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The Itô formula

• Itô formula : let f : R+ × Rd −→ R be a C 1,2 smooth function,
and X be a continuous semimartingale, then

f (t,Xt) = f (0,X0) +

∫ t

0
Df (s,Xs)dXs

+

∫ t

0
∂t f (s,Xs)ds +

∫ t

0

1
2
D2f (s,Xs)d〈X 〉s .

• Parabolic PDEs :

∂tu + F (u,Du,D2u) = 0.

• For example, let B be a Brownian motion, and
u(t, x) := E

[
g(BT )

∣∣Bt = x
]
. Then u satisfies the heat equation :

∂tu +
1
2
D2u = 0, u(T , ·) = g(·).
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Path-dependent functional and its derivative

• Let D([0,T ]) denote the Skorokhod space of all càdlàg paths on
[0,T ], u : [0,T ]× D([0,T ]) −→ R is non-anticipative if

u(t, x) = u(t, xt∧·), for all (t, x).

• Dupire : The horizontable derivative of u :

∂tu(t, x) := lim
h↘0

u(t + h, xt∧·)− u(t, xt∧·)
h

;

the vertical derivative of u :

∇xu(t, x) := lim
y→0

u(t, x⊕t y)− u(t, x)

y
.
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Functional Itô formula

• Functional Itô formula (Cont and Fournié) : Let
u : [0,T ]× D([0,T ]) −→ R belong to C 1,2([0,T ]× D([0,T ])),
and X be a continuous semimartingale, then

u(t,X·) = u(0,X0) +

∫ t

0
∇xu(s,X·)dXs

+

∫ t

0
∂tu(s,X·)ds +

∫ t

0

1
2
∇2

xu(s,X·)d〈X 〉s .
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Path-dependent PDEs

• Example : let B be a Brownian motion, and

u(t, x) := E
[
g(B·)

∣∣Bt∧ = xt∧
]
.

Assume that u ∈ C 1,2
b ([0,T ]× D([0,T ])), then it solves the

path-dependent PDE (PPDE, heat equation) :

∂tu +
1
2
∇2

xu = 0, u(T , ·) = g(·).
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Path-dependent PDEs

• In practice, it is not easy to obtain smooth (path-dependent)
value function u : [0,T ]× D([0,T ])→ R, even for the above
simple heat equation.

• Viscosity solution of (nonlinear) PPDE (Ekren, Keller, Peng, Ren,
Tang, Touzi, Zhang, Cosso, Russo, Zhou, etc.)

∂tu + F (u,∇xu,∇2
xu) = 0.
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Itô calculus via regularization (Russo, Vallois, etc.)

• Let X be a càdlàg process, H ∈ L1([0,T ]), the forward integral of
H w.r.t. X is defined by∫ t

0
Hsd

−Xs := lim
ε↘0

1
ε

∫ t

0
Hs(X(s+ε)∧t − Xs)ds, t ≥ 0.

• Let X and Y be two càdlàg processes, the co-quadratic variation
[X ,Y ] is defined by

[X ,Y ]t := lim
ε↘0

1
ε

∫ t

0
(X(s+ε)∧t − Xs)(Y(s+ε)∧t − Ys)ds.

• The limits are defined in sense of “uniformly on compacts in
probability” (u.c.p.).

When X and Y are càdlàg semimartingales and H is càdlàg and
adapted, they are well defined and coincide with the usual Itô
integral.
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Itô calculus via regularization (Russo, Vallois, etc.)

•Weak Dirichlet process :
A càdlàg process A is called is called orthogonal (with zero
weak energy), if [A,N] = 0 for all continuous martingale N.
A càdlàg process X is called a weak Dirichlet process if it has
the decomposition

Xt = X0 + Mt + At ,

where M is a local martingale, A is orthogonal.
A weak Dirichlet process X is called a special weak Dirichlet
process if it has a decomposition with a predictable and
orthogonal process A.
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A C 0,1-Itô formula (Russo, Vallois, etc.)

