A $C^{0,1}$ -functional Itô formula and regularity of solutions to PPDEs

Xiaolu Tan

Chinese University of Hong Kong

Joint works with Bruno Bouchard and Grégoire Loeper

27 June 2022 9th Colloquium on BSDE and MFS

・ロト ・日ト ・ヨト

 $\begin{array}{c} \mbox{Introduction: functional Itô and PPDE} \\ \mbox{A functional $C^{0,1}$-Itô formula and its applications} \\ \mbox{Approximate solution to PPDE and its regularity} \end{array}$

Outline

1 Introduction : functional Itô and PPDE

- A functional C^{0,1}-Itô formula and its applications
 Itô calculus via regularization
 A functional C^{0,1} Itô formulas
 - A functional *C*^{0,1}–ltô formulas
 - Applications in finance
- 3 Approximate solution to PPDE and its regularity

A (1) < A (1) </p>

 $\begin{array}{c} \mbox{Introduction: functional Itô and PPDE} \\ \mbox{A functional $C^{0,1}$-Itô formula and its applications} \\ \mbox{Approximate solution to PPDE and its regularity} \end{array}$

The Itô formula

• Itô formula : let $f : \mathbb{R}_+ \times \mathbb{R}^d \longrightarrow \mathbb{R}$ be a $C^{1,2}$ smooth function, and X be a continuous semimartingale, then

$$f(t, X_t) = f(0, X_0) + \int_0^t Df(s, X_s) dX_s$$

+ $\int_0^t \partial_t f(s, X_s) ds + \int_0^t \frac{1}{2} D^2 f(s, X_s) d\langle X \rangle_s$

• Parabolic PDEs :

$$\partial_t u + F(u, Du, D^2 u) = 0.$$

• For example, let *B* be a Brownian motion, and $u(t,x) := \mathbb{E}[g(B_T)|B_t = x]$. Then *u* satisfies the heat equation :

$$\partial_t u + \frac{1}{2}D^2 u = 0, \quad u(T, \cdot) = g(\cdot).$$

Xiaolu Tan

Path-dependent functional and its derivative

• Let D([0, T]) denote the Skorokhod space of all càdlàg paths on [0, T], $u : [0, T] \times D([0, T]) \longrightarrow \mathbb{R}$ is non-anticipative if

$$u(t, \mathbf{x}) = u(t, \mathbf{x}_{t \wedge \cdot}), \text{ for all } (t, \mathbf{x}).$$

• Dupire : The horizontable derivative of *u* :

$$\partial_t u(t,\mathbf{x}) := \lim_{h \searrow 0} \frac{u(t+h,\mathbf{x}_{t \wedge \cdot}) - u(t,\mathbf{x}_{t \wedge \cdot})}{h};$$

the vertical derivative of u:

$$abla_{\mathbf{x}}u(t,\mathbf{x}) := \lim_{y \to 0} rac{u(t,\mathbf{x} \oplus_t y) - u(t,\mathbf{x})}{y}$$

Functional Itô formula

• Functional Itô formula (Cont and Fournié) : Let $u : [0, T] \times D([0, T]) \longrightarrow \mathbb{R}$ belong to $C^{1,2}([0, T] \times D([0, T]))$, and X be a continuous semimartingale, then

$$u(t, X_{\cdot}) = u(0, X_0) + \int_0^t \nabla_x u(s, X_{\cdot}) dX_s + \int_0^t \partial_t u(s, X_{\cdot}) ds + \int_0^t \frac{1}{2} \nabla_x^2 u(s, X_{\cdot}) d\langle X \rangle_s.$$

Path-dependent PDEs

• Example : let *B* be a Brownian motion, and

$$u(t,\mathbf{x}) := \mathbb{E}[g(B_{\cdot})|B_{t\wedge} = \mathbf{x}_{t\wedge}].$$

Assume that $u \in C_b^{1,2}([0, T] \times D([0, T]))$, then it solves the path-dependent PDE (PPDE, heat equation) :

$$\partial_t u + \frac{1}{2} \nabla_{\mathbf{x}}^2 u = 0, \quad u(T, \cdot) = g(\cdot).$$

Path-dependent PDEs

• In practice, it is not easy to obtain smooth (path-dependent) value function $u : [0, T] \times D([0, T]) \rightarrow \mathbb{R}$, even for the above simple heat equation.

• Viscosity solution of (nonlinear) PPDE (Ekren, Keller, Peng, Ren, Tang, Touzi, Zhang, Cosso, Russo, Zhou, etc.)

$$\partial_t u + F(u, \nabla_{\mathbf{x}} u, \nabla_{\mathbf{x}}^2 u) = 0.$$

・ロト ・日下 ・ヨト

Itô calculus via regularization A functional $C^{0,1}$ –Itô formulas Applications in finance

A (1) < A (1) < A (1) </p>

Outline

Introduction : functional Itô and PPDE

- 2 A functional $C^{0,1}$ -Itô formula and its applications
 - Itô calculus via regularization
 - A functional $C^{0,1}$ -Itô formulas
 - Applications in finance

3 Approximate solution to PPDE and its regularity

Itô calculus via regularization A functional $C^{0,1}$ -Itô formulas Applications in finance

Itô calculus via regularization (Russo, Vallois, etc.)

