from the density of K_{t} (see [EKP $\left.{ }^{+} 97\right]$), $\frac{\mathbf{d} K_{t}}{\mathbf{d} t} \leq \alpha, \forall t ; \Longrightarrow K=0$.

The RBSDE problem \rightarrow a BSDE problem!
The price of American Option = the European one!

Example of Call/Put in Linear Market

The similar conclusion for Put, suppose there is no dividend,

$$
\mathbf{d} S_{t}=\mathbf{d}\left(K-X_{t}\right)^{+}=-\mu_{t} X_{t} \mathbf{1}_{S_{t} \leq K} \mathbf{d} t-\sigma_{t} X_{t} 1_{X_{t} \leq K} \mathbf{d} B_{t}+\frac{1}{2} \mathbf{d} L_{t}
$$

So

$$
\begin{aligned}
& \left(f\left(t, S_{t}, V_{t}\right)+U_{t}\right)^{-} \\
& =\left(-r_{t}\left(K-X_{t}\right)^{+}+\mathbf{1}_{\left\{X_{t} \leq K\right\}} X_{t}\left(\mu_{t}-r_{t}\right)-\mathbf{1}_{\left\{X_{t} \leq K\right\}} \mu_{t} X_{t}\right)^{-} \\
& =\left(-r_{t} K \mathbf{1}_{\left\{X_{t} \leq K\right\}}\right)^{-}=\left|r_{t}^{+}\right| K \mathbf{1}_{X_{t} \leq K} \leq\left|r^{+}\right|_{\infty} K, \forall t \in[0, T] .
\end{aligned}
$$

Then $\alpha:=\left|r^{+}\right|_{\infty} K$.

Other type of option in Linear Market

type	pay-off	α	order $\left(\frac{1}{\lambda}\right)$
Call	$\left(X_{t}-K\right)^{+}$	$\left\|r^{-}\right\|_{\infty} K$	$1(r<0)$
Put	$\left(K-X_{t}\right)^{+}$	$\left\|r^{+}\right\|_{\infty} K$	$1(r>0)$
Call on spread	$\left(X_{t}^{1}-X_{t}^{2}-K\right)^{+}$	$\left\|r^{-}\right\|_{\infty} K$	1
Put on spread	$\left(K-\left(X_{t}^{1}-X_{t}^{2}\right)\right)^{+}$	$\left\|r^{+}\right\|_{\infty} K$	1
Call on max	$\left(X_{t}^{1} \vee X_{t}^{2}-K\right)^{+}$	$\left\|r^{-}\right\|_{\infty} K$	1
Put on min	$\left(K-X_{t}^{1} \wedge X_{t}^{2}\right)^{+}$	$\left\|r^{+}\right\|_{\infty} K$	1
Call on basket	$\left(\sum_{i=1}^{d} X_{t}^{i}-K\right)^{+}$	$\left\|r^{-}\right\|_{\infty} K$	1
Call on min	$\left(X_{t}^{1} \wedge X_{t}^{2}-K\right)^{+}$		$\frac{1}{2}$

Example of Call/Put in Non-Linear Market

Suppose the lending rate r and the borrowing rate R with $r_{t}<R_{t}, 0 \leq t \leq T$. The generator f is defined as following

$$
f(t, y, z)=-r_{t} y-z \sigma_{t}^{-1}\left(\mu_{t}-r_{t}\right)+\left(R_{t}-r_{t}\right)\left(y-z \sigma^{-1}\right)^{-} .
$$

We can also find,

$$
\begin{aligned}
& \text { for Call, } \alpha:=\left|R^{-}\right|_{\infty} K ; \\
& \text { for Put, } \alpha:=\left|r^{+}\right|_{\infty} K .
\end{aligned}
$$

Main result

Theorem 3

Suppose $\mathbf{H}_{1}, \mathbf{H}_{2}$ are satisfied by the data (ξ, f, S), and if one supposes $U, V, f(\cdot, 0,0) \in \mathscr{S}^{p}$, then

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left(Y_{t}-Y_{t}^{\lambda}\right)^{p}+\left(\int_{0}^{T}\left|Z_{t}-Z_{t}^{\lambda}\right|^{2} \mathbf{d} t\right)^{p / 2}+\sup _{0 \leq t \leq T}\left(K_{t}-K_{t}^{\lambda}\right)^{p}\right] \leq \frac{C_{T, f, S}}{\lambda^{p / 2}}
$$

where $C_{T, f, S}$ is a constant depending on T, f, S.

Implicit Schemes

Suppose f does not depend on z.