Theorem (e.g. Gozzi and Russo (2006), or Bandini and Russo
(2017))

Let f ∈ C 0,1([0,T ]× Rd), X = M + A be a continuous weak
Dirichlet process, then f (t,Xt) is also a (continuous) weak
Dirichlet process with the decomposition

f (t,Xt) = f (0,X0) +

∫ t

0
∇x f (s,Xs) · dMs + Γt .
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A C 0,1-Itô formula (Russo, Vallois, etc.)

• Proof : Step 1 : define

Γt := f (t,Xt)− f (0,X0)−
∫ t

0
∇x f (s,Xs−) · dMs .

Step 2 : check that, for any continuous martingale N,

[Γ,N]t := lim
ε↘0

1
ε

∫ t

0
(Γs+ε − Γs)(Ns+ε − Ns)ds = 0.
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A functional C 0,1–Itô formula

Theorem (Bouchard, Loeper and Tan (2021))

Let F ∈ C 0,1([0,T ]× D([0,T ])) and X = M + A be a weak
Dirichlet process, under a technical condition, F (t,Xt∧·) is a also a
weak Dirichlet process with the decomposition

F (t,Xt∧) = F (0,X ) +

∫ t

0
∇xF (s,X s−

s∧·) · dMs + Γt .

Further, if X is a special weak Dirichlet process, then under some
technical conditions, F (t,Xt∧·) is also a special weak Dirichlet
process.

• Extension of the Itô formula in two senses :
C 0,1–Itô formula of Russo, Vallois, etc.
functional C 1,2–Itô formula of Cont and Fournié.
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An option replication problem

• In the above financial market with underlying B , which is a
Brownian motion, for a path-dependent option with payoff g(B·),
assume that

u(t, xt∧·) := E
[
g(B·)

∣∣Bt∧· = xt∧·
]
∈ C 0,1([0,T ]× D([0,T ])),

then both B and u(t,Bt∧·) are continuous martingale, and hence

g(B·) = u(t,Bt∧·) +

∫ T

t
∇xu(s,Bs∧·)dBs .

In this linear context, when u is Fréchet differentiable, one can also
use Clark-Haussmann-Ocone formula to obtain the replication
strategy.
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A replication problem under market impact

• In a setting with market impact, the dynamic trading strategy H
can impact the dynamic of the underlying process X and that of
the portfolio V :

dHt = γtdWt + btdt, dXt = σ(Xt , γt)dWt + µ(Xt , γt)dt,

dVt = HtdXt +
1
2
γ2
t f (Xt)dt.

We study the replication problem, i.e. for a given path-dependent
option Φ(·), find a strategy (H, γ) so that VT = Φ(X·).

• The same structure has been studied in the Markovian context by
Bouchard, Loeper, Soner, Zhou, etc. by the PDE approach.

B. Bouchard, X. Tan, Understanding the dual formulation for the hedging
of path-dependent options with price impact, arXiv :1912.03946.
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A super-replication problem

•We consider a market with uncertain volatility : let
Ω := C ([0,T ]) be the canonical space of continuous paths on
[0,T ], and X be the canonical process. We consider a family of
probability measure (P(t, ω))(t,ω) given by

P(t, ω) :=
{
P : P[Xt∧ = ωt∧] = 1, dXt = σtdW

P
t , σt ∈ [σ, σ]

}
.

• The super-replication cost of a path-dependent option Φ(X·) :

D0 := inf
{
x : x +

∫ T

0
HtdXt ≥ Φ(X·), P-a.s., ∀P ∈ P(0,X0)

}
.

• The pricing-hedging duality (Denis-Martini) :

D0 = V0 := sup
P∈P(0,X0)

EP[Φ(X·)
]
.
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A super-replication problem, main result

Theorem

Assume that V (t, ω) := supP∈P(t,ω) EP[Φ(X·)
]
satisfies the

technical conditions for the functional C 0,1-Itô formula. Then
H∗t := ∇xV (t,Xt∧·) is the optimal superhedging strategy, i.e.

