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Problem Formulation



Merton Problem

» The standard Merton problem on optimal consumption:

u(x)= sup E Uow e_”U(ct)dt} :

(m,c)eA
where A is the admissible set of portfolio-consumption strategies (7, c).
» However, some empirical and psychological studies argued that the
consumer's satisfaction level and risk tolerance sometimes rely more on

recent changes instead of absolute values. Moreover, some observed
aggregate consumption is rather smooth.
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Path-Dependent Consumption

» One partial and feasible answer: the utility function can also depend
on the history of the whole consumption path.

» Model 1: The habit formation preference is defined by (see
Constantinides, JPE 1990, Detemple and Zapatero, MF 1992)

u(z) = sup E {/ e " U (e, — Zy)dt|
(m,c)eA 0

where the accumulative process Z is called the habit formation
process that takes the form dZ; = (6¢; — aZy)dt, Zo = z > 0.

» Model 2: Utility with the reference to the past consumption
maximum: sup E [/ e " U(c; — AH,)dt|, where
(m,c)eA 0
H; = max(h, sups<;cs), Ho = h >0 and the constant A € [0, 1]
stands for the reference intensity, see Deng et al, FS 2021.



Reference to Past Spending Maximum

» Some variant problems have been considered as “consumption
ratcheting problem” (Dybvig, RES 1995) and “consumption with
drawdown constraint” (Arun, 2012) focusing on the conventional

utility maximization sup E {/ e”(t)dt} with the control
(m,c)eA 0 p
constraint ¢; > \H;.

> Another interesting problem with reference to past spending

oS} He p
maximum is formulated as sup E [/ (Ct/t)dt] in Guasoni
(m,c)eA 0 p
et al, MF 2020.

» We are also interested in Model 2 when the utility is generated by
the difference between consumption and a fraction of past spending
maximum, but the investor is allowed to strategically suppress the
consumption below the reference level from time to time.



Preference

Preference:

v

(o)
u(z,h)= sup E [/ e PU (cy — NHy)dt |
(m,c)€A(x) 0

v

Discount factor p > 0

v

Past spending maximum:

H, = max{h7 supcs}, Hy=h>0, and 0 <A< 1.
s<t
» Non-negativity constraint on consumption: ¢; > 0
Integrability: fOT(ct + 7?)dt < oo for any T > 0

Admissible: (7, c) € A satisfies the wealth process without
bankruptcy, non-negativity constraint and is integrable

v

v



Canonical Two-part Power Utility and Loss Aversion

» The canonical two-part power utility is defined by (see Kahneman
and Tversky, JRU 1992)

L 6 if x>0
Ul)=< A, ’
—%(—x)ﬁz, if x <0,

where 0 < 31,82 < 1, k> 0.
» Non-concave utility function: non-differentiable at = = 0.

» Commonly used to study loss-averse agent's behavior (for instance,
Bilsen et al. MS 2020, He and Yang MF 2019, He and Zhou MS
2011, Jin and Zhou MF 2008)



Market Model

> One riskless asset (By)t>0:  dBy = rBdt
> r > 0: risk-free rate
> One risky asset (S;)i>0:  dSy = Siudt + SiodWy
> 1 > r is the expected return rate, o > 0 is the volatility
» W: one-dimensional Brownian motion
» Consumption rate ¢;
» Investment amount m;
» Wealth process (state system):
dXy = rXpdt + m(pp — r)dt + mpodWy — cpdt, Xo =z, t>0.
> No bankruptcy: X; > 0 all the time



Concave Envelope

» The concave envelope f of f is defined by the minimum concave
function that is larger than f on the same domain everywhere.

» Concave envelope U(c, h) of U(c — \h) for any fixed h:

b(e.h) U(=\h) + HER=UEN g 0 < e < 2(h),
c,h) = ’
U(c— Ah), if z(h) <c<h.