Implicit Schemes

Define the implicit discrete solution as

$$
Y_{t_{i}}^{h, \lambda}=\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{h, \lambda}+f^{\lambda}\left(t, Y_{t_{i}}^{h, \lambda}\right) h\right]
$$

with $f^{\lambda}(t, y)=f(t, y)+\lambda\left(y-S_{t}\right)^{-}$.
Why not the explicit one as below?

$$
Y_{t_{i}}^{h, \lambda, e}=\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{h, \lambda, e}+f^{\lambda}\left(t_{i+1}, Y_{t_{i+1}}^{h, \lambda, e}\right) h\right] .
$$

When λ is big, we need h much smaller to achieve the same precision.

Approximation-Main result

Theorem 4

Suppose $\mathbf{H}_{1}, \mathbf{H}_{2}$ are satisfied. If

- the driver $f(t, y, z)=f(t, y)$ and $f(t, \cdot) \in \mathbb{C}^{1}$;
- $\left|V_{t}\right| \leq C$, a.s. $0 \leq t \leq T$;
- α is well defined.

Then we have

$$
\sup _{0 \leq i \leq N-1} \mathbb{E}\left[\left(Y_{t_{i}}^{\lambda, h}-Y_{t_{i}}^{\lambda}\right)^{2}\right] \leq O\left(\lambda^{2} h^{5 / 4}\right)
$$

Moreover, if S is a Itô process $(A=0)$, then we have

$$
\sup _{0 \leq i \leq N-1} \mathbb{E}\left[\left(Y_{t_{i}}^{h, \lambda}-Y_{t_{i}}^{\lambda}\right)^{2}\right] \leq O\left(\lambda^{2} h^{3 / 2}\right)
$$

Corollary 5

Under $\mathbf{H}_{1}, \mathbf{H}_{2}$ and suppose α is defined as before. Let $\lambda=h^{-5 / 16}$, we get the global error

$$
\sup _{0 \leq i \leq N-1} \mathbb{E}\left[\left(Y_{t_{i}}^{h, \lambda}-Y_{t_{i}}\right)^{2}\right]^{1 / 2} \leq O\left(h^{5 / 16}\right)
$$

Monte-Carlo Simulation

Price Function at $t=0.5$

λ	RMSE
0	1.35279
8.66	0.85609
17.32	0.50866
25.98	0.29885
34.65	0.15876

Parameters:
$r=0.03, \sigma=0.2, T=$ $1, K=X_{0}=100, M=$ $10 e 3, N=10 e 2, n=6$ (see [GLW05]) The reference Y_{t} is given by binomial tree with 1000 time steps.

Monte-Carlo Simulation

Figure: Define the statistical error ε as $\varepsilon(h):=\sup _{t_{k} \in[0, T]}\left\|Y_{t_{k}}^{h, M, \lambda}-Y_{t_{k}}\right\|_{M}$ with $\|x\|_{M}:=\sqrt{\frac{\sum_{m=1}^{M}\left(x^{m}\right)^{2}}{M}}$ and $\lambda:=h^{-5 / 16}$. Parameters: $r=0.03, \sigma=0.2, T=1, K=X_{0}=100, M=10 e 3, n=6$, the reference $Y_{t_{k}}$ is given by binomial with 1000 time steps.

Conclusion and Perspective

Conclusion

- $Y^{\lambda} \nearrow Y$ at least at $1 / \sqrt{\lambda}$, at $1 / \lambda$ if α;
- $Y^{\lambda, h} \rightarrow Y$ at $\lambda^{2} h^{5 / 4}$;
- The global error $Y^{\lambda, h} \rightarrow Y$ at $h^{5 / 16}$ if $\lambda=h^{-5 / 16}$, the numerical experiment shows a better order;

Perspective

- The order 1 rate holds for the market with dividend?
- Complete the scheme for Z motivated by non-linear market?
- More experiments for the stochastic parameters and also for some type of option without α ?

Thanks for your attention!

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng, and M.C. Quenez. Reflected solutions of backward SDE's and related obstacle problems for PDE's.

Ann. Probab., 25(2):702-737, 1997.
E. Gobet, J.P. Lemor, and X. Warin.

A regression-based monte carlo method to solve backward stochastic differential equations.
The Annals of Applied Probability, 15(3):2172-2202, 2005.
Raid Hamadène and Monique Jeanblanc.
On the starting and stopping problem: application in reversible investments. Mathematics of Operations Research, 32(1):182-192, 2007.

Sam D Howison, Christoph Reisinger, and Jan Hendrik Witte.
The effect of nonsmooth payoffs on the penalty approximation of american options.
SIAM Journal on Financial Mathematics, 4(1):539-574, 2013.
围 Jean-Pierre Lepeltier and Jaime San Martín.

Backward sdes with two barriers and continuous coefficient: an existence result.
Journal of applied probability, 41(1):162-175, 2004.
Roger Pettersson.
Penalization schemes for reflecting stochastic differential equations.
Bernoulli, pages 403-414, 1997.