V0 +

∫ T

0
H∗t dXt ≥ Φ(X·), P-a.s., ∀P ∈ P(0,X0).
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A super-replication problem, proof

• Step 1. By dynamic programming principle, one has

V (t,Xt∧·) = sup
P∈P(t,X )

EP[V (t + h,Xt+h∧·)
]
≥ EP[V (t + h,Xt+h∧·)

∣∣Ft

]
.

Then, the process (V (t,Xt∧·))t∈[0,T ] is a supermartingale under any P.

• Step 2. Under a fixed P, one has the Doob-Meyer decomposition

V (t,Xt∧·) = V0 + Mt − Kt , for some martingaleM and increasing process K .

• Step 3. Under a fixed P, the C 0,1-Itô formula gives

V (t,Xt∧·) = V0 +

∫ t

0
∇xV (t,Xt∧·)dXt + At , for some orthogonal process A.

• By uniqueness of the decomposition of the (continuou) weak Dirichlet
process (V (t,Xt∧·))t∈[0,T ], it follows that K = −A.
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Remarque on the applications

• More applications with supermartingale or semimartingale
structure :

American option pricing,
Option hedging under constraints,
BSDE.
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Approximation of the PPDE

•We consider the PPDE, on [0,T ]× D([0,T ]),

∂tu + F (t, x, u,∇xu,∇2
xu) = 0, u(T , ·) = g(·).

• Let πn = (tni )i=0,··· ,n be a discrete time grid of [0,T ], we define

[x]nk := (xtni )0≤i≤k , F n(t, [x]nk , y , z , γ) := F (t, x, y , z , γ),

and unk be the viscosity solution of (classical) PDE, on [tnk , t
n
k+1),

∂tu
n
k + F n

(
t, [x]nk , x , u

n
k ,Du

n
k ,D

2unk
)

= 0,

with terminal condition

lim
t↗tnk+1

unk (t, [x]nk , x , ·) = unk+1(tnk+1, [x]nk , x , x ,·).
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Approximate viscosity solution of the PPDE

• Given (unk )k=0,··· ,n−1, we define un : [0,T ]× D([0,T ]) −→ R by

un(t, x) := unk (t, [x]nk , xt), when t ∈ [tnk , t
n
k+1),

so that

∂tu
n(t, x) = ∂tu

n
k (t, [x]nk , xt), ∇xu

n(t, x) = Dunk (t, [x]nk , xt).

•We call u is an approximate viscosity solution of the PPDE if

un −→ u pointwisely on [0,T ]× D([0,T ]).

We then study the (existence, uniqueness, comparison principle,
stability, etc.)
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Approximate viscosity solution of the PPDE

• Strong viscosity solution of Cosso and Russo (2019) :

∂tu
n + F n(·, un,∇xu

n,∇2
xu

n) = 0, F n −→ F , un −→ u.

• Pseudo-Markovian viscosity solution of Ekren-Zhang (2016) :
Approximate the PPDE by discretization of both time [0,T ] and
space D([0,T ]).

• Difficulty : the existence. We are able to deal with a general case

F (t, x, y , z , γ) = H(t, x, y , z , γ)+r(t, x)y+µ(t, x)·z+
1
2
σσ>(t, x) : γ,

where H is only uniformly continuous in (y , z , γ).
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Approximate viscosity solution to the PPDE

• A first key technical result : with technical conditions, there exists
a constant C and a continuous modulus w independent of n, such
that ∣∣un(t ′, x′)− un(t, x)

∣∣ ≤ Cw
(
|t ′ − t|1/2 + ρ(xt∧·, x′t′∧·)

)
,

where ρ is the Skorokhod metric on D([0,T ]).
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Regularity of solution to the PPDE

• A first key technical result : Under additional technical conditions,
the derivative ∇xu

n exists and is uniformly continuous in (t, x),
uniformly in n. Consequently,

u ∈ C 0,1.
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