• Let X be a càdlàg process, $H \in L^1([0, T])$, the forward integral of H w.r.t. X is defined by

$$\int_0^t H_s d^- X_s := \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_0^t H_s(X_{(s+\varepsilon)\wedge t} - X_s) ds, \quad t \ge 0.$$

• Let X and Y be two càdlàg processes, the co-quadratic variation [X, Y] is defined by

$$[X, Y]_t := \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_0^t (X_{(s+\varepsilon)\wedge t} - X_s)(Y_{(s+\varepsilon)\wedge t} - Y_s) ds.$$

 \bullet The limits are defined in sense of "uniformly on compacts in probability" (u.c.p.).

When X and Y are càdlàg semimartingales and H is càdlàg and adapted, they are well defined and coincide with the usual Itô integral.

Itô calculus via regularization A functional $C^{0,1}$ –Itô formulas Applications in finance

・ロト ・回ト ・ヨト ・ヨト

Itô calculus via regularization (Russo, Vallois, etc.)

- Weak Dirichlet process :
 - A càdlàg process A is called is called orthogonal (with zero weak energy), if [A, N] = 0 for all continuous martingale N.
 - A càdlàg process X is called a weak Dirichlet process if it has the decomposition

 $X_t = X_0 + M_t + A_t,$

where M is a local martingale, A is orthogonal.

• A weak Dirichlet process X is called a special weak Dirichlet process if it has a decomposition with a predictable and orthogonal process A.

Itô calculus via regularization A functional $C^{0,1}$ –Itô formulas Applications in finance

・ロト ・回ト ・ヨト ・ヨト

A C^{0,1}-Itô formula (Russo, Vallois, etc.)

Theorem (e.g. Gozzi and Russo (2006), or Bandini and Russo (2017))

Let $f \in C^{0,1}([0, T] \times \mathbb{R}^d)$, X = M + A be a continuous weak Dirichlet process, then $f(t, X_t)$ is also a (continuous) weak Dirichlet process with the decomposition

$$f(t,X_t) = f(0,X_0) + \int_0^t \nabla_x f(s,X_s) \cdot dM_s + \Gamma_t.$$

Itô calculus via regularization A functional $C^{0,1}$ –Itô formulas Applications in finance

・ロト ・日ト ・ヨト ・ヨト

æ

A $C^{0,1}$ -Itô formula (Russo, Vallois, etc.)

• Proof : Step 1 : define

$$\Gamma_t := f(t, X_t) - f(0, X_0) - \int_0^t \nabla_x f(s, X_{s-}) \cdot dM_s.$$

Step 2 : check that, for any continuous martingale N,

$$[\Gamma, N]_t := \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_0^t (\Gamma_{s+\varepsilon} - \Gamma_s) (N_{s+\varepsilon} - N_s) ds = 0.$$

Itô calculus via regularization A functional $C^{0,1}$ –Itô formulas Applications in finance

A functional $C^{0,1}$ -Itô formula

Theorem (Bouchard, Loeper and Tan (2021))

Let $F \in C^{0,1}([0, T] \times D([0, T]))$ and X = M + A be a weak Dirichlet process, under a technical condition, $F(t, X_{t\wedge \cdot})$ is a also a weak Dirichlet process with the decomposition

$$F(t,X_{t\wedge})=F(0,X)+\int_0^t \nabla_x F(s,X_{s\wedge}^{s-})\cdot dM_s+\Gamma_t.$$

Further, if X is a special weak Dirichlet process, then under some technical conditions, $F(t, X_{t\wedge \cdot})$ is also a special weak Dirichlet process.

- Extension of the Itô formula in two senses :
 - $C^{0,1}$ -Itô formula of Russo, Vallois, etc.
 - functional C^{1,2}-Itô formula of Cont and Fournié.

Itô calculus via regularization A functional $C^{0,1}$ -Itô formulas Applications in finance

・ロト ・回ト ・ヨト ・ヨト

An option replication problem

• In the above financial market with underlying B, which is a Brownian motion, for a path-dependent option with payoff g(B), assume that

$$u(t,\mathbf{x}_{t\wedge\cdot}) := \mathbb{E}[g(B_{\cdot})|B_{t\wedge\cdot} = \mathbf{x}_{t\wedge\cdot}] \in C^{0,1}([0,T] \times D([0,T])),$$

then both B and $u(t, B_{t\wedge \cdot})$ are continuous martingale, and hence

$$g(B_{\cdot}) = u(t, B_{t\wedge \cdot}) + \int_{t}^{T} \nabla_{\mathbf{x}} u(s, B_{s\wedge \cdot}) dB_{s}.$$

• In this linear context, when *u* is Fréchet differentiable, one can also use Clark-Haussmann-Ocone formula to obtain the replication strategy.

