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What problem do we address?

▶ We consider firms regulated by a REC market

▶ What is the set of strategies across all regulated firms that
achieves a Nash equilibrium and an endogenous price?
▶ Accounting for:

▶ Rental costs
▶ Expansion costs
▶ Trading costs

▶ What is the optimal penalty a Principal should set?
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Example setup...

▶ expansion of clean energy αt

▶ rental of clean energy gt

▶ trading REC rate Γt

State evolution:

dX i
t = (hk

t + g i
t + C i

t + Γi
t)dt + σk dW i

t , X i
0 = ξi ∼ F (Θk)

dC i
t = αi

t dt, C i
0 = 0.

Performance criterion:

JA,i(α, g , Γ; µ) = E
[ ∫ T

0

{
ζk

2 (g i
u)2 + γk

2 (Γi
u)2 + βk

2 (αi
u)2 + Sµ

u Γi
u

}
du

+ ϕ0 +
N∑

j=1

wj(Rj − X i
T )+

∣∣∣ G i
0

]
,

Market clearing:
E[ Γ·

t ] = 0
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Example setup cont’d...

dX (k)
t =

(
hk

t −
(

1
ζk + 1

γk

)
Y (k),X

t − 1
γk Sµ

t + C i
t

)
dt + σkdWt , X (k)

0 = ξ(k),

dC (k)
t = − 1

βk Y (k),C
t dt, C (k)

0 = 0,

dY (k),X
t = Z (k),X

t dW (k)
t , Y (k),X

T = ∂x g(X (k)
T ),

dY (k),C
t = −Y (k),X

t dt + Z (k),C
t dWt , Y (k),C

T = 0,

Optimal strategy:

α
(k),⋆
t = − 1

βk Y (k),C
t , g (k),⋆

t = − 1
ζk Y (k),X

t ,

Γ(k),⋆
t = − 1

γk

(
Y (k),X

t − Sµ
t

)
, and

Sµ
t = −

∑
k∈K

ωk E
[
Y (k),X

t

]
, ωk = πk

γk

/∑
k′∈K

πk′

γk′
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Principal-Agent MFG

Problem
Solve

sup
g∈Gβ [a,b]

J(g) (P)

where

J(g) := E
[
U

(
g , (X g

t )t∈[0,T ], (Y g
t )t∈[0,T ], (L(X g

t ,Y g
t ))t∈[0,T ]

)]
,

Gβ [a, b] := {g ∈ C1,1[a, b] : g is convex, ||g ||C1,1 ≤ β},
and (X g ,Y g ) are solutions to the MV-FBSDE system

dX g
t = φ(t,X g

t ,Y g
t ,L(X g

t ,Y g
t ))dt + σ(t,X g

t ,Y g
t )dWt ; X g

0 ∼ ξ

dY g
t = −ρ(t,X g

t ,Y g
t ,L(X g

t ,Y g
t ))dt + Z g

t dW i
t ; Y g

T = h(X g
T ) := ∂x g(X g

T ).
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Principal-Agent MFG

Under usual Lipschitz continuity & square integrability...

Theorem (Existence and Uniqueness (MV-FBSDE) – Carmona
& Delarue)
There exists a constant c > 0, such that for T ≤ c and for any initial condition
X0 = ξ ∈ L2 (Ω,F0,P;R), the MV-FBSDE has a unique solution
(X ,Y ,Z) ∈ S2 × S2 × H2.
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Principal-Agent MFG

Lemma (Stability of Solutions (MV-FBSDE))
There exist two constants c,C ⩾ 0, only depending on L, such that, with
probability 1:

E

[
sup

0⩽t⩽T

∣∣Xt − X ′
t

∣∣2
+ sup

0⩽t⩽T

∣∣Yt − Y ′
t

∣∣2
+

∫ T

0

∣∣Zt − Z ′
t

∣∣2
dt

]
≤ C E

[∣∣ξ − ξ
′
∣∣2

+
∣∣(h − h′

)
(XT )

∣∣2
+

(∫ T

0

∣∣(φ − φ
′
, ρ − ρ

′
)

(t, Xt , Yt , Zt ,L(Xt , Yt ))
∣∣ dt

)2

+

∫ T

0

∣∣(σ − σ
′
)

(t, Xt , Yt , Zt )
∣∣2

dt

]
as long as T ⩽ c.