Utility function
Utility function

0 2 h 0 2 =h
Consumption ¢ Consumption ¢

Concave Envelope



Equivalent Problem

» Equivalent preference based on concave envelope:

u(z,h)= sup E [/ e P U (¢y, Hy)dt | .
(m,c)eA(x) 0

» U(c, h): the concave envelope of U(c — Ah) in ¢ € [0, h] for fixed h

Lemma
The equivalent problem has the same value function u(x,h) = u(x, h)

with the original problem for any (x,h) € Ri. Moreover, the two
problems have the same optimal consumption and portfolio choices.
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The HJB equation

> Special case p =1
» The HJB variational inequality

1 .
sup —rili 4 g (rx + 7(p — 1) — ¢) + 0% Ty + Ule,h) | =0,
c€[0,h],TER 2

ﬂh({L‘7 h)

IN

0,

for x > 0 and h > 0 and 4y (x,h) = 0 on some set to be
determined by martingale optimality condition.

> If u(x,-) is C% in x, the first order condition in 7 gives

w*(x,h) = =55~ g;x The HJB variational inequality can be written
as
~ N N N K2 ﬂﬁ
sup |U(e,h) — cliy| — ra+ ret, — —=—= =0,
c€[0,h] 2 Ugy

and up <0, Vx>0,h>0.



Auxiliary curves and consumption

» Three curves
k()P w(h)
y1(h) := et t Bl
ya(h) == min (g (), (1= NR)* 7Y,
y3(h) == (1 = \)Prph1)

where w(h) := z(h) — Ah € (0, (1 — N)A].
» Auxiliary consumption
<0, if 4z > y1(h),
~ _1
é(x, h) = argmax([U(c, h)—cliy] = A\h + a7, i ya(h) < e < 1 (h),
¢ > h, if G < ya(h).



Separated Regions

> Region I: R1 = {(z,h) € Ry xRy : Gy(z,h) > yi(h)}
> ¢é(x,h) <0, optimal consumption ¢*(z,h) =0
> HJB variational inequalities:
k Ba ~ ~ KJQQNLi
% (AR) U+ TTUy 2.

=0, and up <0.

> Region Il: Ry :={(z,h) € Ry xRy 1 ya(h) < ay(x,h) <y1(h)}
1
B 1

> M < é(x,h) < h, optimal consumption ¢* = \h +
» HJB variational inequalities:

81 2~2
1—51 51 - - - KU
G2 — Ny — 7i+ rxiy — ——C

=0 aIld Up <0.
ﬁ 2 ’
1 Uz



Separated Regions

> Region Ill: Rg :={(z,h) € Ry X Ry : ty(x,h) < ya2(h)}
» ¢&(x, h) > h, optimal consumption ¢*(z,h) = h
» The HJB variational inequalities:

1 3 N N - K202
6—((1 — ANh)P — hity — 1+ raty, — . = 0, and up <0.
1 TT

> c; coincides with the running maximum process H;

v

Question: will ¢*(xz, h) = h really be useful?



Separated Regions

v

Substitute h = ¢ into HJB inequalities with auxiliary control
1
Eim G T (1— A) AT
> Dy :={(z,h) e Ry xRy :ys(h) < ty(x,h) <ya(h)}
» ¢(z) < h and ¢*(z,h) = h does not update past spending maximum
Dy :={(z,h) € Ry x Ry riz(2, h) = ys(h)}
» ¢=hand ¢*(x,h) = é = h attains/creates the (new) peak H{ = ¢}
» Free boundary condition uy(z,h) =0
D3 :={(x,h) e Ry xRy :ty(z,h) <ys(h)}
» ¢> hand ¢*(z,h) = é > h creates a new peak H; = ¢} > H;_
» (X, H; ) € D3 and (X, H) € D>

v

v



Effective Domain

» Effective domain
C:={(z,h) e Ry xRy : Gy(x,h) >ys(h)},

where C = Ry UR2 UD; UDy C]Rz_.

» The only possibility for (X}, H;) € Ds: initial time t =0, and t =0
is the only possible jump time of H;".



Boundary Conditions

» Smooth-fit conditions
» Boundary conditions when x approaches to 0
» Optimal portfolio 7*(z,h) — 0
» Optimal consumption ¢;(xz,h) — 0 for all ¢ > 0
Ug(x, h) k

. _ . ~ . h Ba
if}) Ton(@h) 0, llir(l) u(z, h) = e (AR)72.