<ロ> (四) (四) (三) (三) (三)

A replication problem under market impact

• In a setting with market impact, the dynamic trading strategy H can impact the dynamic of the underlying process X and that of the portfolio V:

$$dH_t = \gamma_t dW_t + b_t dt, \qquad dX_t = \sigma(X_t, \gamma_t) dW_t + \mu(X_t, \gamma_t) dt,$$
$$dV_t = H_t dX_t + \frac{1}{2} \gamma_t^2 f(X_t) dt.$$

We study the replication problem, i.e. for a given path-dependent option $\Phi(\cdot)$, find a strategy (H, γ) so that $V_T = \Phi(X)$.

- The same structure has been studied in the Markovian context by Bouchard, Loeper, Soner, Zhou, etc. by the PDE approach.
 - B. Bouchard, X. Tan, Understanding the dual formulation for the hedging of path-dependent options with price impact, arXiv :1912.03946.

Itô calculus via regularization A functional $C^{0,1}$ -Itô formulas Applications in finance

・ロト ・日ト ・ヨト ・ヨト

A super-replication problem

• We consider a market with uncertain volatility : let $\Omega := C([0, T])$ be the canonical space of continuous paths on [0, T], and X be the canonical process. We consider a family of probability measure $(\mathcal{P}(t, \omega))_{(t,\omega)}$ given by

$$\mathcal{P}(t,\omega) := \Big\{ \mathbb{P} : \mathbb{P}[X_{t\wedge} = \omega_{t\wedge}] = 1, \ dX_t = \sigma_t dW_t^{\mathbb{P}}, \ \sigma_t \in [\underline{\sigma}, \overline{\sigma}] \Big\}.$$

• The super-replication cost of a path-dependent option $\Phi(X_{\cdot})$:

$$D_0 := \inf \Big\{ x : x + \int_0^T H_t dX_t \ge \Phi(X_{\cdot}), \mathbb{P} ext{-a.s.}, \ \forall \mathbb{P} \in \mathcal{P}(0, X_0) \Big\}.$$

• The pricing-hedging duality (Denis-Martini) :

$$D_0 = V_0 := \sup_{\mathbb{P}\in\mathcal{P}(0,X_0)} \mathbb{E}^{\mathbb{P}}[\Phi(X_{\cdot})].$$

Itô calculus via regularization A functional $C^{0,1}$ -Itô formulas Applications in finance

・ロト ・回ト ・ヨト ・ヨト

A super-replication problem, main result

Theorem

Assume that $V(t, \omega) := \sup_{\mathbb{P} \in \mathcal{P}(t, \omega)} \mathbb{E}^{\mathbb{P}}[\Phi(X)]$ satisfies the technical conditions for the functional $C^{0,1}$ -Itô formula. Then $H_t^* := \nabla_x V(t, X_{t\wedge \cdot})$ is the optimal superhedging strategy, i.e.

$$V_0 + \int_0^T H_t^* dX_t \ge \Phi(X_{\cdot}), \mathbb{P}$$
-a.s., $\forall \mathbb{P} \in \mathcal{P}(0, X_0).$

Itô calculus via regularization A functional $C^{0,1}$ -Itô formulas Applications in finance

A super-replication problem, proof

• Step 1. By dynamic programming principle, one has

$$V(t, X_{t\wedge \cdot}) = \sup_{\mathbb{P}\in\mathcal{P}(t,X)} \mathbb{E}^{\mathbb{P}} \big[V(t+h, X_{t+h\wedge \cdot}) \big] \geq \mathbb{E}^{\mathbb{P}} \big[V(t+h, X_{t+h\wedge \cdot}) \big| \mathcal{F}_t \big].$$

Then, the process $(V(t, X_{t\wedge \cdot}))_{t\in[0,T]}$ is a supermartingale under any \mathbb{P} .

• Step 2. Under a fixed \mathbb{P} , one has the Doob-Meyer decomposition

 $V(t, X_{t \wedge \cdot}) = V_0 + M_t - K_t$, for some martingale M and increasing process K.

• Step 3. Under a fixed \mathbb{P} , the $C^{0,1}$ -Itô formula gives

 $V(t, X_{t\wedge \cdot}) = V_0 + \int_0^t \nabla_x V(t, X_{t\wedge \cdot}) dX_t + A_t$, for some orthogonal process A.