– extends Theorem 1.3 of Delarue (2002) to account for L(Xt ,Yt)
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Principal-Agent MFG

Lemma (Objective Function Continuity)
For sufficiently small T , the map g 7→ J(g) is continuous on Gβ [a, b].

– proof relies on stability result, and joint continuity of
(g ,X ,Y ,V ) 7→ E [U (g ,X ,Y ,V )]
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Principal-Agent MFG

Theorem (Existence of Solution (PA-MFG))
There exists an optimizer g∗ ∈ Gβ [a, b] to Problem (P)

Moreover, for any sequence of closed subsets (Gn)n∈N of Gβ [a, b] there exists a
sequence of optimizers (g∗

n )n∈N with g∗
n ∈ Gn to Problem (P) when the feasible

set Gβ [a, b] is replaced by Gn.

Lemma (Approximating Sequence of Sets of Penalties)
Let Gn ⊆ Gn+1 be a sequence of subsets Gn ⊆ Gβ [a, b] s.t.

⋃
n Gn is dense in

Gβ [a, b]. If J(g) is bounded from above and continuous on Gβ [a, b], then

lim
n→∞

sup
gn∈Gn

J(gn) = sup
g∈Gβ [a,b]

J(g).

Moreover, there exists a subsequence (g∗
nk )k≥0 such that g∗ := lim

k→∞
g∗

nk is a
maximizer of J(g) on Gβ [a, b].
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Principal-Agent MFG: Discretisation

Discretize the MV-FBSDE

X g,π
ti+1 = X g,π

ti + φ(ti ,X g,π
ti ,Y g,π

ti , P̂(Xg,π
ti

,Y g,π
ti

))h + σ(ti , ,X g,π
ti ,Y g,π

ti )∆Wi ,

X g,π
0 ∼ ξ,

Z g,π
ti = ψg

i (Xπ
ti ,Y

π
ti ),

Y π
ti+1 = ρ(ti ,X g,π

ti ,Y g,π
ti , P̂(Xg,π

ti
,Y g,π

ti
))h + Z g,π

t ∆Wi ,

where

▶ Y g,π
0 = µg.π

0 (X g,π
0 )

▶ (Z g,π
tm )M

m=1, with Z g,π
tm = ψg.π

m (X g,π
m ,Y g,π

m )
are ensembles of neural-nets

For fixed g , solve
inf

µ0∈N ′
0 ,ψi ∈Ni

E
∣∣∂x g(X g,π

T ) − Y g,π
T

∣∣2
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Principal-Agent MFG: Discretisation
We assume monotonicity of σ, ρ, and φ and that they admit a modulus of
continuity ω(·) in time.

Theorem (MV-FBSDE error – Reisinger et.al. (2020))
There exists a constant C such that it holds for all sufficiently large N (given
by some partition π) and for all θg,π ∈ N ′

0 ×
∏N−1

i=0 Ni that

sup
t∈[0,T ]

(
E

[∣∣Xt − X̂g,π,θ
t

∣∣2
]

+ E
[∣∣Yt − Ŷ g,π,θ

t
∣∣2

])
+ E

[∫ T

0

∣∣Zt − Ẑg,π,θ
t

∣∣2
]

dt

≤ C
(
ω (τN)2 + Rπ + E

[∣∣Ŷ g,π,θ
T − h

(
X̂g,π,θ

T

)∣∣2
])

where

Rπ := max
i∈N<N

t∈[ti ,ti+1]

(
E

[
|Xt − Xti |

2] + E
[
|Yt − Yti |

2])+
N−1∑
i=0

E

[∫ ti+1

ti

∣∣Zt − Z̄ti

∣∣2 dt
]

∼ ∆tn

with Z̄i := 1
τN

Ei

[∫ ti+1
ti

Zsds
]
.
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Principal-Agent MFG: Discretisation

Proposition (PA-MFG Approximation Bound)
Suppose there exist networks θg,π = (µg,π

0 , {ψg,π
i }N−1

i=0 ) ∈ N ′
0 ×

∏N−1
i=0 Ni s.t.