» Boundary conditions when x approaches to infinity

> Value function tends to be infinity
> Negligible effect on value function for small fluctuation of wealth
» Existence of the limit ratio for consumption to wealth
lim a(z,h) =400, lim dg(x,h) =0,
r—r+00 T—+00
ﬂm(z,h)ﬁ

- = Coo, Where coo > 0 is a positive constant.
r—+oo



Solving the HJB Equation

» Recall the HJB equation

2 1]2
—rl 4+ Xty — (Ug, h) =0,
uww
where
V(g.h) = sup (U(c,h) - cq)
c€0,h]
— 4 ()P, if ¢ > y1(h),

_B1_
= —BLgmT — Nhg,  ifya(h) < g < w(h),
(L =X —hg, ifys(h) < q<ya(h).

» Question: How to tackle the nonlinearity of the PDE?



Dual Transform

» Dual transform v(y, h) for @(z, h) with fixed h:

v(y,h) := sup [u(Z,h)—zy], y>ysh).
(z,h)eC
>0

> x = argmax|u(Z, h) — Zy], y > ys(h)
(z,h)eC
>0

» Bijection and some properties:

> Y= Ug(x, h)

> r= _Uy(y7 h)
a(x,h) =v(y, h) + yvy(y, h)
> an(z, h) =va(y, h)

>
>



Dual HJB Equation with boundary conditions

v

Dual HJB equation:

K2

?y%@y(y, h) - T,U(ya h) + V(yv h) = 0

v

Boundary conditions as y — 0

hm Uy(y7 h) = —0Q, hm (U(yv h) - y”y(ya h’)) = +OO,
y—0 y—0

v

Boundary conditions as v, (y, k) — 0

Yuyy(y, h) = 0, v(y, h) — yv,(y,h) — —W()\h)
2

v

Free boundary condition vp,(ys(h),h) =0



Solution to the Dual HJB equation

» Semi-analytically solution to the dual HJB equation:

Ca(h)y™ — 5= (AR)?2,

if y > y1(h),
C3(h)y™ + Ca(h)y™
+ 2 i A () Sy <unh),
vy, h) = r2y1(71 —r1)(v1 —r2) r
Cs(h)y"™ + Ce(h)y™
1 h if ys(h) < R),
(= =y, ya(h) Sy <va(h)
rB1 r
where v, = Blﬁil'

> Cy(h),C5(h),Cy(h),Cs(h),Cs(h) will be introduced in the next
page.



Solution to the Dual HJB equation

> The coefficients Co(h), C3(h), Cs(h), C5(h), C(h) are defined by

Ca()=Ca(h+ HEL (B0 (a2 — T2y (1)1 b (1))
Calh) = Coh)+ 22 (L (1 = ) = Do (1) (1 = Nhraia(h) )

y2(h)™™ (T2 g TaT2 . b
B (ﬁl (= 1)t = o) (1= ) 1y2(h>)

“+oo
Ce(h):/ (- /\)(Tl—rz)ﬁl Cé(s)s(rl_rr")(ﬁl_l)ds,
h

where 7”1’2:%(1:&1/14—% )

Cs(h)=Cs(h)+

3

)



Inverse Lengendre Transform

Lemma
In all regions, vyy(y,h) >0, Yh > 0. Moreover, the inverse Lengendre
transform (x, h) = infy >, m [v(y, h) 4 zy] is well defined.
> f(-,h) := 1ty (-, h) with form fi(-,h), fa(-, k) or f3(-, h):
(i) If fi(z,h) > y1(h), fi(z,h) can be determined by

@ = =Ca(h)ra(fu(w, b))
(ii) fy2(h) < fa(z,h) < yi(h), f2(x,h) can be uniquely determined by

x=—Cs(h)r1(fa(z,h) "1 = Ca(h)ra(fa(z, h))2""
_ 2 z 1—1 &
K2(m1 —7r1) (71 —r2) (Fae, WY T

(i) If ys(h) < fs(z, h) < ya2(h), f3(z,h) can be uniquely determined by

£ = ~Cs(Rra(fofar, )" " = Co(yralfole, i) + 2.