• By uniqueness of the decomposition of the (continuou) weak Dirichlet process $(V(t, X_{t \wedge \cdot}))_{t \in [0, T]}$, it follows that K = -A.

Itô calculus via regularization A functional $C^{0,1}$ -Itô formulas Applications in finance

・ロト ・回ト ・ヨト ・ヨト

Remarque on the applications

- More applications with supermartingale or semimartingale structure :
 - American option pricing,
 - Option hedging under constraints,
 - BSDE.

Outline

Introduction : functional Itô and PPDE

- 2 A functional C^{0,1}-Itô formula and its applications
 Itô calculus via regularization
 A functional C^{0,1}-Itô formulas
 - Applications in finance

3 Approximate solution to PPDE and its regularity

A (1) < A (1) </p>

Approximation of the PPDE

• We consider the PPDE, on $[0, T] \times D([0, T])$,

$$\partial_t u + F(t, \mathbf{x}, u, \nabla_{\mathbf{x}} u, \nabla_{\mathbf{x}}^2 u) = 0, \quad u(T, \cdot) = g(\cdot).$$

• Let $\pi_n = (t_i^n)_{i=0,\dots,n}$ be a discrete time grid of [0, T], we define

$$[\mathbf{x}]_k^n := (\mathbf{x}_{t_i^n})_{0 \le i \le k}, \quad F^n(t, [\mathbf{x}]_k^n, y, z, \gamma) := F(t, \mathbf{x}, y, z, \gamma),$$

and u_k^n be the viscosity solution of (classical) PDE, on $[t_k^n, t_{k+1}^n)$,

$$\partial_t u_k^n + F^n \big(t, [\mathbf{x}]_k^n, x, u_k^n, D u_k^n, D^2 u_k^n \big) = 0,$$

with terminal condition

$$\lim_{t\nearrow t_{k+1}^n} u_k^n(t,[\mathbf{x}]_k^n,x,\cdot) = u_{k+1}^n(t_{k+1}^n,[\mathbf{x}]_k^n,x,x,\cdot).$$

Approximate viscosity solution of the PPDE

• Given $(u_k^n)_{k=0,\dots,n-1}$, we define $u^n:[0,T] \times D([0,T]) \longrightarrow \mathbb{R}$ by

$$u^n(t,\mathbf{x}) := u^n_k(t,[\mathbf{x}]^n_k,\mathbf{x}_t), \text{ when } t \in [t^n_k,t^n_{k+1}),$$

so that

$$\partial_t u^n(t,\mathbf{x}) = \partial_t u^n_k(t,[\mathbf{x}]^n_k,\mathbf{x}_t), \quad \nabla_{\mathbf{x}} u^n(t,\mathbf{x}) = D u^n_k(t,[\mathbf{x}]^n_k,\mathbf{x}_t).$$

• We call u is an approximate viscosity solution of the PPDE if

 $u^n \longrightarrow u$ pointwisely on $[0, T] \times D([0, T])$.

<ロ> (四) (四) (三) (三) (三) (三)

We then study the (existence, uniqueness, comparison principle, stability, etc.)

Approximate viscosity solution of the PPDE

• Strong viscosity solution of Cosso and Russo (2019) :

$$\partial_t u^n + F^n(\cdot, u^n, \nabla_{\mathbf{x}} u^n, \nabla^2_{\mathbf{x}} u^n) = 0, \quad F^n \longrightarrow F, \quad u^n \longrightarrow u.$$

- Pseudo-Markovian viscosity solution of Ekren-Zhang (2016) : Approximate the PPDE by discretization of both time [0, T] and space D([0, T]).
- Difficulty : the existence. We are able to deal with a general case

$$F(t, \mathbf{x}, y, z, \gamma) = H(t, \mathbf{x}, y, z, \gamma) + r(t, \mathbf{x})y + \mu(t, \mathbf{x}) \cdot z + \frac{1}{2}\sigma\sigma^{\top}(t, \mathbf{x}) : \gamma,$$

・ロト ・日ト ・ヨト ・ヨト

where H is only uniformly continuous in (y, z, γ) .

Approximate viscosity solution to the PPDE

• A first key technical result : with technical conditions, there exists a constant C and a continuous modulus w independent of n, such that

 $\left|u^n(t',\mathbf{x}')-u^n(t,\mathbf{x})\right| \leq Cw\big(|t'-t|^{1/2}+\rho(\mathbf{x}_{t\wedge\cdot},\mathbf{x}_{t'\wedge\cdot}')\big),$

イロト イヨト イヨト イヨト

where ρ is the Skorokhod metric on D([0, T]).

Regularity of solution to the PPDE

• A first key technical result : Under additional technical conditions, the derivative $\nabla_{\mathbf{x}} u^n$ exists and is uniformly continuous in (t, \mathbf{x}) , uniformly in *n*. Consequently,

 $u\in C^{0,1}.$