τN + ω(τN)2 + E
∣∣∂x g(X̂ g,π,θ

T ) − Ŷ g,π,θ
T

∣∣2
< ϵ.

then ∣∣∣∣ sup
g∈Gn

E [U(g ,X g ,Y g ,L(X g ,Y g ))]

− sup
g∈Gn

E
[
U(g , X̂ g,π,θ, Ŷ g,π,θ,L(X̂ g,π,θ, Ŷ g,π,θ))

]∣∣∣∣ ≤ K
√
ϵ
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Principal-Agent MFG: Discretisation
Algorithm 1: Principal-Agent Optimization

1 Initialize forward network parameters θ. Initialize principal parameters Υ. Initialize
memory buffer M. Initialize u(0)

2 Define update rule for sampling radius ϵ, network parameters θ,Υ and values u(·);
3 foreach n in [NO ] do
4 Initialize local samples U := (u(j)

i )i∈[NS ] ⊂ Bϵ(u(j));
5 foreach u′ ∈ U do
6 foreach k in [NF ] do
7 Sample paths of the discretized MV-FBSDE using the ensemble

network θ;
8 Compute the MV-FBSDE loss LF (θ);
9 Update θ;

10 if LF (θ) < TOLF then
11 break;
12 end
13 end
14 Estimate the principal loss via L̂P(ψ(u′));
15 Store (u′, L̂P(ψ(u′))) in M;
16 end
17

18 end
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Principal-Agent MFG: Discretisation

Algorithm 2: Principal-Agent Optimization
17
18 foreach k in [NA] do
19 Sample from M a batch U := (um)m∈[NB ] and associated principal losses

L̂P(ψ(U)) := (L̂P(ψ(um)))m∈[NB ];
20 Compute the MSE loss ||LΥ

P (ψ(U)) − L̂P(ψ(U))||22;
21 Update Υ;
22 foreach k in [NP ] do
23 Compute LΥ

P (ψ(u(j)));
24 Update u(j) 7→ u(j+1);
25 Increment j 7→ j + 1;
26 Update ϵ;
27 if ||u(j) − u(j−NP )||2 < TOL then
28 break;
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Figure: Trajectory of optimal weights (left) and principal loss (right).

MOVIE
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Figure: Inventories for population 1 (left) and population 2 (right)
throughout time.
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Figure: Inventory paths (left) and terminal inventory (right). Population
1 indicated in red, population 2 indicated in blue. The lines denote the
non-negligible nodes in the terminal penalty g .
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Figure: Expansion rate and total expansion (left column), rental
generation rate and cumulative rental generation (middle column),
trading rate and net trading position (right column) across sampled paths
of representative agent from each sub-population. Population 1 indicated
by red, population 2 indicated by blue.
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Finite Banking Case

We consider multi-period REC problem where the firms have N
compliance periods and the inventories expire after their second
compliance periods since generation.

dX i ,(k)
t = (h(k)

t + g i
t + Γi

t + C i
t )dt + σ(k)dW i ,(k)

t , X0 ∼ ξ

dV i ,(k)
t = ΓV ,i

t dt V0 = 0
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Finite Banking Case
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Main Contributions

▶ Main Contributions:
▶ Deep learning MV-FBSDE approach for solving PA-MFGs
▶ Convergence of deep PA-MFG algorithm
▶ Applied to single period REC market problem/ multi-period

finite-banking REC market
▶ On-going Work:

▶ Theoretical foundations of multi-period REC market problems
(indefinite banking/finite-banking/infinite-horizon) under
PA-MFGs framework
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Thank you for your attention!

https://sebastian.statistics.utoronto.ca

based on
Deep Learning for Principal-Agent Mean Field Games

https://arxiv.org/abs/2110.01127

Campbell, Chen, Shrivats, Jaimungal Deep PA-MFGs June 21, 2022 22 / 21

https://sebastian.statistics.utoronto.ca
https://arxiv.org/abs/2110.01127

	Background
	Problem and Approach
	Principal-Agent MFGs