Separated Regions through Boundary Curves
» Three boundary curves: Z,er0(h) < Zager(h) < Tiavs(h)
» Ri={(z,h) €ERZ : & < Tyero(h)}

Tyero(h) := —y1(R)"™> " Ca(h)rs.

> Ro={(z,h) € Rﬁ_ P Zgero(R) < & < Tager(h)}

ﬂ?aggr(h) = 03(]7/)7‘1?/2(}7/)7’171 - 04(]7/)7“2?/2(}7/)7’271

2 \h
— ya(R) 4
K2y —r1)(n — Tz)yZ( ) r
» DiUD, = {(aj’ h) S Rg_ : xaggr(h) <z< xlavs(h)}
h

mlavs(h) = —C5(h)’f’1y3<h)r171 — C(;(}L)T’ng(h)T271 + —

r



Verification Theorem

» For (z,h) € C, value function

Ca(h)(f(w, h))"2 — 7 (AR) P2+ f (2, h), if 2 < sero (),

Cs<h><f(:c,h))”+c4<h><f(x,h)>’2—AThﬂx,h)
2(f(z, )™ baf )

w2y (y —r1)(v —r2) .
C5(h)(f(r h))" +Ce(h)(f(1? h))"?

+ o (= O™ = 2 (e h) + o f (o),

if Tyero(h) < @ < Taggr(h),

a(z, h)=

if Zager(h) < @ < Tiays(h).

» The optimal consumption

0, if £ < Zyero(h),
1
oy = J AR () P if Zsero (h) < @ < Tagar(h),
(@ h) =9y, if Tager(h) < @ < Travs (),

__B1_ - 1
1= Pimtf(z, h(z)) P17t if e = ziaws(h),

where h(z) := (Ziavs) " (z).



Verification Theorem

» The optimal portfolio

" (z, h)
(1 —r2)x, if x < Zyer0(h),

2 2
o | FCs W T @) + a7 )

T2 2(1— 1) -1
7 K2(y1 —r1)(m *?”2))( (@ k),

if Zyero(h) < @ < wager(h),

2505(h) f"1 7 (@, h) 4+ 25 Ce(h) 727 (2, h),  if Zager(h) < @ < @ravs (h).
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Boundary Curves: Four Cases

Boundary curves Boundary curves
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Value Function and Optimal Controls

> Basic setting

> Market: ¢4 =0.1, 0 =0.25, » = 0.05
> Preference: f1 = 0.3, B2 = 0.2, k = 1.5, p = 0.05
» Historical peak: h =1

» Sensitivity analysis

B1 € {0.1,0.2,0.3,0.4,0.5}

B2 € {0.1,0.2,0.3,0.4,0.5}

1 € {0.06,0.08,0.1,0.12,0.14}
o € {0.15,0.2,0.25,0.3,0.35}

vvyVvVvy



Value Function

Value function and Optimal Controls

Optimal Consumption

Optimal Portolio

14 1

1

1

12

S

s

s

N

2

o

B 10 15 B} B o s 0 T o 10 15 B B
Wealth x Wealth x Wealth x
Ve Funcion Optimal Consumption Optimal portolio

14

12 v

.
1

s

_o8 _

E R

= 3

3
04

2

02 )

o s B} s B} B o s B s B} = 10 s B}
Wealthx Wealthx

Wealth x



Value function and Optimal Controls

u)

(1)

Value Function

Optimal Consumption

Optimal Portiolio
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Conclusion

» Optimal consumption and investment problem: loss aversion with
reference to past spending maximum

Dynamic programming and associated HJB equation
Linearising PDE by dual transform

Nonlinear structure of boundary curves

Zyero aNd Zager May coincide in some regions

Loss-aversion agent has a jump in the optimal consumption

vV v v v v Y

No investment in risky-asset if its expected rate is closed to risk-free
rate



Future Work

> Incomplete market models: stochastic factors/ regime switching/
jump diffusion models

» Various economic/financial /insurance models:
(optimal retirement; demand function; tax evasion; “catch up with
peers”: N agents and MFG; ...... )



Thank you!
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